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Abstract Cooperative perception represents an important technology to fulfil the higher automation
levels of connected and automated mobility (CAM). In cooperative perception, the sensor data, either raw
or processed, is shared among neighbour vehicles with the objective of enhancing or complementing the
perception obtained by on-board sensors. The vehicle that requests this external perception data needs
to have this data quickly. However, it first needs to discover the network address of the neighbour vehicle
that wants to connect to. Specially in a dense urban area or in a congested radio channel, an inefficient
method for neighbour vehicle discovery could prevent a timely start of the cooperative perception session.
This paper describes a novel 5G multi-access edge computing (MEC) solution that that boosts the
selection of interesting neighbour vehicles according to a geographical region of interest (ROI) after
applying pertinent adjustments considering vehicles dynamics and network communication latencies.
In contrast to broadcast-based methods, in the proposed method the vehicles are only sending their
periodical position data to a MEC service, which centralises the vehicle discovery requests. The objective
of this Vehicle Discovery Service (VDS) is to support the startup of Web Real-Time Communications
(WebRTC)-based Extended Sensors CAM applications. The proposed VDS has been validated using a
public vehicular traffic dataset evaluating geo-position accuracy. The WebRTC-based streaming pipeline
has been validated testing its feasibility for a See-Through video streaming application.
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1 Introduction

The growing amount of available car data brings new opportunities around the automotive industry.
Hence, the exploitation of car data is strategic to achieve revenue generation, cost reduction and en-
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hancement of safety and security. Thus, data-driven autonomous driving applications and smart mobility
services will change traditional automotive value chain with a market volume equivalent to vehicle sales
by 2030 [29].

Specifically, autonomous driving systems will transform the mobility paradigm in many ways, from
safety to energy efficiency. Industry players are focused on different value creation models such as: rev-
enues generation by data-based selling/advertising of products or reselling data to third parties; costs
reduction by gathering product field data to reduce research and development costs for optimizing mate-
rials and designs; and increased safety and security by reducing time for intervention of first responders
and triggering forward warnings.

Cellular Vehicle-to-Everything (C-V2X) is the main approach from communication standard bodies to
bridge communications between vehicles and Connected and Automated Mobility (CAM) service infras-
tructures [6]. Initially defined in Long Term Evolution (LTE) Release 14 [10] and evolved along present
and future 5G releases, European Telecommunications Standards Institute (ETSI) and Third Genera-
tion Partnership Project (3GPP) define two main communication modes for vehicles: direct Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I). Both communication modes use sidelink interfaces
and licensed cellular bands but they bypass the Base Station (BS). V2V and V2I are added to the regular
Vehicle-to-Network (V2N) mode as any other User Equipment (UE) subscribed to a BS.

As the vehicle’s connectivity turns into versatile and universal, the natural evolution of autonomous
driving systems requires going beyond the limitations of on-board sensors. This vision will grant access
to data coming from other vehicles to support the generation of a more holistic understanding of the
environment. External data flows must come with a pace and latency rates similar to on-board sys-
tems to avoid synchronisation inconsistencies when fusing multi-origin data. So, a major challenge is
related to the communications latency as systems must reliably transmit under tight latency conditions
[20]. CAM applications requires quick, effective and secure communication among vehicles and service
infrastructures.

Multi-access edge computing (MEC) brings close-to-zero latency and scalable processing while en-
forces privacy limiting data range to a local environment [31]. Edge infrastructures turn into key actors
when it is required to process published metadata, to retrieve events or actionable data, or to boost
trusted discovery and handshake. Furthermore, Mobile Network Operators (MNOs) foresee a big oppor-
tunity to create new revenues flows from hosting third-party service components at edge infrastructures.

In order to exploit the available data, the CAM services need to first identify the relevant data sources
for each vehicle. The geo-position of each data source is an essential information to effectively choose the
most appropriate data source for a specific vehicle. However, the required low latency, high reliability
and trust in the external information from all the available data sources mean a paramount challenge
under some vehicle density conditions. Consequently, the vehicle might not be able to timely obtain the
network address of the data source that suits best its purposes.

In traditional V2V approaches each vehicle transmits its perception data to the rest of the vehicles.
However, transmitting such an amount of messages causes a high load on the radio channel, especially
in dense urban environments with a large number of vehicles. The high network load could in turn
cause packet losses and a large communication latency, degrading the accuracy and timeliness of the
perception messages [16]. In our approach, we concentrate on the design and implementation of a MEC
service, which boosts the discovery and selection of surrounding sensor data sources for video-based
CAM services, such as See-Through [34] or extended perception. Here, low start-up time and latency
are essential as the on-board Advanced driver-assistance systems (ADAS) systems will require under
frame-level delay to consistently fuse local captured and external received video flows. Furthermore, the
selection of an appropriate sensor data source is not easy to conclude as it involves multiple vehicles,
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moving with different directions, speeds and accelerations, and a one-by-one or broadcast query could
mean a late reaction. In this context, a vehicle discovery service is used to select an external data source
from the surrounding sensor data sources, previously registered as streaming services.

The proposed 5G MEC-enabled vehicle discovery service centralises all the geo-tagged data in a
local area, to efficiently select the best vehicle candidates from the ones published in the surrounding
area. It stores recent geo-position history to suggest a list of sensor data sources, provided as streaming
services, matching the upcoming geo-positions of the vehicles. To this end, the vehicle discovery algorithm
considers the vehicles dynamics and the network performance to estimate upcoming geo-position shifts,
which could lead to a sub-optimal or even useless selection.

The major contributions of our work in order of appearance in this paper, can be summarized as
follows:

– The architecture and implementation details of a novel 5G MEC-enabled vehicle discovery service
for video streaming-based CAM applications such as See Through. The proposed implementation
is built on top of industry standard technologies such as Message Queuing Telemetry Transport
(MQTT) for IoT messaging or InfluxDB for efficiently storing and retrieving time-stamped data.
In contrast with common cooperative perception approaches, in the proposed approach there is no
broadcast messaging but a centralised MEC service that gathers the required data to respond to
vehicle discovery queries. The proposed vehicle discovery service employs a lightweight algorithm
that considers vehicle dynamics and network latency to select the appropriate vehicles as sensor data
sources.

– A See-Through CAM application implementation using Web real-time communications (WebRTC)
for secured, NAT-transversal and low-latency video streaming.

– The analytical decomposition of the proposed See-Through CAM application’s start-up and delay
times into operational ranges and pipeline steps to make a deeper end-to-end analysis beyond theo-
retical 5G communications Key Performance Indicators (KPIs) for identified target use cases.

– The analysis of spatial accuracy of the proposed vehicle discovery method when forecasting the geo-
position of vehicles once the selection is received by the vehicle which is performing the query. The
accuracy is evaluated in an intra-cell scenario, where one MEC server processes the request and serves
the response as vehicles move.

– The evaluation of the end-to-end latency of a WebRTC-based See-Through CAM application ac-
cording to the difference between captured and received video frame timestamps, including different
operational settings in the pipeline.

The rest of this paper is organized as follows. First, the related work is in Section 2. The MEC system
model and architecture and the ROI-based vehicle selection algorithm is in Section 3. Then, Section 4
presents the CAM service and its communication stack and problem formulation. Furthermore, the system
performance analysis, defined metrics, the evaluation setup and the simulation results are described in
Section 5. Finally, the results are discussed in Section 6 and Section 7 concludes the paper.

2 Related Work

3GPP has identified a set of V2X scenarios grouped on five categories or use cases [2]: Advanced Driving
spans complex manoeuvres such as, overtaking or cooperative collision avoidance; Vehicles Platooning
aims effectively grouping a set vehicles to travel together one after the other; Remote Driving enables a
remote driver to operate a vehicle; Quality of Service (QoS) Support, considered horizontal, to enforce
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steady network QoS; and Extended Sensors implies extending the perception obtained by the on-board
sensors with sensor data received from surrounding vehicles or roadside units (RSUs). In all of them a
poor performance of the communication pipeline, in terms of latency, may lead to a decrease in the level
of automation and risks for reliable safety-critical use cases. Specifically, we focus on Extended Sensors
as it brings a common initial step for different use case categories to establish communication across the
participants in a use case.

The specification of C-V2X, originally declared in 3GPP Release 14 to empower LTE technologies,
has evolved in Release 15 to gain the benefits from 5G New Radio (NR) such as improved reliability,
increased capacity and reduced latency [12]. Then, further enhancements will come in Release 16 and
subsequent Releases [13]. Beyond the 5G NR features, 5G brings a wider set of possibilities.

First, techniques to deploy a dynamic radio setup by means of Multiple-input Multiple-output
(MIMO) antennas to enforce coverage areas according to UEs densities and geographic distributions
[4]. Second, the application of Virtual Network Functions (VNF) and Software Defined Network (SDN)
technologies, present in the ETSI architecture of 5G networks, to support the vision of the Self-Organised
Network (SON) [19] empowered by machine learning to dynamically allocate network resources [5] or
adapt network topology [25] based on traffic prediction and adaptable physical layer settings .

Different research activities target the reduction of the latency of V2V communications [3]. However, a
common conclusion is that V2V communications scheme for fully distributed peers means low efficiency,
high overheads and increased latency as the number of surrounding vehicles scales up [16]. Here, the
third research pillar, the MEC services [9], can make the difference for time-critical applications as the
number of subscribers increases [18]. MEC services exploit close-to-zero latency and distributed position
to perform analytical functions by means of cloud services which are closer to the users. So, MEC means
an enabler for enhanced C-V2X communication with a centralised system which manages a local area with
more efficient and lower latency response. This way, CAM services operated in MEC infrastructures as a
roadside unit can send information to nearby cars with extremely low latency, enabling instant reaction of
ADAS systems, while limiting data transmission inside the cell and preserving data privacy. Furthermore,
5G MEC architecture can perform video analytics to enhance and boost live video streaming applications
[26]. Moreover, MEC approaches has also been studied to support V2V communications while reducing
latency in the context of multiple operators for roaming situations [27,28]. Our approach goes a step
further, moving from a V2V communications scheme to a V2I approach, where a MEC service, based on
vehicle’s ROI, provides the best data stream candidates according to their geo-position and dynamics.

In order to consume an edge service, the first step is to discover its presence and available functions
and services. To this end, different service discovery protocols such as Universal Plug and Play (UPnP) or
Simple Service Discovery Protocol (SSDP) can be used, with strict limitations to local networks as they
are based on UDP or multicast communications. Beyond the local network domain, Extensible Messaging
and Presence Protocol (XMPP) has been widely employed by multimedia web services for messaging and
presence. Then, coming from the semantic web Universal Description, Discovery, and Integration (UDDI)
and Web Services Description Language (WSDL) tandem facilitates services discovery and introspection.
Other approaches push discovery solutions down from the application layer to the IP layer meaning
integration of advanced features in the network stack of all the participants. Some are based on DNS [37].
A vehicular protocol from IP layer is the Vehicular Neighbor Discovery (VND) for IP-Based Vehicular
Networks which implies IP header extensions [17].However, the scalability for a distributed network of
geographically distributed edge services is not managed by design by previous technologies.

In vehicular ad hoc networks (VANETs), wireless networks are spontaneously created from mobile
devices. In this context, neighbor discovery refers to a mechanism that keeps each vehicle aware of its
active neighbor vehicles. Even if different approaches exist to improve the accuracy of neighbor discovery
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[38], they are all essentially based on broadcast messages. The main drawback of these methods is that
the radio channel can be overloaded with the periodical broadcast messages. Moreover, as these methods
are designed for VANETs, they are only suited for short-range radio technologies and not for cellular
technologies like LTE or 5G.

An essential parameter to perform selection of sensor data source from the surrounding cars is the
geo-position accuracy, to be sure that the provided information will be relevant and complement the data
captured from on-board sensors. This aspect has been also studied in the context of collective perception
or cooperative sensing for vehicles and infrastructure nodes [33] analysing the communications overhead
and the geo-position accuracy trade-off. Other works explore the possibility to anticipate or forecast
values when exchanging data in a V2V schema [16] for a heavy network load. This tries to reduce
communications overheads of V2V to reduce the negative impact on available bandwidth, which is low
on V2V communications, and on latency, which may increase from sequenced V2V messages. Instead,
our MEC approach makes a low latency, synchronous and coordinated anticipation of geo-positions shifts
to provide a relevant sensor data source considering elapsed time for processing and transmission.

The solution proposed in this paper considers not only the geo-position of the available sensor data
sources provided as streaming services, but also the trajectories and network delivery times to accurately
estimate the data services relevant for the vehicles trajectory. Thus, our approach focuses on the identi-
fication or a relevant surrounding data source applying adjustments on candidates based on trajectories
and network performance to compensate delivery time of messages. This pushes the decision from the
client-side to an edge system which can select better candidates from a better position exploiting all the
data and stats on a local area. The discovery of the Vehicle Discovery Service endpoint is out of scope
of the present work and would be based on application logic.

In terms of 5G network KPIs, both documents [2] and [1], declare a range of operational values which
should satisfy data capacity, user density, transmission reliability and latency communications required
by the different identified use cases. Specifically, for Extended Sensors category, those documents declare
a transmission rate of 10 messages/s, a maximum end-to-end latency ranging from 10 to 100 ms, for a
data rate of 10 to 90 Mbps, and a minimum required communication range from 50 to 1000 meters. These
theoretical values are ambitious and challenging as some field tests [15] of 5GNR communications with
edge-computing features, in the 2.6 GHz frequency band delivering a 100 Mbps performance, achieve an
average delay of 17 ms for vehicle-to-network-to-vehicle communications at a vehicle speed of 100 km/h.

3 Vehicle Discovery Service

The objective of using a MEC-centred approach is to reduce the amount of transmitted data without
decreasing the application performance. The MEC centralises the geo-positioning data of the surrounding
vehicles and offers a Vehicle Discovery Service (VDS), instead of having each vehicle sending constantly
their geo-positioning data to the rest of the vehicles. In our approach, the MEC receives and digests the
geo-positioning messages. If a vehicle is interested in gathering the geo-positioning data of the vehicles
that are beyond its on-board sensors field of view, this can be done by simply querying this information
to the MEC. So, a vehicle only receives requested information, and the communication channel is not
overloaded with duplicated messages that most of the time are ignored by the receivers.

In a commercial deployment, the vehicle discovery service could act as a third-party service that
is trusted by surrounding vehicles in order to identify and connect to neighbour vehicles and manage
signalling and negotiation. The VDS acts as a local centralised solution to allow a more efficient and
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Fig. 1: Architecture of MEC-based vehicle discovery approach.

coordinated communication, instead of forcing a vehicle willing to communicate to query each neighbour
vehicle one by one.

3.1 Architecture

The architecture of the proposed VDS is depicted in Figure 1. The vehicles periodically send their geo-
positioning data using a publish-subscribe network protocol. The MEC receives the vehicle data and
stores it in a time series database (TSDB). TSDBs are optimised for storing and serving data through
associated pairs of time and values. The objective of using a TSDB is to have an efficient tool to retrieve
on demand the latest measurements received by the MEC. When a certain vehicle wants to gather the
geo-positioning data of surrounding vehicles, it requests this information to the VDS deployed at the
MEC. Then, this service queries the TSDB to retrieve the latest positions for each subscribed vehicle. In
the implementation presented here, MQTT is proposed as the publish-subscribe network protocol and
InfluxDB as the TSDB solution. MQTT is a lightweight protocol, widely used in Internet of Things (IoT)
applications, that has open source client-server implementations such as Eclipse Mosquitto [22]. InfluxDB
is also open source, and it is designed to handle high write and query loads. It might not be efficient
nor interesting for the requesting vehicle to receive the information about all the vehicles subscribed in
the MEC. It is therefore necessary for the VDS to define a Region of Interest (ROI) in the area that it
covers. The ROI includes only the vehicles that are inside an interesting range for the requesting vehicle.
The VDS does not just forward the vehicle positions stored in the TSDB that are inside the ROI.

The ETSI Collective Perception Messages (CPM) [11], which are the standard messages for sending
this kind of vehicle data, are sent with a frequency of 10 Hz. This means that the measurements stored
in the TSDB can be up to 100 ms old. There is also some communications latency receiving the vehicle
request and sending back the information about the vehicles in the ROI. These time offsets can mean
significant values in the spatial domain ruining the vehicle discovery result. To mitigate this problem,
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when a vehicle queries the VDS, the VDS transforms all the stored neighbour vehicle positions to the
time instant when the response message is estimated to reach the vehicle that has queried the VDS.
Once the neighbour vehicle positions are updated, the vehicles inside a ROI are included in the query
result.

Three different MQTT topics are implemented to manage the messages. The first topic, Feed, is ded-
icated to feed the VDS with new vehicle geo-positioning measurements. The VDS is the only subscriber
as it is the responsible of centralising all the data in the area. This is key to minimise the channel load.
Then, a second topic, Query, is provided to the vehicles to query the VDS. The third topic, Query result,
is employed by the vehicles to receive the query results from the MEC. This publish-subscriber protocol
with three independent topics ensures an efficient use of the communication channel and minimises the
irrelevant data received by the vehicles.

In the following subsection the method to generate the query result is described in more detail.

3.2 VDS response to a query

As explained in the previous subsection, the MEC cannot simply forward the latest measurements stored
in the TSDB. It is necessary to first transform all the measurements to the same time instant, then define
a spatial ROI, and finally generate a message with the data of the vehicles that are inside the ROI. These
steps are represented in Algorithm 1.

Algorithm 1 VDS response to a query

1: {V ehicles} ← queryTSDB()
2: for each vehicle ∈ Vehicles do
3: updatePosition(vehicle)
4: if isInsideROI(vehicle) then
5: {RelevantV ehicles} ← vehicle
6: end if
7: end for

return {RelevantV ehicles}

When the VDS receives a request it needs to retrieve from the TSDB the latest measurements stored
for each neighbour vehicle in a certain time span. Considering the 10 Hz frequency of CPM messages, the
TSDB query should be for at least the latest 100 ms. In Figure 2 an example of a message timeline of the
different actors involved in a VDS query is depicted. V ehicleA, V ehicleB and V ehicleC are periodically
sending their geo-positioning messages to the VDS. The messages are not synchronised between vehicles,
so there is a time offset between for instance tV am1 and tV bm1. The messages contains geo-positioning
data and a time stamp to indicate the time instant when this data was measured. V ehicleC sends a
message to query the VDS. This message contains geo-positioning data of V ehicleC captured at tq sent

time instant and is received in the MEC in tq rec. The latency of the query message can be calculated
as:

latencyquery = tq rec − tq sent (1)

In tq rec, the latest positions stored in the TSDB from V ehicleA and V ehicleB were captured
in tV a m2 and tV b m1 respectively. In the proposed method, the VDS would retrieve the positions of
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Fig. 2: Example of a message timeline of the different actors involved in a VDS query.

V ehicleA and V ehicleB stored in the TSDB and it would transform them to tr rec time instant, i.e. the
time instant when the VDS response reaches V ehicleC. Then, tr rec can be calculated as:

tr rec = tq sent + latencyquery + Tproc query + latencyresp (2)

where Tproc query is the time spent by the VDS processing the query, and latencyresp is the latency of the
response message. tq sent, latencyquery and Tproc query are known values for the VDS. latencyresp can be
considered to be the same than latencyquery, as the response message should still be a lightweight message
with the data of only a subset of the connected neighbour vehicles. The position, speed, acceleration,
heading and timestamp of V ehicleC were included in the query message, so the VDS can estimate he
position of V ehicleC in tr rec using the following equations:

xr rec = xq sent + v · cos(α) · (tr rec − tq sent) +
1

2
· a · cos(α) · (tr rec − tq sent) (3)

yr rec = yq sent + v · sin(α) · (tr rec − tq sent) +
1

2
· a · sin(α) · (tr rec − tq sent) (4)

where (xq sent, yq sent) and (xr rec, yr rec) are the positions of the vehicle in Cartesian coordinates in
tq sent and tr rec respectively, and v, a and α are the velocity, acceleration and heading of the vehicle in
tq sent. The positions of the rest of the vehicles stored in the TSDB are also updated to tr rec using the
same Physical equations and calculating the time delta as the time elapsed from the time instant when
the vehicle position was measured to tr rec.

Once all the neighbour vehicle positions are transformed to the same time instant, tr rec, the VDS
checks which vehicles are inside a ROI for the vehicle that requested the service. The ROI defines a
spatial region where a vehicle can be located to be considered as interesting for the query response. The
present method proposes to use an ellipse to define the ROI because for this application it is more suited
to have a lengthened shape rather than a circle or square. In addition, it is fast to compute if a certain
point is inside an ellipse. A vehicle positioned at (x, y) can be determined to be inside the ROI if the
following equation is satisfied:

((x− h) · cos(α) + (y − k) · sin(α))2

m2
+

((x− h) · sin(α) − (y − k) · cos(α))2

n2
≤ 1 (5)
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where h,k and a,b are the ellipse shifts and semi-axis in the x and y directions respectively, and α
is the heading angle of the vehicle that requested the query measured from x axis. Moreover, m equals
to half of the ellipse width and n to half of the ellipse height. Here, the ellipse width corresponds to the
maximal longitudinal distance range and the ellipse height to the maximal lateral distance range. These
values are defined in the query to the VDS. Example values would be 50 m for the ellipse height, which is
aligned with other similar Extended Sensors applications[14], and 14 m for the ellipse height, calculated
as four times a standard lane width. The ellipse is oriented in the direction of the heading of the vehicle
that queried the VDS, so h and k are calculated as follows:

h = cos(α) ·m+ xr rec (6)

k = sin(α) ·m+ yr rec (7)

where (xr rec, yr rec) is the position of the vehicle that requested the VDS. The VDS sends in a
message the list of neighbour vehicles that are inside the ROI to the vehicle that requested the service.
This message includes not only the updated position but also the velocity, acceleration and heading of
each vehicle, which are considered to be constant in such small time lapses, and the sensor data source
identifier to establish a connection. This information is used by the receiver to start an Extended Sensors
service with a specific vehicle and sensor.

4 CAM service implementation

4.1 Data formats & protocol stack

An increasing number of sensors present in vehicles provides information to on-board systems to guide
and support the driver for safe driving. Sophisticated ADAS systems ship widely employed sensors such as
video cameras, Light Detection and Ranging (LIDAR) and Global Navigation Satellite System (GNSS).
As vehicles become increasingly connected to each other and to external infrastructures, the need to
compress and securely transmit produced data streams becomes primary.

The different types of data exchanged by CAM services are:

– Video streams. The set of video cameras shipped by L3/L4 vehicles goes from 4 to 7 to cover different
angles and distances. Cameras capture up to 1920x1080 image resolution and up to 60 fps. Some of
them only process grayscale images as the colour is not always relevant to detect events or warning
situations. Furthermore, this color-space reduction helps to restrain data throughput to be processed.

– Point clouds. LIDAR sensors produce around a million points per second covering a 360o horizontal
field of view and about 30o vertical field of view (+/- 15o up and down).

– Geo-position. Advanced positioning systems usually fuse GNSS receivers with other sensors to en-
hance the accuracy of GNSS and ensure continuity, generating 10-100 Hz samples including lati-
tude/longitude tuple, heading (compass), speed and acceleration.

– CAM service messages. V2X applications exchange data publishing positioning, sensor information,
driving dynamics and detected objects using CPM format [11].

For the transmission of previous data, WebRTC streaming protocol is a good option. On top of the
stack depicted in Figure 3, it has been designed to transmit video streams with a data channel [30], which
brings several benefits from legacy Real Time Protocol (RTP) and User Datagram Protocol (UDP)-based
technologies:
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Fig. 3: WebRTC protocol stack for signalling and media.

– Network Address Translation (NAT)-transversal. Supported by Session Traversal Utilities for NAT
(STUN) and Traversal Using Relay NAT (TURN) servers and managed by Interactive Connectivity
Establishment (ICE) standard protocol, data flows can cross private and public networks.

– Secure. Data streams are encrypted using Datagram Transport Layer Security (DTLS) and media
streams are encrypted using Secure Real-time Transport Protocol (SRTP), where certificates hand-
shake is end-to-end managed.

– Low latency. It performs real-time delivery on top of RTP/UDP communications.
– Monitored. It includes Stream Control Transport Protocol (SCTP) and Real-time Transport Control

Protocol (RTCP) for congestion and flow control providing performance statistics [35].
– Unicast and Multi-party modes. It allows the participation in a unicast communication or to join

a multi-party session. This is also important when different vehicles or edge infrastructures wish to
concurrently consume a specific sensor data source.

All these features turn WebRTC into an ideal streaming protocol for video streams from cameras,
point clouds from LIDAR systems, geo-position data from GPS/GNSS sensors and any CAM service
message.

4.2 CAM communications

From the variety of V2X use cases [2], this work focuses on Extended Sensors use case, as it performs
the common steps for the initial communication of other use cases (Advanced Driving and Platooning),
where the start-up time and the end-to-end latency performance have a big impact .

The Extended Sensors use case that we have implemented is a See-Through application, where a trail-
ing vehicle consume a front video camera from the leading vehicle in order to get a better understanding
of ahead environment. In this case, to overlay another camera in a consistent way, it is necessary to align
different perspectives and fields of view (FOV). To this end, it is required to get the heading and distance
from both vehicles in order to consistently overlay the external video stream in the on-board captured
video that will be used by ADAS on-board system. The Figure 4 shows the resulting See-Through compo-
sition. Here, V ehicleB’s front vision overlays V ehicleA’s front vision, where the offsets and scale depend
on the distance and the heading of both vehicles [23]. This way, V ehicleA can get awareness of warnings
or situations affecting its field of view. Another camera aspects such as aperture, focus distance and
resolution are also relevant [21], but the required deformations could be done in real-time easily, without
a tangible impact on start-up time or latency.
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Fig. 4: CAM see-through application.

In order to establish the communication that makes possible to overlay a video stream over the
on-board view, it is necessary to discover and select the appropriate sensor data source needed by
each vehicle. The Figure 5 depicts the data flow and the participants involved to establish a CAM
communication session between V ehicleA and V ehicleB, where the MEC system facilitates the discovery
and presentation from the available ones to start a data stream session.

First, vehicles constantly update their geo-position data. Suddenly, V ehicleA queries the VDS for
relevant sensor data stored at the MEC. Finally, according to the provided information, the sensor stream
from V ehicleB starts and the received data is used to complement on-board perception of V ehicleA.

5 Results

5.1 Experimental setup

To assess the advantages of this MEC VDS system in terms of start-up time, end-to-end latency and spa-
tial accuracy, we have deployed a setup to conduct experiments on similar circumstances than a cellular
5G network. Traffic Control [8] is the employed utility to change the uplink and downlink performance
to emulate a 5G radio link modifying the bandwidth and the latency of the LAN network interface to
100Mbps and 17ms respectively [15]. So, the experimental setup, depicted in Figure 6, comprises:

– Vehicle nodes. Automotive-grade equipment (NVIDIA DRIVE PX2) with Ethernet interface fea-
tures LAN connectivity with limited bandwidth and latency, Ubuntu 18.04 and Gstreamer 1.14 with
WebRTC plugins. The system includes a VALEO fish-eye camera capturing 1928x1208 images at
29fps.

– WebRTC Proxy. PC Intel i5-9400F CPU @ 2.90GHz with 8GB RAM and Ubuntu 18.04 running a
Python proxy for WebRTC sessions in a testing room.

– MEC Vehicle Discovery Service. PC Intel i5-7500 CPU @ 3.40GHz with 8GB RAM and Ubuntu 18.04.
This service is queried by means of a MQTT server implemented with Eclipse Mosquitto. The VDS
exploits a local InfluxDB database which stores the latest geo-positions published to the Mosquitto
server.

In order to test the spatial accuracy of the VDS, several scenarios from the CommonRoad dataset
[24] have been used. The scenarios are partly recorded from real traffic and partly hand-crafted to create
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Fig. 5: Example of Extended Sensors message flow.
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Fig. 6: Experimental setup.
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Table 1: CommonRoad dataset scenarios used to test the spatial accuracy of the VDS.

Scenario name Scenario class Duration (s) Number of dynamic vehicles
DEU Muc-16 1 T-1 Urban 12.1 17
USA Peach-2 1 T-1 Urban 10.5 16
USA Peach-4 7 T-1 Urban 12.0 19
CHN Cho-2 8 T-1 Highway 15.0 26
CHN Cho-2 10 T-1 Highway 16.5 18
DEU Stu-1 5 T-1 Highway 16.0 22

challenging situations. The selected urban scenarios cover three different intersections, and the highway
scenarios include lane merges and curves to make them more challenging. More information about the
selected CommonRoad dataset scenarios can be found in Table 1.

The dataset provides position, velocity, acceleration and heading values of each vehicle recorded
at 10 Hz. These measurements are synchronised between vehicles, meaning that all vehicles provide a
measurement exactly at the same time. However, this is not a realistic situation as explained in Section 3.
So, a random time offset of less than 100 ms was added to each vehicle.

To test the Extended Sensors service, a video dataset has been used. The dataset consists in outdoors
video sequences capturing real urban and highways road traffic using the previously described camera.
The total duration of the dataset is 15 minutes and the chosen duration for each test is fixed to 30
seconds, scheduling a live session every 30 seconds, resulting in 30 different session slots.

5.2 Evaluation metrics

5.2.1 Spatial accuracy metrics

The objective of the VDS is to provide to interested vehicles with a list of relevant vehicles inside a
region of interest that are ready to establish a Extended Sensors session. As explained in Section 3, due
to vehicle dynamics, a delay on the position data can mean a significant displacement in the spatial
domain. If the network latencies and processing times are not properly considered, the list of vehicles
provided by the VDS is outdated by the time it reaches the receiver. Moreover, positioning errors in the
order of metres can make a vehicle to be located in a wrong lane or road. This could imply significant
errors in the vehicle list provided in the VDS response: some vehicles should not be there (false positives)
or some vehicles are missing (false negatives).

Three options for VDS implementation have been compared:

– Option 1: the VDS just forwards the latest value stored at the TSDB for each vehicle. It does not
consider the time shifts between vehicles.

– Option 2: the VDS transforms the latest values stored at the TSDB to the time instant when the
query is received in the MEC. Following the terminology defined in Section 3.1, this time instant
would be tq rec.

– Option 3 (method proposed in Section 3): the VDS transforms the latest values stored at the TSDB
to the time instant when the query response is estimated to be received in the vehicle. Following the
terminology defined in Section 3.1, this time instant would be tr rec.

Each of these options is assessed using a LTE network latency (38 ms) [27] and a 5G network latency
(17 ms) [15]. A further discussion about network latencies is included in Section 5.4. For each combination
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of VDS implementation and network latency, the Euclidean distance between each vehicle position sent
by the VDS and the actual vehicle position at the time that the VDS message is received (tr rec) is
calculated. This Euclidean distance represents the position error. The distribution of position errors
obtained per vehicle and time interval can be analised using statistical metrics. Here we propose the
most common ones: median, mean, standard deviation (SD) and maximum.

5.2.2 Start-up & Latency metrics

In order to provide a useful data flow to complement the on-board perception in time, it is important to
minimize start-up time and to keep external data stream delay under the time for one sample to behave
as a local sensor.

For the start-up time, the time consumption by MQTT queries to discover the required sensor data
sources and Peer IDs, and the WebRTC session establishment are the two main factors to take into
account. According to the protocol described in Figure 5, the messages exchanged are minimized to alle-
viate the discovery messaging, then the standard WebRTC message protocol is triggered. This protocol
includes several steps for a call [36]:

startupwebrtc = f(torigoffer,stun, t
orig→dest
send,tcp , tdestaccept, t

dest
answer,stun, t

dest→orig
send,tcp , torigaccept,

torig↔dest
endpoints,ice, t

orig↔dest
handshake,dtls, t

orig→dest
datachannel,sctp, t

orig→dest
video,srtp )

(8)

Where each parameter means:

1. Create Offer (torigoffer,stun). The origin allocates IP address and ports with STUN/TURN and accord-
ingly generates the manifest Session Description Protocol (SDP) with all the streaming information
included.

2. Send Offer (torig→dest
send,tcp ). The origin sends the Offer, including the SDP, to the destination by a TCP

connection.
3. Process Offer (tdestaccept). The destination accepts the Offer and parses the SDP.

4. Create Answer (tdestanswer,stun). The destination creates an Answer. To this end, the destination allocates
IP address and ports with STUN/TURN and accordingly generates the manifest SDP.

5. Send Answer (tdest→orig
send,tcp ). The destination sends the Answer, including the SDP, to the origin by a

TCP connection.
6. Process Answer (torigaccept). The origin accepts the Answer and parses the SDP.

7. Endpoints check (torig↔dest
endpoints,ice). Both sides perform ICE checks to establish UDP connections accord-

ing to the SDP to start the SRTP streams.
8. Credentials handshake (torig↔dest

handshake,dtls). DTLS protocol is performed and credentials for SRTP com-
munications are exchanged.

9. Data Channel (torig→dest
datachannel,sctp). SCTP communication channel is established for the TCP data chan-

nel.
10. Streams run (torig→dest

video,srtp ). SRTP communications deliver the video stream over UDP connections.

As it can be concluded the WebRTC data-flow is much more complex and sophisticated than the reg-
ular Real-Time Session Protocol (RTSP) one, widely used by Closed-circuit television (CCTV) cameras.
However, it brings essential features listed in Section 4.1.

Concerning the latency, the Figure 7 shows the different scenarios that would apply. In the left one,
ADAS system of VehicleA extends its perception with an external data source from VehicleB with a
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Fig. 7: Latency performance scenarios impact on Extended Sensors application.

timing as it would be on-board. Here, sample rate at VehicleA provides enough time to capture data at
vehicle B and delivery, before data are needed to be fused at VehicleA. In the middle, a likely situation
means data is captured at VehicleB so closed in a common timeline to the next sample captured at
VehicleA, that it is not possible to deliver it in time. So, this data can be fused with the next sample
captured at VehicleA without bringing significant inconsistencies. In the right, a scenario where latency
can produce inconsistencies with deprecated external data is shown.

The end-to-end (e2e) latency is declared as the time elapsed from a instant the data were captured
at origin to the moment they are present at destination to be used and interpreted [7]:

latencye2e = tdestpresentation − torigcapturing (9)

Where the assumption to avoid CAM application inconsistencies is that the time elapsed from the
moment the data is captured by a sensor at VehicleB to the moment they are received and used by a
system at VehicleA, is limited by the sample rate of VehicleA (Figure 7 right):

latencye2e < 2 ∗ 1

sampleratedest
(10)

The Equation 11 shows the main factors that come into place, specifically for video streams:

latencye2e = torigenc + tnetwork + tdestbuffer + tdestdec + tdestcomposition (11)

So the different timestamps which are involved are:

– Video capturing time (torigcapturing). In order to have a consistent timeline between participants video
pipelines are synchronised to Network Time Protocol (NTP). This timestamp is captured, rendered
in the image and registered.

– Video encoding time (torigenc ). This includes the time for compression. In our case, H.264 video encoding
is employed because it is widely supported by GPU graphics cards for accelerated encoding. In order
to minimize latency no reordered frames are used, limited to keyframes (I) and temporal prediction
(P) frames. This time is reported by performance metrics from the encoder.

– Network delivery time (tnetwork). This is mainly related to the network latency and jitter. The RTCP
reports provides different network stats related to Round Trip Time (RTT), beyond the end-to-end
NTP-based time shift which is measured by the CAM application at destination. It can be assumed
that the RTT is 2 times the network latency, as the latency in both directions are fairly equivalent.
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– RTP jitter buffering (tdestbuffer). In order to prevent from UDP packets reorder or drops, RTP based
communications usually apply a buffer which accommodates network jitter. In our case this is declared
under the duration of a video frame. The employed 10 ms helps to enforce communications reliability
while keeping impact on end-to-end latency low.

– Video decoding time (tdestdec ). This includes the time for decompression. Again, H.264 video decod-
ing is widely supported by GPU graphics cards for accelerated decoding. This time is provided by
performance metrics from the decoder.

– Video stitching (tdestcomposition). This process fuses the external data source with the captured on-board
data flow and produces a cooperative perception extending on-board sensors.

5.3 Spatial accuracy results

These steps were followed to obtain the results presented in this section:

1. Feed the TSDB with a dataset.
2. Query the TSDB in 100ms time intervals during the duration of the dataset.
3. For each query, apply the three VDS implementations described in Section 5.2.1 with the two network

latency options. Thus, six combinations of VDS implementations and network latency. For the third
VDS implementation, a processing time of 18 ms was considered, calculated with the hardware
described in Section 5.1.

4. Calculate the Euclidean distance between each vehicle position included in the VDS response and
the actual position at the time that the message reaches the receiver. The actual position or ground
truth value is calculated using a quadratic interpolation between the closest points that are part of
the dataset.

The results are summarised in Table 2. The results obtained by each scenario class, urban or highway,
have been aggregated. It is noticeable that using the same network configuration, the proposed VDS
method obtain much better results than the other two options. The proposed method obtains sub-metre
accuracy in both scenario classes, even with the LTE network latency. This sub-metre accuracy meets
the needs of the present vehicle discovery application. It is important to consider that VDS offers a list
of geo-positioned vehicles, but these geo-positions will be updated periodically with no intervention of
the VDS once the Extended Sensors service is started. However, for the sake of assessing the possibilities
of the VDS for more demanding use cases, the obtained accuracy results can be compared with the more
stringent localisation requirements for safety-critical autonomous driving manoeuvres. According to [32],
an error bound of 0.29 m is required in urban environments, and a lateral error bound of 0.57 m and
a longitudinal bound of 1.40 m in highway environments. As it can be noted looking at Figure 8, the
urban error bound is fulfilled by the proposed method in the conducted tests except for some outliers.
Regarding the highway environment, the limits proposed by [32] mean an maximal Euclidean error of
1.06 m, which is also satisfied by the proposed VDS.

5.4 Start-up & Latency results

First, Table 3 shows the total start-up time and the elapsed time for the individual steps measured from
logs of GStreamer peers under 3 possible latency performance. Here, we can see how the network latency
performance impacts on the different times, from 5G e2e latency value of 17 ms coming from field tests



5G MEC-enabled vehicle discovery service for streaming-based CAM applications 17

Table 2: Accuracy results of provided geo-positions for the three methods tested by the VDS service.

Network Median error Mean error SD error Max. error
VDS query response method Scenario latency (m) (m) (m) (m)
Forward TSDB values (Opt. 1) Urban LTE (38ms) 0.732 0.721 0.468 1.959
Forward TSDB values (Opt. 1) Urban 5G (17ms) 0.644 0.595 0.384 1.851
Transf. values to tq rec (Opt. 2) Urban LTE (38ms) 0.415 0.352 0.211 1.038
Transf. values to tq rec (Opt. 2) Urban 5G (17ms) 0.256 0.221 0.135 1.088
Transf. values to tr rec (VDS) Urban LTE (38ms) 0.021 0.050 0.074 0.994
Transf. values to tr rec (VDS) Urban 5G (17ms) 0.018 0.043 0.067 0.924
Forward TSDB values (Opt. 1) Highway LTE (38ms) 2.011 2.029 0.788 4.448
Forward TSDB values (Opt. 1) Highway 5G (17ms) 1.670 1.668 0.743 3.766
Transf. values to tq rec (Opt. 2) Highway LTE (38ms) 1.055 1.009 0.303 1.753
Transf. values to tq rec (Opt. 2) Highway 5G (17ms) 0.657 0.629 0.192 1.138
Transf. values to tr rec (VDS) Highway LTE (38ms) 0.075 0.086 0.061 0.621
Transf. values to tr rec (VDS) Highway 5G (17ms) 0.061 0.070 0.052 0.587
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Fig. 8: Accuracy results of provided geo-positions for the three methods tested by the VDS service.

of industrial setups [15], to LTE e2e latency performance (38 ms) coming from the performance on LTE
networks [27].

It is clear that the radio link latency brings a significant impact as it affects to several sequenced
messages exchanged between peers and also sent to the servers. It is also evident that the STUN and the
ICE protocol to find the connection endpoints crossing the infrastructures is a heavy mechanism meaning
high times. Then, the DTLS handshake is also time consuming including most of the messages to establish
the SCTP-based data channel. As some steps overlap in time, depending on the implementation, the
total time is lower than the aggregation of individual steps.

Concerning the e2e latency for video, Table 4 shows the different time consumption for the identified
video transmission steps.

The latencye2e shows the drift between the sent NTP timestamp of a captured frame in the origin
and the NTP timestamp when this frame is used at destination. The average value is 62ms and the
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Table 3: Average measured Start-up time and partial times for components of Equation 8.

Start-up step
time for wired time for 5G latency time for LTE latency

(no added latency) (17ms) (38ms)

torigoffer,stun 385ms 316ms 387ms

torig→dest
send,tcp 60ms 78ms 99ms

tdestaccept 4ms 4ms 4ms

tdestanswer,stun 52ms 107ms 173ms

tdest→orig
send,tcp 56ms 78ms 108ms

torigaccept 1ms 3ms 3ms

torig↔dest
endpoints,ice 257ms 376ms 516ms

torig↔dest
handshake,dtls 150ms 208ms 258ms

torig→dest
datachannel,sctp 4ms 18ms 13ms

torig→dest
video,srtp 50ms 67ms 88ms

startupwebrtc 658ms 737ms 948ms

Table 4: Average measured pipeline times.

Pipeline step
time for 5G latency

(17ms)

torigcapturing 1ms

torigenc 30ms
tnetwork 17ms
tdestbuffer 10ms

tdestdec 3ms
tdestcomposition 1ms

latencye2e 62ms

standard deviation is 8.2 ms. So, the average value is under the 69 ms threshold (for 29 fps) that would
ensure a maximum shift of one frame. However, this is not satisfied by the 0,01% of frames.

6 Discussion

A MEC-centred approach can efficiently collect and store the positioning data fed by the surrounding
vehicles to offer a vehicle discovery service to them. In order to select the optimal candidates to establish
a CAM service session between vehicles, it is important to consider the timestamps of the vehicle data
stored at the MEC database and the latencies of the communication pipeline. If none of this is considered,
significant errors in the order of metres can happen and these errors can led to the selection of wrong
candidates. This is specially relevant fir the highway scenario, where higher velocities imply higher
displacements.

If the service deployed at the MEC transforms the vehicle geo-positions to the time instant when the
query is received, the accuracy is improved. However, the deviation with the actual vehicle position in
the instant the response message is received is still significant, especially in the highway scenario with
the LTE network latency.

The method proposed in this paper for vehicle discovery obtains very good results both with LTE
and 5G network latencies. In urban scenarios, a mean error of 5 cm (SD = 7.4 cm) with LTE and 4.3
cm (SD = 6.7 cm) with 5G is obtained when comparing the query responses with the actual vehicle
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positions. In highway scenarios, a mean error of 8.6 cm (SD = 6.1 cm) with LTE and 7 cm (SD = 5.2
cm) with 5G is obtained. The positioning accuracy bounds defined by the literature for the safety-critical
autonomous driving applications are fully satisfied in the highway scenario (error < 1.06 m) in all the
samples tested in the experiments. In the urban scenario, the error bound (error < 0.29 m) is satisfied
for all the samples except for some outliers. The reason of this is that the dynamics in urban scenarios
are more complex to predict with sharp turns and frequent changes in the acceleration and heading.
In order to improve the accuracy, more precise methods for trajectory prediction can be implemented
like a Kalman Filter or a Long Short Term Memory (LSTM) neural network. However, these methods
require significantly higher computation loads and could be challenging to implement considering that
the MEC could potentially serve several vehicles at the same time. A trade-off between accuracy and
computational load is necessary. The proposed VDS is quick (18 ms of processing time) and accurate
enough for the See-Through application presented in this study.

The advantage of using 5G over LTE is more evident looking at the start-up times of the implemented
See-Through application. This time is reduced from 948 ms to 737 ms, which is a significant improve-
ment. These start-up times may seem too high, but they are enough for starting an Extended Sensors
application. Moreover, the features provided by WebRTC compensate the start-time overheads that it
brings.

Finally, the proposed WebRTC-based streaming technology satisfies latency constraints for the tested
Extended Sensors application. However, the current benchmarks of industry deployments supply a tight
performance violating in some frames the frame-level latency requirements. So, further improvements
in 5G Radio deployments providing the promised performance of 1ms latency would bring enforced
reliability, essential for this kind of applications. Moreover, as the latency and jitter from the radio
links get lower, the buffering time to prevent from jitter issues and to accommodate packets at network
interface could be reduced.

7 Conclusion

The MEC-based lightweight vehicle discovery service presented in this paper is able to perform well
even with LTE network latencies. In addition to centralising the vehicle queries, the MEC also provides
benefits with respect to data privacy and security as the data flows are restricted to a geographical
area close to the user. As demonstrated in this paper, the stringent video streaming requirements of a
Extended Sensors use case need beyond-LTE capabilities that can be fulfilled with 5G.

The MEC services might become key actors to negotiate QoS communications between cars not only
based on radio availability but considering hardware capacity on destination. However, some points still
need more research and standardisation effort. For instance, there are still no standard mechanisms to
synchronise data between MECs, which is a key aspect with mobile nodes such as vehicles.
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