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   Abstract 

Scene text detection has become an important research topic. It can be broadly applied to 
much industrial equipment, such as smart phones, intelligent scanners, and IoT devices. 
Many existing scene text detection methods have achieved advanced performance. 
However, text in scene images is presented with differing orientations and varying 
shapes, rendering scene text detection a challenging task. This paper proposes a method 
for detecting texts in scene images. First, four stages of low-level features is extracted 
using DenseNet121. Low-level features are then merged by transposed convolution and 
skip connection. Second, the merged feature map is used to generate a score map, box 
map, and angle map. Finally, the Locality-Aware Non-Maximum Suppression (LANMS) 
is applied as post-processing to generate the final bounding box. The proposed method 
achieves an F-measure of 0.826 on ICDAR 2015 and 0.761 on MSRA-TD500, 
respectively. 
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Introduction 
 

With the rapid development of deep learning, many computer vision tasks have achieved 
promising results in recent years, such as image classification [7], object detection [13, 19], crowd 
flows prediction [1] and scene text detection [2, 16, 18, 21, 24, 31]. Accurately predicting the 
location of text in natural scenes constitutes a fundamental step in developing advanced applica- 
tions such as text recognition, scene analysis, and autopilot, therefore scene text detection has 
become one of the key research tasks in computer vision. However, due to some basic character- 
istics of scene text (such as differences in text orientation, diversity of shapes, and image blurring 
caused by inadequate imaging conditions), scene text detection remains a challenging task. 

In addition to the applications mentioned above, scene text detection has also been applied in 
intelligent transportation, scene text detection can be combined with monitoring systems and vehicle 
tracking systems to detect the license plate numbers of illegal vehicles. In the area of intelligent 
logistics, automatic sorting robots use text detection techniques to detect text in packages, such as 
waybill numbers and destination addresses, and then combined with other sensors to plan opera- 
tions. Equally, some IoT devices can be used in smart retail to detect bar codes and product names 
using scene text detection techniques. Scene text detection can also be used in other smart retail 
scenarios, such as with vending machines and self-service stores (e.g. Amazon Go). 

In recent years, many scene text detection methods [3–6, 8, 9, 17, 22, 30] have achieved advanced 
results in some benchmark datasets. As with many other object detection tasks, the aim of scene text 
detection is to design and extract text features from natural scene images. Traditional scene text 
detection methods [4, 6, 8, 17] detect text using features that are manually designed. Methods [3, 5, 9, 
30] based on deep learning extract features automatically using a multi-layer convolutional network. 
Currently, most traditional and deep learning methods mainly focus on the text that is presented in 
simple scene images. However, current algorithms cannot achieve satisfactory results for either single 
orientation text that occurs in complex background images or multiple orientation scene text. 

To detect text that lies in complex background scenes, we propose a scene text detection 
method based on EAST [30]. The proposed network model includes three parts: a backbone 
network, a feature merger, and an output layer. We use DenseNet121 [7] as a backbone 



network to extract four stages of low-level features and then merge them by transposed 
convolution and skip connection. The merged feature map is used to generate three output 
feature maps, which are the score, box, and angle maps. 

We evaluated our method using ICDAR 2015 [10] and MSRA-TD500 [25], and the result 
showed that our method can detect texts from natural scene images accurately, achieving an F- 
measure of 82.6% on ICDAR 2015 and 76.1% on MSRA-TD500. The main contributions of 
this paper are as follows: 

• We propose a scene text detection method, which achieved promising results on both
ICDAR 2015 and MSRA-TD500.

• The proposed method introduces DenseNet121 as backbone, which enhance the validity of
the low-level image feature, and introduces Dice and GIoU losses as part of loss function
to improve the text detection accuracy.

In the remainder of this paper, we describe existing research on scene text detection in 
Section 2. Section 3 mainly focuses on the design of our proposed  network  model. 
Section 4 discusses loss functions. Experimental results are provided in Section 5, and we 
present our conclusion in Section 6. 



Research on scene text detection 

General object detection and scene text detection have become popular research topics 
recently, and many methods [13–14; 7–9] have achieved promising performances in the past 
few years. Zhu et al. [32] and Ye et al. [27] provide detailed reviews of the development of 
scene text detection and its current situation. In this section, we briefly review several scene 
text detection methods. 

Traditional scene text detection methods mainly detect text using manually designed 
features. Based on the inherent feature of scene text, Maximally Stable Extremal Regions 
(MSER) [17] and Stroke Width Transform (SWT) [4] predicted scene text location by 
extracting single characters and then constructing words or text lines by grouping each 
adjacent character. Jaderberg et al. [8] used a multi-scale sliding window over the input image 
to generate many subareas and predict a text score for every sliding window. However, due to 
the complexity of the background of natural scenes and the diversity of the text, these 
algorithms are not sufficiently robust. For example, with the algorithm based on MSER, it is 
difficult to accurately extract the candidate text region when the text is situated in a complex 
background. 

In recent years, scene text detection methods based on convolutional neural networks have 
achieved advanced performance. Huang et al. [6] extracted low-level text features using 
MSER and predicted text regions using a trained convolutional network classifier. CTPN 
[22] extracts fixed-width image feature maps as the input of a BLSTM and then uses the
BLSTM to detect the connection between each character. Based on Faster R-CNN [19],
R2CNN changes the scale and angle of ROI pooling modules to detect multi-orientation texts.
SSTD [5] integrates a Text Attention Module (TAM) into Single Shot Multi-Box Detection
(SSD) [13]. TAM was able to aggregate multi-level feature maps generated by SSD, which is
the key to predicting text location. EAST [30] focused on the detection speed. It proposed a
network model that was constructed by an FCN to predict shrink-text score maps and text
location in performing a per-pixel regression and used Locality-Aware Non-Maximum Sup- 
pression (LANMS) as a post-processing method.

In this paper, a natural scene text detection method based on EAST  [30]  is  
proposed. The  method  offers  several  principal  improvements.  DenseNet121  is  used 
as the backbone network, which can reduce the influence of gradient  vanishing  and 
model degradation, and improve the validity of basic image features. Transposed 
convolution is used  as  the  up-sample  method  at  the  feature  merging  stage,  which 
can enlarge the feature map and retain more image features than other methods. To 
improve the detection performance, text classification loss  and  bounding  box  loss  in 
loss functions are redesigned. Experiments on ICDAR 2015 show that the proposed 
method outperforms EAST in terms of both precision and recall. 

Network design 

We proposed a model based on EAST [30] that was constructed through a convolutional 
neural network. Following EAST’s network design, our model consists of three parts: feature 
extraction, feature merging and output layering. Instead of using PVA-Net [11], DenseNet121 
is used as backbone network. At the feature merging stage, we use transposed convolution to 
enlarge the feature map. Figure 1 is the overview of our proposed network model. 



Feature extraction 

The feature extraction branch represents  the  extraction  of  the  basic  feature  maps  of 
the image. Due to the complex background of the text in the natural  scene,  the  
robustness of the basic feature maps extracted through the backbone network  has  a 
crucial influence on the final result  of  the  text  detection.  Therefore,  the  selection of 
the backbone network used in the feature  extraction  is  particularly  important.  To 
reduce the impact of gradient vanishing and model degradation, we use DenseNet121     
as the backbone network. Differing from other deep network models, DenseNet121 
[7] reduces the number of network model parameters and alleviates the problems of
gradient vanishing and model degradation by setting a network bypass to reuse the
features. As we can see in Fig. 1, we use DenseNet121 to extract four stages of the
convolutional feature maps from every input image.

Feature merging 

The feature merging is mainly composed of up-sampling and feature  maps  concate- 
nation along the channel axis. Unlike the feature merging used in EAST, we opted for  
transposed convolution as the up-sample method. The way  our model merges features  
is as follows: 

TransposeConv() means the transposed convolution, which used to enlarge the feature maps. 
gi is the feature map that has been enlarged, and hi is the merge feature map. 

Output layering 

The final output of the network model is related to the way the training data is generated. 
Following EAST’s RBOX [30] geometry, the final output layer in our model contains 3 
feature maps: a score map used to predict the probability of the text region, a text box map, and 
a text angle map to predict the bounding box. 

Loss function 

The loss of our method is formulated as: 

ls represents the loss for the score map, and lb and la represent the losses for the box and angle 
maps, respectively. λ is a weight, which balancing the loss of text classification and bounding 



box, it can be any positive number. In our experiment, we set λ to 1, due to the prediction of 
text and position of box are equally important in text detection 



Loss of score map 

The score map is used to predict the probability of the text region, which is a binary 
classification. We use Dice loss [15] for the score map: 

DiceCoef means Dice coefficient, which is a function that measures the similarity between two 
score maps. It can be calculated as follows: 

 Y  



b Y∗ is the ground truth generated previously by the score map, and Y is the predicted score map.

Loss of box map 

EAST uses Intersection over Union (IoU) loss [28] for the box map, which has two disad- 
vantages. First, when there is no overlap between the predicted and the ground-truth bounding 
boxes, the value of IoU is 0, so the network cannot be further optimized. Second, it cannot 
accurately reflect the overlap position between the predicted and the ground-truth bounding 
boxes. As shown in Fig. 2, three overlapping cases have the same IoU, but it is obvious that the 
result of Fig. 2a is more accurate as far as the predicted location is concerned. 

Therefore, we use GIoU [20] loss for the box map. It can be formulated as follows: 

(1) Generate the minimum cover bounding box using the predictions of the bounding and
ground- truth bounding boxes. As shown in Fig. 3, the blue box is the ground-truth, and
the red box is that which is predicted by the model. The dashed line is the minimum
cover bounding box.

(2) IoU is calculated by:

R1 and R2 are the areas of the ground-truth and predicted boxes. 

(3) GIoU is calculated by:

R3 is the area of the minimum cover bounding box. 

(4) Consequently, the loss of box map is computed as:

Loss of angle map 

Following EAST, we use cosine loss for the angle map: 

 I  is the predicted angle and θ∗is the ground-truth angle. 



Experiment 

We tested our proposed method on two benchmark datasets: ICDAR 2015 [10] and MSRA- 
TD500 [25], comparing the proposed method with some existing algorithms. 

1.1 Benchmark datasets 

ICDAR 2015 contains 1000 training samples and 500 test samples, which are used for multi- 
orientation text detection tasks. The format of the text bounding box in the ICDAR 2015 
consists of a clockwise movement between the coordinates of the four corner points of the text, 
starting from the upper left corner. Where a text has less than three pixels in the image area and 
is unrecognizable, it is marked as ignored. The images in ICDAR 2015 were all taken on a 
walk by a photographer wearing Google Glasses, so the images are distorted, over-angled, and 
blurred due to their jittery out-of-focus quality. 

MSRA-TD500 is a multi-orientation long text dataset, marking the text bounding box with the text 
line. The dataset contains a total of 500 pictures, including 300 training images and 200 test images. 
All images are taken by the camera, and most of the text in the images is not clearly distinguished from 
the background. The text languages are mainly Chinese and English. The bounding box is marked by 
center coordinates and height, width, and rotation radians of the text region. 

Experimental protocols 

Following the object detection task, the performance of a natural scene text detection algorithm 
is generally measured by three protocols: Precision, Recall, and the F-measure. Precision and 
Recall can be calculated as follows: 

  Precision represents the proportion of correct results among all test results, and Recall represents 
the ratio of correct test results to all ground truths. T is the number of correct test results, D is the 
number of all test results, and G is the number of ground truths in the test set. Finally, the F-measure 
is used to represent the overall performance of the algorithm by integrating Precision and Recall: 

Experiment setup 

Our experiments were conducted with Python3 and PyTorch. During training, we used Adam 



[12] for the optimization algorithm. The initial learning rate was 0.0001 and decayed 1/10
every 10,000 epochs. The number of training samples was 20 every batch. We trained our
model on two Tesla P100 GPUs. LANMS [30] was used as the post-processing method to
generate the final bounding box.



Table 1 Comparison with ICDAR 2015 

Method Precision Recall F-Measure 

Tian et al. [22] 0.74 0.52 0.61 
Zhu et al. [31] 0.81 0.91 0.85 
Shi et al. [31] 0.731 0.768 0.75 
Xu et al. [24] 0.843 0.805 0.824 
Ma et al. [14] 0.822 0.732 0.774 
Deng et al. [3] 0.887 0.786 0.833 
Zhou et al. [30] (EAST) 0.806 0.713 0.757 
Ours 0.846 0.807 0.826 

Experiment results 

We compared our experiment results on ICDAR 2015 against other published methods in 
Table 1. The results of our method and EAST are reported on single-scale test images. On 
ICDAR 2015, which is designed for multi-orientation text detection, our method achieves an 
F-measure of 0.826, outperforming EAST by 6.9%. Some of the detection results are shown in
Fig. 4a. We further evaluate the proposed method on MSRA-TD500, which is a text line
dataset. On MSRA-TD500, as we can see in Table 2, we achieve competitive performance
with a Precision of 0.813, a Recall of 0.715, and an F-measure of 0.761. This shows that the
ability of our method to detect long text lines is stronger than baseline, which is EAST,
especially on Recall. But compared with Deng et al. [3] and Zhu et al. [31], our algorithm is
not good enough in terms of precision and recall. Figure 4b displays some examples of
detection comparing our method with that of MSRA-TD500.

Table 2 Comparison on MSRA-TD500 

Method Precision Recall F-Measure 

Zhang et al. [29] 0.83 0.67 0.74 
Yao et al. [26] 0.765 0.753 0.759 
Shi et al. [21] 0.86 0.7 0.77 
Xing et al. [23] 0.78 0.72 0.75 
Xu et al. [24] 0.874 0.759 0.813 
Ma et al. [14] 0.821 0.677 0.742 
Zhou et al. [30] 0.835 0.671 0.744 
Ours 0.813 0.715 0.761 

Figure 5 presents some test results comparing the proposed method with EAST on ICDAR 
2015. As shown, the bounding box generated by our method is more accurate than that of 
EAST. For some regions in which the text is densely distributed, our proposed method can 
detect more text than EAST. 



 

 

Conclusion 
 
In this paper, we proposed a scene text detection method through a convolutional neural 
network, which can detect multi-orientation text from natural scene images. Our proposed 
method uses an end-to-end pipeline, which makes the detection procedure simpler without 
lowering the accuracy. The proposed method achieved some competitive performance for 
multi-orientation text detection and long text lines in scene images, and the proposed method 
achieves an F-measure of 0.826 on ICDAR 2015 and 0.761 on MSRA-TD500, respectively. In 
additional, to improve the accuracy, the label and preprocessing of the testing processes can be 
strengthened. 
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Fig. 1 Network structure of the proposed model 

Fig. 2 Three cases when IoU is equal a Case 1 b Case 2 c Case 3 

Fig. 3 Example for calculating GIoU (blue: ground-truth; red: predicted box; black dashed line: minimum cover 
bounding box) 

Fig. 4 Different test results on ICDAR 2015 and MSRA-TD500 a Test results on ICDAR 2015 b Test results on 
MSRA-TD500 

Fig. 5 Comparisons of results between EAST and our method (left: EAST; right: ours) 







Method Precision Recall F-Measure

Zhang et al. [27] 0.83 0.67 0.74 

Yao et al. [28] 0.765 0.753 0.759 

Shi et al. [23] 0.86 0.7 0.77 

Xing et al. [29] 0.78 0.72 0.75 

Xu et al. [24] 0.874 0.759 0.813 

Ma et al. [26] 0.821 0.677 0.742 

Zhou et al. [9] 0.835 0.671 0.744 

Ours 0.813 0.715 0.761 
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