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Abstract
Conventional algorithms fail to obtain satisfactory background segmentation results for
underwater images. In this study, an improved K-means algorithm was developed for
underwater image background segmentation to address the issue of improper K value
determination and minimize the impact of initial centroid position of grayscale image
during the gray level quantization of the conventional K-means algorithm. A total of 100
underwater images taken by an underwater robot were sampled to test the aforementioned
algorithm in respect of background segmentation validity and time cost. The K value and
initial centroid position of grayscale image were optimized. The results were compared to
the other three existing algorithms, including the conventional K-means algorithm, the
improved Otsu algorithm, and the Canny operator edge extraction method. The experi-
mental results showed that the improved K-means underwater background segmentation
algorithm could effectively segment the background of underwater images with a low color
cast, low contrast, and blurred edges. Although its cost in time was higher than that of the
other three algorithms, it none the less proved more efficient than the time-consuming
manual segmentation method. The algorithm proposed in this paper could potentially be
used in underwater environments for underwater background segmentation.

Keywords Underwater image . Image segmentation . Background segmentation . K-means
algorithm

1 Introduction

The significance of ocean exploration has been highlighted by researchers [19]. Within the
field of ocean exploration, underwater detection technology for identifying objects in under-
water environments is of high significance from a number of security and recovery perspec-
tives, and has become a topic for extensive research. Although many image segmentation
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models have been developed to detect objects in various above-water contexts [11–16, 26],
conventional electro-optical imaging methods perform poorly underwater, resulting in under-
water detection and extraction proving a challenging predicament. Trained and experienced
personnel are still required to interpret images obtained from echogram methodology such as
sonar or ultrasound imaging. Even with training, distinguishing objects of interest from their
background in an echogram can be difficult. [9]. It is this background impediment that
triggered exploratory research in underwater image detection techniques.

According to the law of Physics, light is absorbed and dispersed when transmitted through
water [9], thereby decreasing its energy and resulting in reduced observation distance for
underwater light imaging [5]. It is well documented that most segmentation methods are highly
susceptible to the impact of changing light conditions during image acquisition, as well as
color variations of the background of the scene. Underwater images furthermore suffer from
non-uniform brightness, poor contrast, diminished coloration, significant blur [25].I It is thus
necessary to perform a preliminary treatment on those images prior to using image processing
methods such as background segmentation. Background segmentation is a technique that aims
to split digital images in such a way as to differentiating the features in the foreground from the
background. The separate layers comprise homogeneous properties such as color, texture, and
brightness [31]. To develop specific background segmentation algorithms suitable for appli-
cation to underwater images affected by several drawbacks such as non-uniform brightness,
poor contrast, and significant blur would therefore be of immense interest and benefit. Several
background segmentation models such as histogram-threshold, edge-detection, and semantic
algorithms have been developed within the relevant research community [1, 6, 7, 10, 15,
20–25, 29, 32, 35, 38].

Although histogram-threshold background segmentation models can easily be carried out
based on gray values, they can only produce good segmentation results if the image has a high
gray level contrast. Improved models such as the image-based statistical threshold method and
the minimum error method have thus been developed [24]. In addition, the spatial structure of
images is often ignored, and the segmentation model is highly sensitive to environmental noise,
which results in low detection accuracy of objects in underwater images. Few attempts have
been made to date to improve background segmentation results for underwater images [7, 25].

Segmentation techniques such a semantic segmentation based on pixel scores have been
developed [15, 29, 32, 38]. While conventional image segmentation methods hardly rely on
spatial information within the target region, reducing image segmentation accuracy. Recently,
semantic image segmentation models were developed using a feature fusing model [11, 13, 15].
Alternatively, the edge-detection background segmentation algorithm based on the local
maximum of the image gradient can reflect the spatial details of the images that comprise sharp
edges and little noise within the smoothing region of the image [30]. In cases where underwater
images normally present blurred or discontinuous edges with increased noise, it is difficult to
achieve a good segmentation result using the edge detection-based segmentation model.

In summary, owing to the blurring characteristics of underwater image edges, their low
contrast brightness and low resolution, existing background segmentation algorithms fail to
produce ideal results when applied to underground water images.

The K-means algorithm was recently applied to image segmentation due to its low
algorithm complexity and simple implementation. When using this K-means algorithm for
gray level quantization, the pixels between the background and foreground image within a
specific region could be distinguished. Threshold segmentation could then be performed to
remove the background within the said region. However, conventional K-means algorithm
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results are strongly dependent on the choice of initial centroid. This is because the image
segmentation threshold based on the K-means algorithm is only locally optimal, and the
locally optimal threshold cannot equate the globally optimal threshold. The gray level quan-
tization order obtained by the algorithm to find maximum in an array is furthermore set and
extracted by users. As a background segmentation algorithm, the K-means algorithm can work
well for dynamic thresholding and is suitable for above-water images. However, when dealing
with the background segmentation of underwater images, the gray level of the background
image pixels is similar to that of the foreground ones. Therefore, incorrect initial centroid
setting of the algorithm, or highly limited quantization orders are more likely to divide the
foreground image pixels into part of the background image pixels, resulting in an incomplete
final segmentation result. Hence, it is clear that the negative influence of initial centroid setting
on the background segmentation accuracy should be minimized for the successful application
of underwater image segmentation models.

This study proposes an improved K-means algorithm in underwater image background
segmentation. The method described in this paper used the Lab color space for image color
correction to reduce interference from underwater color cast on image segmentation; a K-means
algorithmwas used to perform histogram analysis of gray image; the histogram of the quantized
gray image was analyzed. 100 underwater images were selected to test the new algorithm. The
results were evaluated and compared to those of manual background segmentation and other
background segmentation algorithms, including the improved Otsu algorithm, the Canny
operator edge extraction, and the conventional K-means algorithm. The new underwater image
segmentation model optimized the combination of the finite contrast histogram equalization
algorithm and the color correction algorithm based on equivalent circular color cast detection.
The image contrast was enhanced and the interference of non-uniform brightness was reduced.
The influence of image color cast was furthermore reduced. The new algorithm strategy
addressed the issue of improper K value determination and minimized the impact of initial
centroid position of grayscale image during the gray level quantization of the conventional K-
means algorithm. It is proposed that the newmodel could offer new insights into the application
of underwater background segmentation in underwater environments.

2 Related work

Three aspects of related studies are reviewed: background segmentation techniques based on
histogram threshold, on edge detection, as well as on semantic image segmentation.

2.1 Background segmentation techniques based on histogram threshold

Background segmentation based on histogram threshold offered the benefits of simple and
easy implementation, small calculation amount, and fast segmentation speed. A threshold
value was set as the basis for image segmentation. The gray level of the pixel that exceeded the
threshold was designated as the maximum gray level, while the opposite was the minimum
gray level. This separation divided the image into several meaningful areas. The core of the
algorithm challenge was how to determine the gray threshold, which is generally selected
according to the gray histogram characteristics of the image. In cases where the gray level
contrast of the image was high, the threshold segmentation algorithm enabled a good image
segmentation effect to be obtained. Researchers proposed many improved algorithms for
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threshold selection and segmentation, such as the image-based statistical threshold method and
the minimum error method proposed by Kittler et al. [24], a two-dimensional entropy threshold
method proposed by Abutaleb [1], an improved Otsu algorithm proposed by Hu et al. [21] and
Du et al. [18], and a multi-threshold image segmentation based on chaotic particle swarm
algorithm proposed by Jiang and Li [23].

However, the above algorithms present several limitations. In histogram threshold segmen-
tation, the statistical characteristics of the gray level of the image are taken into account, but its
spatial structure is often ignored, especially useful features such as the texture characteristics of
the image. Moreover, histogram threshold segmentation is highly sensitive to environmental
noise. The image divided by the histogram threshold was found potentially to increase salt and
pepper noise, especially in cases of low brightness and low contrast. Li et al. [25] used the
modified local entropy-based transition region extraction and thresholding to segment the
underwater image. They found that this method offered a high capacity to suppress noise, but
because the gray level between target and background were similar, adhesions between them
were prone to occurring in the segmentation result. Cao et al. [7] proposed an image
segmentation method based on the custom color space model (i.e., HSV model). The satura-
tion S was taken as the main analysis channel to conduct the segmentation sequence on
different color components. However, the S component was more affected by the illumination
intensity and incident angle of the light. Due to the variable sensitivity of the surface of
underwater imaging objects, successful complete separation of the target from the background
is unlikely to be achieved. Therefore, in underwater environments, due to the influence of the
water medium on light dispersion and absorption, water impurities, and underwater lighting
conditions, the outcome of image segmentation proved less than ideal.

2.2 Semantic image segmentation

Semantic segmentation techniques that divided an image into regions according to various
semantic data was also used to achieve image segmentation [15, 29, 32, 38]. Among these
semantic segmentation models, candidate region-based models that first described and classified
the free-form features of regions once the free-form regions had been extracted from the image
were selected. Thesemodels then converted the region-based prediction to a pixel-level prediction
according to the region with the highest pixel score to mark pixels. Similarly to histogram
threshold segmentation models, this pixel-score based image segmentation technique failed to
utilize the spatial information in the candidate region, impacting the image segmentation outcome.
Although the semantic segmentationmodels based on the fully convolutional symmetric semantic
segmentation model improved image segmentation results, calculation costs to obtain training
samples with pixel-level labels were high, and sensitivity to object location was lost. Attempts
were thus recently made to improve the above semantic image segmentation models by using a
feature-fusing model with layer-by-layer context features [11, 13, 15].

2.3 Background segmentation techniques based on edge detection

Unlike histogram threshold segmentation, the background segmentation algorithm for edge
detection is a segmentation processing algorithm based on image edge detection. The core of
the image segmentation algorithm based on edge detection consists in finding the region
comprising the local maximum of the image gradient and using this region as the basis for
image segmentation. The edge information belongs to the high-frequency component of the
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image, which reflects its structural information of the image, such as the contour shape of
objects. The edge detection algorithm can obtain object edge information and depict the target
object location, so that the computer can identify the target object. The edge-based segmen-
tation algorithm comprises of edge detection operator methods such as gradient, Laplacian,
and template operation operator [20]. For video segmentation, a dynamic programming
method was introduced by Wu et al. [35]. Bo et al. [6] processed the edge-detected images
by constructing a Sobel operator with eight directional templates combined with an iterative
segmentation threshold algorithm and an omnidirectional expansion morphology method.

The background segmentation algorithm based on edge detection proved capable of
achieving good results for images with sharp edges and little noise within the image smoothing
region. However, when the image edges were blurred or there were greater high-frequency
noises, the edge detection-based segmentation algorithm often achieved undesired outcomes,
such as the erroneous removal of the foreground image due to the discontinuity of the blurred
region border, or due to the high frequency of the image. Noise created a false area within the
output image, that is, a resulting ‘false’ absence of border where a boundary actually existed,
and a ‘false’ presence of an edge in an area where no border existed due to the noise.

Many studies used edge detection-based segmentation algorithms to process underwater
imaging. Chen et al. [222] proposed an algorithm based on definite weighting coefficients
entropy to determine borders. These algorithms were simple to implement, but their associated
noise-reduction effect was not evident, their edge detection accuracy was not high, continuity
was lacking, and most importantly they were not adaptable. Due to the harsh underwater
imaging environment, images formed via natural illumination tended to be blurred at the
edges. However, the addition of artificial fill light generated false borders due to non-uniform
illumination. Therefore, this type of image segmentation algorithm frequently detected false
edges or failed to detect local edges in the course of underwater image processing. Some
border details were susceptible to being mistakenly interpreted as noise due to the similarity,
and hence to being removed.

3 Research methods

The algorithm described in this paper lent itself to being divided into three parts: color
adjustment, gray level quantization, and background judgment and segmentation. Due to the
absorption and dissemination of ambient light as well as the impact of illumination sources on
the underwater robot, the color of underwater images, which were dominated by shades of
green or blue, could be modified. It was hence possible as a result to interfere with the
identification and removal of background areas. [5]. It was thus necessary to perform a pre-
treatment to correct the underwater image color. In this paper, the finite contrast histogram
equalization algorithm proposed by Yang et al. [37] was used to improve image contrast and
reduce interference from non-uniform brightness. The color correction algorithm based on
equivalent circular color cast detection presented by Xu et al. [36] was utilized to reduce the
influence of image color cast.

Gray level quantization generally uses a uniform quantization method [4], that is, where the
quantization interval is uniform; this could approximate the gray shade of the foreground
object region close with that of the background, preventing differentiation between foreground
object and background. To avoid this, the K-means algorithm [17] was used to quantize
distinct gray shades within images. In the present study, each gray level mask was produced to
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obtain a color image for the location of each gray level, and the background image was
determined according to the general characteristics (e.g. color, intensity) of the underwater
image background, thereby removing the background from the underwater image. The full
algorithm flow chart is shown in Fig. 1 below. Details of gray level quantization, background
judgment, and background segmentation are described in Sections 2.1–2.2 hereafter.

3.1 Gray level quantization

3.1.1 K-means algorithm

It should be noted that K-mean clustering is a technique that groups n pixels of an image into K
numbers of clusters, where K < n and K is a positive integer [2]. The purpose of a clustering
algorithm is to divide the data set made up of various elements into different data subsets, each of
which contains at least one element, and each element in the data set belongs to a subset, but only
one subset, and is clustered. The subset obtained by the class is also called a data cluster. The K-
means algorithm performs clustering operations on known data sets without other trial data sets to
assist clustering; the K-means algorithm is therefore an unsupervised clustering algorithm.

The K centroid is first defined by the user. After determining the starting position of the
centroid, the data set data are divided into the data cluster nearest to the centroid location.
There are several methods to measure distance, such as Euclidean, block, and cosine distance.
The centroid of the data cluster is then calculated for each data cluster obtained, first by a
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division, and then as the updated value for each centroid. Data partitioning and centroid
updating operations are repeated until the centroid position of the divided data cluster no
longer changes, or when the distance change is less than a certain value. The algorithm ends at
that point, and K data clusters and centroid positions for each data cluster are obtained [27].

The core objective of the K-means algorithm is to minimize the cost function, which is as
follows [27]:

J ¼ ∑
k

j¼1
∑
n

i¼1
dist xij;mj

� � ð1Þ

where dist (xij, mj) represents the distance between the data point xij and the cluster centroid mj.
The purpose of this calculation is to find a classification method for a set of centroids where the
sum of data in each group and the centroid of the group are minimized.

The basic flow of the K-means algorithm is as follows and is illustrated in Fig. 2 below: [17].

a) K points are placed in the space represented by the objects being clustered. These points
form the initial group centroids (Fig. 2a);

b) Each object is assigned to the group that has the nearest centroid (Fig. 2b);
c) The positions of theK centroids are recalculatedwhen all objects have been assigned (Fig. 2c);

(a) (b)

(c) (d)
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Fig. 2 K-means algorithm implementation process. (a) Initial group centroids (b) Grouping operation (c)
Recalculation (d) Repeat (a) and (b) until the centroids no longer move
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d) The degree of change is calculated from the position of the centroid. If the centroid
position for each data cluster does not change or the range of variation is less than a
certain value, the algorithm ends. Otherwise, repeat Steps (b) and (c) (Fig. 2d).

The K-means algorithm always converges, but it also presents a number of problems [22]. For
example, it does not necessarily minimize the optimal clustering of the objective function.
Since the K-means algorithm is extremely sensitive to the K value set by the user and the initial
centroid position of the K data clusters, this can result in the K-means algorithm objective
function eventually converging towards a locally, rather than globally, optimal solution.

3.1.2 K-means algorithm-based image gray level quantization

Image gray level quantization is a process aiming to reduce the number of gray levels within a
grayscale picture, that is, using a lower gray level to express an image to reduce the memory
overhead of the image. Compared with general gray level quantization, the K-means algorithm
can be used to quantize non-uniformly the gray level of the original image. This allows more
image details to be preserved with fewer gray levels after image quantization.

Since the grayscale image contains only the luminance features of the image, it is a one-
dimensional feature. A grayscale image IH*W with a pixel height of H and a width W is
converted into an image I′1*(H*W) with a height of 1 and a width of H*W. Sort I′ results in I″.
Based on the K value given by the user, the initial centroids of K are randomly set in I″ as m01,
m02, … …, m0K. The distance function is defined as follows [3, 27]:

Dist b; að Þ ¼ b−að Þ2 ð2Þ
To classify the elements in I″, let j∈[1, H*W], the set of distances from j to centroids is:

Dj ¼ Dist I
00
jð Þ;m02

� �
;Dist I

00
jð Þ;m01

� �
;Dist I

00
jð Þ;m0K

� �n o
ð3Þ

Find T ∈ [1,K], so that T satisfies:

Dist I
00
jð Þ;mT

� �
¼ min Dj

� � ð4Þ

Then the element I″ (j) is the Tth class. Thus, I″ is divided into K subsets and recorded as M01,
M02,……,M0K. According to the elements in the subset, the centroid positions are updated. If
the initial centroid of the T-class is m0T and contains NT elements, the centroid obtained after
the first update is:

m1T ¼ 1

NT
∑NT

i¼1M 0T ið Þ ð5Þ

After the first update, K centroids are obtained, m11, m12, … …, m1K. For the Tth centroid, if
there is a certain δ such that Dist (m0T, m1T) < δ, the update is stopped, otherwise it continues.
The K subsets obtained from the first update by eq. (4) areM11,M12,……,M1K. From eq. (5),
the K centroids after the second update are obtained: m21, m22, … …, m2K. With the final
update count being n, the final K centroids are mn1, mn2, … …, mnK. The K subsets of I″ are
Mn1, Mn2, … …, MnK, and the element values in each subset are replaced by corresponding
centroid values. This effect is mapped into the original grayscale image IH*W. Finally, a
grayscale image I″‘H*W which is quantized into K gray scales is obtained. The results of the
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gray level quantization of the K-means image at a random starting point when K = 16, K = 8,
K = 4, and K = 2 are shown in Fig. 3 below.

Although the K-means algorithm simplifies the non-uniform gray level quantization, the
choice of K value is subjective, which could adversely affect the quantified results. Moreover,
the choice of the initial centroid affects the number of updates and convergences of the K-
means algorithm. That is, the K value of the K-means algorithm and the choice of initial
centroid would eventually affect the storage space of the gray image and the operating
efficiency of the algorithm. It is therefore necessary to find a way to reduce the K value and
the adverse effect of the initial centroid K-means algorithm in the gray level quantization
problem.

3.1.3 Improved gray level quantization of images based on K-means algorithm

To address the issue of the K value determination and the initial centroid position of grayscale
images during the gray level quantization using the K-means algorithm, the present study
proposed an improved method of applying gray level quantization of images to reduce the
influence of the user’s ascribed K value.

K value estimation TheK value ultimately reflects the number of gray levels once the gray level
of the image has been quantized. By comparing the image histograms before and after quantiza-
tion, it becomes readily apparent that the K value is related to the histogram of the grayscale
image. Since the image histogram reflects the frequency of occurrence of each gray level within
the image, the degree of gray level processing in effect uses the most frequently occurring gray
level in the original picture to represent the least frequently occurring gray level. Therefore, the
pre-quantization image histogram can be used to estimate the number of gray levels requiring
quantization, and the estimated number of gray levels is assumed as the K value.

In the present study, the numbers of grayscale pixels of the original grayscale image were
counted to obtain a histogram Hist. The data in the histogramHist were blurred to obtain Hist’.
If i∈[0, 255], and the blur radius is l, then:

(a) (b)

(c) (d)

Fig. 3 K-means gray level
quantization results: (a) K = 16; (b)
K = 8; (c) K = 4; (d) K = 2
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Hist
0
ið Þ ¼ ∑2lþ1

j¼i−lHist ið Þ ð6Þ

The number of local histogram maxima obtained after blurring produced the K value. Diff (i)
was defined as follows:

Diff ið Þ ¼ Hist
0
iþ 1ð Þ−Hist0 ið Þ ð7Þ

If s∈[0, 255], and if as was present, then:

Diff asð Þ � Diff as þ 1ð Þ < 0
Diff asð Þ > 0

�
ð8Þ

In this case, as was the maximum value in Hist’. The maximum values of Hist’ (i) were a1, a2,
… …, as, where K = s.

Figures 4a-c below show the histogram of the input image, the histogram after the mean
blur, and the K value estimation respectively. The number of blue peaks indicates the number
of quantization, namely where K = 4.

Target gray level estimation of K-means The K-means algorithm was used to perform gray
level quantization. The mean of each subset was used instead of the subset element values to
achieve the final gray level quantization result. The initial centroid value could therefore be
estimated by using the peak interval of the maximum value of the original histogram.

Fig. 4 Illustration of (a) histogram of an image; (b) histogram after the mean blur; and (c) K value estimation
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If t∈(0, 255) and if bt exists:

Diff btð Þ � Diff bt þ 1ð Þ < 0
Diff btð Þ < 0

�
ð9Þ

Then, bt is the minimum value in Hist’. The minimum values of Hist’ (i) are b1, b2, … …, bt.
Then, each peak interval is [0, b1], [b1 + 1, b2], … …, [bt + 1, 255].

Let p∈[1, K], then the pth peak interval is [cp, dp]. Then, the pth centroid estimate is:

m
0
p ¼

∑dp−cpþ1
i¼cp Hist ið Þ*i
∑dp−cpþ1

i¼cp Hist ið Þ
ð10Þ

The centroid estimation values of the K centroids were obtained from eq. (10) above, which
were denoted as m’1, m’2, … …, m’K. The centroid estimate was then taken as the initial
centroid value for the K-means algorithm.

Figure 5 below shows the result of K value estimation using the result of the input image
histogram mean and performing centroid estimation. The number of blue peaks indicates that
of quantizations, namely where K = 4. Figure 6 below illustrates the estimated quantized image
histogram (yellow) and a histogram of the actual quantized image (blue).

Figures 6 (a) (b) below show the gray level quantization results obtained by the
random centroid and the proposed method respectively. By way of comparison, the
authors’ method provided the capacity to converge to the globally, as opposed to the
locally, optimal solution, and eventually obtain the ideal quantitative result, as shown in
Fig. 7b below.

3.2 Background judgment and segmentation with parameter settings

Underwater image backgrounds present distinctive features. For example, a background can be
dark blue, and the area can be smoother. These characteristics enabled the authors to determine
whether the quantized area of each gray level pixel was the background image area.

Fig. 5 a Centroid estimation; and b estimated quantized image histogram (yellow) alongside actual quantized
image (blue)
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3.2.1 Background decision based on image background color features

The grayscale pixels of the quantized image were separated to form each grayscale mask,
Mask1,Mask2,……,Maskn. The color-adjusted image was converted to the HSV color space,
which was defined by chromaticity (H), saturation (S), and brightness (V). The chrominance
(H) channel value was [0, 360], which represented the wavelength color change from red to
blue light. The standard blue was 240, and the blue field was [180, 300]. The pixel chromi-
nance value was used to determine whether it was a background pixel, and the positive
membership function of the background pixel was defined:

b xð Þ ¼ e−
x−240
120ð Þ2 ð11Þ

where x was the pixel chromaticity value. The chrominance images I1, I2, … …, In of the
respective quantized gray level regions were obtained by performing an AND operation with
each mask and a chroma channel image of the color image within the HSV color space. The
background membership degree of the pixels in the image obtained by each mask operation
was obtained, and the mean value of the background membership of the Kth image was
calculated as follows:

B kð Þ ¼ 1

N
∑H

i¼0∑
W
j¼0Maskk i; jð Þb Ik i; jð Þ½ � ð12Þ

(a) (b)

Fig. 6 Image quantization results obtained by (a) the random centroid, and (b) the proposed method

(a) (b) (c)

Fig. 7 Illustration of (a) background mask; (b) foreground mask; (c) foreground image
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where N was the pixel number of Maskk, H and W were the image height and width
respectively. The value of λ was 0.7 if the condition below was met:

B kð Þ > λ ð13Þ
Maskk was then the color decision condition for the region to satisfy the background image
requirements.

3.2.2 Background decision based on image background frequency characteristics

The degree of image smoothness depends the frequency domain property of the image.
Generally, the image of a foreground object is rich in edge information, pixel gray levels
change significantly, the background image is quite smooth, and the gray level variation is
relatively uniform. In this study, the authors determined whether the region represented a
background by analyzing the gray level of each pixel within a given image area, and the gray
level of the surrounding pixels.

The average gray variance product (SMD2) function was furthermore used as the basis for
evaluating the smoothness of a given image region. The corresponding gray images of each
gray level mask, Mask1, Mask2, … …, Maskn and the original color image were utilized to
perform the AND operation and obtain the gray images I1, I2,……, In for each quantized gray
level region. The average grayscale product of each mask and the computed image were:

SMD2 kð Þ ¼ 1

N
∑H−1

i¼1 ∑
W−1
j¼1 Maskk i; jð Þ Ik i; jð Þ−Ik iþ 1; jð Þj j I k i; jð Þ−Ik i; jþ 1ð Þj j ð14Þ

where N was the pixel number ofMaskk and H and W represented the image height and width
respectively. If the condition σ = 10 was met:

SMD2 kð Þ < σ ð15Þ
then, Maskk was the frequency judgment condition for the region to satisfy the background
image requirements.

3.2.3 Background decision based on image background airspace features

In general, pixel location pertains to structural image space information, the background image
always surrounds the foreground object, and is at the edge of the image. Based on these
characteristics, the position of each gray level mask pixel was deviated from the central pixel
point by defining average eccentricity, thereby determining whether the corresponding image
area of the mask was the background. As the grayscale masks were in the orderMask1,Mask2,
… …, Maskn, the average eccentricity of the Kth mask Maskk was:

S kð Þ ¼ 1

N
∑H

i¼0∑
W
j¼0Maskk i; jð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i−Ið Þ2 þ j−Jð Þ2

q
ð16Þ

where N was the pixel number for Maskk, H and W indicated the image height and width
respectively, and I, J was the image center pixel coordinate. If the condition δ = 200 was met:

S kð Þ > δ ð17Þ
thenMaskk represented the airspace decision condition for the region to satisfy the background
image.
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3.2.4 Background segmentation

If the conditions (13), (15), and (17) were all satisfied, the mask was described as Maskk1,
Maskk2, … …, Maskkn, and the background mask Mask0 was:

Mask0 ¼ ⋁ni¼1Maskki ð18Þ
Once the background mask Mask0 was obtained, the foreground mask Mask’0 was:

Mask
0
0 ¼ Iones−Mask0 ð19Þ

where Iones was the matrix of ones. The respective channels of the color image were compared
with the foreground mask to obtain a post-background segmentation image. As an example,
Figs. 7(a), (b), and (c) below show the background mask obtained by using Eq. (18), the
foreground mask obtained by Eq. (19), and the foreground image obtained by using the
foreground mask respectively:

4 Experimental evaluation

4.1 Data description and testing procedure

A total of 100 images including 80 with different types of color board and 20 of various
underwater scenes taken by an underwater robot were used to demonstrate the effectiveness of
the proposed algorithm. The 100 images were obtained in accordance with the following
procedure: (1) placing of color boards in water; (2) mounting of a camera to an underwater
robot used to collect images of color boards or underwater scenes at various angles and
distances; (3) randomly extract 80 samples from the collected color board images and 20
samples from the collected underwater scene images; (4) apply the developed algorithm to
process images and compare results with other methods, as shown in Section 3.2.3 above. Due
care was taken to ensure the images were representative and human error was mitigated.
Figures 8 and 9 below illustrate typical images of color board and underwater scenes.

4.2 Evaluation metrics

The authors’ experiment aimed to demonstrate that their algorithm was effective and inexpen-
sive. The background segmentation effect was determined subjectively and was generally
judged on the basis of perceived degree of satisfaction, thus making the resulting judgment
tentative. To improve judgment objectivity, the authors used the quantitative index of back-
ground segmentation validity below proposed by Ning et al. [28]:

G ¼ 100−
A M 0−Msð Þ
A Msð Þ � 200 ð20Þ

where M0 was the mask obtained by the method herein described, Ms was the standard mask
obtained by the manual stroke method, A(Ms) was the pixel number of the standard mask, and
A(M0 - Ms) was the difference between M0 andMs in the pixel number. It should be noted that
if the algorithm generated a template consistent with the standard template, the validity
evaluation function (20) result would have been 100. Had the difference between algorithm

21072 Multimedia Tools and Applications (2021) 80:21059–21083



Fig. 8 Typical underwater images of color boards (a, b, c, d) taken by an underwater robot in this study

Fig. 9 Typical underwater images of scenes (a, b, c) taken by an underwater robot in this study
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template and standard template been greater than 20%, the result of Eq. (20) would have been
below 60.

The present study also used a timeliness evaluation function proposed by Cao et al. [8] to
evaluate the time cost of the algorithm:

T ¼ t
s

ð21Þ

where t was the total algorithm running time (unit: ms), swas the total number of image pixels,
and T was the average pixel processing time of the algorithm.

The algorithms and related experiments described in this paper were implemented on the
Win10 computer operating system using the Python 2.7 language and OpenCV open source
processing library. The computer hardware was Intel(R) Core(™) i7-4700HQ CPU@2.40 GHz,
2.4 GHz, with 8.00 GB of memory.

4.3 Comparative approaches

The authors’ proposed algorithm was compared to the other three state-of-the-art background
segmentation approaches widely applied for comparison in different studies. These included:

& The conventional K-means algorithm.
& The improved Otsu algorithm based on simulated annealing genetic algorithm [33]. This

improved Otsu algorithm had the capacity to address the drawbacks of slow speed and
large memory requirements.

& The Canny operator edge extraction method [34]. This algorithm was capable of excluding
fake edges with anomalies and noise.

5 Results and discussion

Figure 10 below illustrates the whole image background segmentation process from initial
image as an input to final foreground object segmented by the improved K-means algorithm
proposed in this research. An image comprising interior boundaries, low color cast, blurred
edges, and poor contrast between object and background was analyzed and presented to
demonstrate the effectiveness of the authors’ proposed new algorithm. The representative
results showed that the foreground object had distinct exterior edges and interior boundaries
despite small strips having been found within the interior boundary region. The finite contrast
histogram equalization algorithm facilitated the successful identification of boundaries [37].
The above result indicates the improved K-means gray level quantization background removal

Fig. 10 Image background segmentation process: (a) initial image; (b) image obtained by the K-means
algorithm; (c) foreground mask obtained by the improved K-means algorithm; and (d) foreground object
obtained by the improved K-means algorithm
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algorithm, can effectively remove the underwater image background, of which the color is
similar to the main part of the object, to obtain the foreground object image.

The comparative results regarding the foreground masks obtained by the improved K-
means algorithm and other methods are presented in Fig. 11 below, where the capacity of
the improved K-means algorithm to extract the foreground mask is demonstrated
(Fig. 11d). While the improved Otsu algorithm (Fig. 11a), the Canny operator edge
extraction (Fig. 11b), and the conventional K-means algorithm (Fig. 11c) failed to
capture the complete object.

Figure 12 below reveals the foreground objects extracted via different methods. In line with
the above results, the proposed method of this study – namely the improved K-means
algorithm – was found effectively to remove the background of underwater images
(Fig. 12d) by applying a non-uniform gray level quantization method that could distinguish
a foreground object from its background. In contrast, segmentation results obtained from the
improved Otsu algorithm (Fig. 12a), the Canny operator edge extraction (Fig. 12b), and the
conventional K-means algorithm (Fig. 12c) proved incomplete and unattractive.

Table 1 below illustrates the effectiveness and timeliness (average pixel processing time) of
each algorithm, calculated by using Eqs. (20) and (21), including the improved Otsu algorithm,
the Canny operator edge extraction method, the conventional K-means algorithm, and the
improved K-means algorithm. Compared to other algorithms, the average time cost of our new
proposed algorithm was significantly higher. This was also reflected in Fig. 13, where the
average pixel processing time of the improved K-means algorithm was compared with the
other three algorithms. Although the average time cost of the improved K-means algorithm
proved greater than that of the other methods, it generally remained below 1.0 ms and was thus
acceptable. It should be noted that the relatively slow speed of the K-means clustering
algorithm had previously generally been recognized by other researchers [22]. However, the
proposed K-means algorithm proved significantly faster than the manual segmentation method
when processing large quantities of underwater images.

The background segmentation validity results in Fig. 14 below reveal slight fluctuations in
the background segmentation validity values of the authors’ improved K-means algorithm,

Fig. 11 Comparison of foreground masks obtained via different segmentation methods: (a) improved Otsu
algorithm; (b) Canny operator edge extraction; (c) conventional K-means algorithm; and (d) improved K-means
algorithm
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with an average value of around 90 and standard deviation of 4.9. The average validity value
and the standard deviation value are respectively significantly higher and lower than those of
the other three algorithms. The above results demonstrate that the improved K-means gray
level quantization background segmentation algorithm is superior to the other conventional
image background segmentation algorithms examined in the present study.

Underwater images are subject to non-uniform brightness, poor contrast, and diminished
colors, as shown in the typical underwater images (Figs. 8 and 9 above). These factors can
result in the failure of current background segmentation methods based on histogram threshold
and edge detection techniques, which generally require high grey level contrast of object
boundaries. While the K-means algorithm was shown to improve the performance of the
background segmentation algorithms based on histogram threshold segmentation and that edge
detection respectively, the impact of initial centroid on segmentation results produced local,
rather than global, optimization. The authors’ improved K-means algorithm provided the
capability of specifically processing underwater images, the gray levels of which pixels were
similar to those of the foreground image pixels. The issue of improper K value determination
was thus resolved, and the impact of initial centroid position of grayscale image during the
gray level quantization of the conventional K-means algorithm was reduced.

Underwater images furthermore commonly incur a low color cast, low contrast, and blurred
edges. The segmentation results in this study were promising as interior boundaries of images
could be clearly identified while whole foreground objects could readily be segmented (Fig. 12

Fig. 12 Comparison between foreground objects obtained by different segmentation methods: (a) improved Otsu
algorithm; (b) Canny operator edge extraction; (c) conventional K-means algorithm; and (d) improved K-means
algorithm

Table 1 Algorithm effectiveness and timeliness

Segmentation method Effectiveness Average pixel processing time / ms

Improved Otsu algorithm −52.39 0.016
Canny operator edge extraction method 19.13 0.084
Conventional K-means algorithm 19.58 0.166
Improved K-means algorithm 90.34 0.568
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above). According to Ning et al. [28], the quality of background segmentation validity was
significantly higher than that of other image background segmentation algorithms – namely
the improved Otsu algorithm, Canny operator edge extraction, and conventional K-means
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algorithm – suggesting potential for the authors’ underwater background segmentation algo-
rithm to be applied in real underwater environments. Further research remains called for in
order to further optimize K value estimation algorithm and centroid estimation algorithm to
enhance the image processing speed.

6 Conclusion

In light of the failure of existing background segmentation models to achieve accurate object
segmentation on underwater images due to the impact of light absorption and dispersion on the
characteristics of underwater images, an improved K-means algorithm was developed in the
present study to enhance underwater image background segmentation. New algorithms were
elaborated to tackle the issue of improper K value determination and reduce the impact of
initial centroid position of images during the gray level quantization of the conventional K-
means algorithm. A dataset of 100 underwater images taken by an underwater robot was used
to test the proposed algorithm in terms of its background segmentation validity and time cost.
The results were compared to other state-of-the-art algorithms, including the conventional K-
means algorithm, the improved Otsu algorithm, and the Canny operator edge extraction
method. The following conclusions were drawn:

& The improved K-means underwater background segmentation algorithm produced a signif-
icantly higher effectiveness value of 90.34 compared to the other three segmentationmethods,
the effectiveness values of which were below 20.00. The image analysis results also demon-
strated that the newmodel could successfully segment the background of underwater images,
which were generally prone to low color cast and contrast, and blurred edges. In contrast, the
conventional K-means algorithm, improved Otsu algorithm, and Canny operator edge ex-
traction method often failed to differentiate and extract foreground objects.

& The average pixel processing time of the improved K-means algorithm was measured at
around 0.568 ms, i.e. under 1.0 ms. Although significantly greater than that of other
algorithms, this average pixel processing time remained considerably below that of the
manual segmentation method, and was thus acceptable. Future research could be aimed at
optimizing the K value estimation and centroid estimation algorithms respectively in order
to enhance the image processing speed.

& The K-means algorithm developed herein demonstrably overcomes the challenges of K
value determination and centroid position during gray level quantization. It thus offers the
potential to be applied to detect underwater image objects in challenging underwater
environments for a wide range of security applications.
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