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Abstract
Deep clustering obtains feature representation generally and then performs clustering for 
high dimension real-world data. However, conventional solutions are two-stage embedding 
learning-based methods and these two processes are separate and independent, which often 
leads to clustering results cannot feedback to optimize the representation learning and 
reduces the performance of deep clustering. In this paper, we aim to propose a deep bound-
ary-aware clustering by jointly optimizing unsupervised representation learning. More spe-
cifically, we joint boundary-aware variational auto-encoder and deep regularized clustering 
for deep regularized clustering for unsupervised learning, named Boundary-aware DEep 
Clustering (BaDEC). BaDEC is able to learn feature representation and clustering simul-
taneously, and it introduces deep regularized clustering to reduce the unreliability of the 
similarity measures. In particular, we present a boundary-aware variational auto-encoder 
that tunes variable evidence lower bounds flexibly to assist feature representation learning 
better for more accurate clustering. Extensive experiments on various datasets from multi-
ple domains demonstrate that the proposed method outperforms several popular compari-
son baseline methods.
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1  Introduction

Clustering is one of the fundamental research procedures of data mining and machine 
learning, and it has been successfully applied to a large variety of tasks [1, 13, 22, 29], 
such as text clustering, speech separation, image retrieval and clustering-based wireless 
networks application [28]. Well-known approaches include hierarchical clustering [30], 
partition clustering [27], spectral clustering [17], density clustering [25], and fuzzy clus-
tering [15]. Despite these standard clustering algorithms have progressed, it is adversely 
affected when coping with high-dimensional data. This is called the curse of dimensional-
ity. To tackle this problem, a common approach is to project high-dimensional data to low-
dimensional manifold.

In recent years, deep learning has achieved widespread success in numerous machine 
learning tasks [9–11, 14, 24] which reduces dimension by embedding data into a lower 
dimensional space and provides deep reliable representation for downstream tasks. Deep 
clustering integrates unsupervised clustering and deep neural networks, it aims to learn 
the deep representation in an unsupervised learning way, and then clusters the embed-
ded data in the new subspace. There are many studies joint deep neural networks and 
clustering object optimization methods to complete unsupervised embedding learning and 
clustering task [5, 7, 16, 20, 26]. Although these works have achieved good performance, 
we argue that they still suffer from inherent limitations. First, most of them are two-stage 
embedding learning-based methods (see Fig. 1) and feature representation is not able to 
be updated by clustering feedback. Second, some studies adopt similarity metrics between 
high-dimensional data to estimate the differences between samples, leading to suboptimal 
clustering results. Third, existing works pay more attention to maximize evidence lower 
bounds and obtain tighter variational bounds in the Variational Auto-Encoder (VAE) 
[12] framework. In fact, tighter variational bounds are not necessarily better [18], and 
deep clustering algorithms that require tuning the variational bounds flexibly to fit feature 
learning.

To address the mentioned challenging limitations, in this paper, we propose a deep 
boundary-aware clustering by jointly optimizing unsupervised representation learning 
(BaDEC). Specifically, the proposed BaDEC is able to learn the feature representation 

Fig. 1   The difference between two-stage embedding learning methods and our method

34310



Multimedia Tools and Applications (2022) 81:34309–34324

1 3

and performs clustering simultaneously in a unified framework. As shown in Fig. 1, we 
bridge embedding and clustering synergistically, enabling the high-confidently feature 
representation. Besides, to avoid the unreliability of similarity metrics, we explore a deep 
regularized clustering to gain more accurate prediction results. In particular, we design a 
boundary-aware variational auto-encoder to achieve the flexibility of variable evidence 
lower bounds (ELBOs) for deep clustering. Finally, extensive experimental results show 
that our BaDEC achieves better performance compared with baseline methods in cluster-
ing predication on various datasets. The main contributions of this paper can be summa-
rized as follows.

•	 We propose a deep boundary-aware clustering by jointly optimizing unsupervised rep-
resentation learning BaDEC, which combines boundary-aware variational auto-encoder 
and deep regularized clustering. In our BaDEC, we could learn feature representation 
and clustering simultaneously. Instead of the similarity metric, we estimate the differ-
ences between samples by exploiting an deep regularized clustering.

•	 To the best of our knowledge, this is the first work to focus on boundary-aware vari-
ational auto-encoder for deep clustering. More specifically, we define a regulable opti-
mization objective that tunes variable evidence lower bounds flexibly to assist feature 
representation learning better, resulting in more accurate clustering prediction.

•	 We conduct comprehensive experiments to evaluate the effectiveness of our BaDEC. 
Experimental results demonstrate that the proposed method performs better than com-
parison baseline methods on six benchmark datasets for deep clustering task.

2 � Related work

Deep clustering has been extensively studied in data analysis in terms of deep feature 
representation and clustering [5, 7, 11, 19, 24]. These methods generally combine deep 
learning and clustering algorithms to deal with high-dimensional data. Since the effective 
deep representation of deep neural networks, it provides a high-quality feature space for 
the clustering algorithms. Meanwhile, clustering algorithms can estimate better the differ-
ence between samples by the low-dimensional features of samples based on deep feature 
representation. Deep neural network based framework contributes to joint optimization for 
various tasks [4].

Deep clustering Recently, deep embedded clustering(DEC) [24] was proposed to learn 
feature representations and cluster assignments using deep neural networks. Despite DEC 
performs well, DEC defined the similarity between embedded feature and centroid based 
on stacked denoising auto-encoder [21]. As a result, the feature embedding space is not 
suitable for clustering task. IDEC [7] is an improved deep clustering method that can 
jointly optimize cluster labels assignment and learn features. SDEC [19] is a semi-super-
vised deep embedded clustering method to learn feature representations and perform clus-
tering task simultaneously. VaDE [11] is an unsupervised and generative approach to clus-
tering that combines gaussian mixture model (GMM) and variational auto-encoder (VAE). 
However, these works are overly dependent on the similarity calculation between samples. 
To avoid this issues, DEPICT [5] employs a multinomial logistic regression function to 
predict the probabilistic cluster assignments and it built an adversarial mechanism for bet-
ter feature representation learning.

34311



Multimedia Tools and Applications (2022) 81:34309–34324	

1 3

The tighter evidence lower bounds are not necessarily better Variational auto-encoder 
architecture is one of the most important methods used in deep clustering methods. In a 
general way, variational bounds are utilized to train autoencoder fameworks [2, 6, 8] by 
minimizing the KL divergence of P and Q distributions. As following formulas, we present 
a general formula of KL(P||Q), which show Fig. 2(c).

where logP(x)can be regarded as a constant, thus, minimizing the KL(P||Q) is to maximize 
the L, and the L is well known as ELBOs. Such as [6] uses the variational auto-encoder 
structure to complete the depth generation model to realize the latent variable image mod-
eling by optimizing the standard variational evidence lower bound. Besides, DEC [24], 
SDEC [19], and VaDE [11] employ standard evidence lower bounds, IDEC [7] adopts a 
tighter bound to optimize clustering tasks. Deep clustering is a two-task learning, feature 
learning and clustering. This method minimizes a lower bound of variational evidence 
to complete the task, which can be shown in the Fig. 2(c). Compared with the standard 
boundary and the tightened boundary, the performance of various methods is uneven.

In a recent work, [18] develops three importance weighted auto-encoder methods for 
the tight boundary problem, which demonstrates that tighter bounds are not necessarily 
better optimization tasks. However, in [18] they merely considers the terms of signal and 
noise generation of different tightness boundaries, and regardless of the helpful in feature 
representation leaning framework. To better optimizing our method, we target the variable 
boundaries from the view of feature learning and feature reconstruction, and how to inte-
grate variable boundaries to design a better optimization objective. As mentioned before, 
one limitation of this work is that they maximize evidence lower bounds and obtain tighter 
variational bounds. As a matter of fact, it requires tuning the variational bounds flexibly to 

KL(P||Q) = −L(�,�, x) + logP(x),

L → max ⇒ KL(P||Q) → min,

Fig. 2   The architecture of the proposed BaDEC. a The Encoder is a recognition model q(z|x) to obtain the 
feature distribution of the implicit features from the multi-layer convolutional layer’s output. The Decoder is 
a generate model p(z|x) to reconstruct the sample. Deep regularized clustering captures the results from the 
implicit feature space and construct clustering constraints. b Network optimization of BaDEC. c A schema 
of ELBO
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fit feature learning for clustering task. Distinct from previous works, inspired by [18], we 
propose a joint optimization objective that can obtain boundary-aware ELBOs in a adjust-
able way for better feature learning. Besides, our BaDEC combines the embedding and 
clustering jointly and feature representaion can be updated in terms of clustering results. 
As a specific component, our design-well automated clustering can capture automatically 
the difference of samples instead of using similarity calculation.

3 � Our proposed BaDEC

3.1 � Notation

Consider the clustering task is to divide N samples into K clusters. A set of samples 
X=[x1 , x2 , ... , xn ] ∈ Rdxn , we define the recognition model q(z∣ x) as a probabilistic 
encoder, and the general model p(z∣ x) as a generate decoder by z. Based on this, we 
define q(zi ∣ xi ) as the sample distribution of xi , and p(zi ∣ xi ) denotes distribution from zi 
sampling. q(zi ∣ xi ) and p(zi ∣ xi ) can be rewritten as q(zi ∣w,�,�2 ), p(zi ∣ xi,�,�2 ) respec-
tively. The relevant formulas are as follows.

where �i , �i2 denote mean and variance respectively, zi is the hidden embedding feature,w 
and � are the the global optimum parameters. The recognition model q(z∣ x) is the encoder 
capture z from x. m denotes the number of gaussian distribution. When m=1, it is sample 
distribution like VAE [12].

3.2 � Architecture of BaDEC

As illustrated in Fig. 2, the overall architecture of BaDEC can be divided into two parts, 
namely encoder and decoder. Figure 2(b) shows our network optimization and Fig. 2(c) 
shows the schema of ELBO. Algorithm  1 shows a brief description of BaDEC algo-
rithm. The detailed architecture description of the BaDEC framework is as follows.

Encoder
Input layer. The original image or text data is fed to the input layer. Image data is set 

according to pixel dimensions, and reshape the input dimension based on image sharp. 

(1)q�(zi|xi) = N
(
zi|�i, �

2
i

)
,

(2)z ∽ p�(z|x) = N
(
�, �2

)
,

(3)q�(z;w,�, �
2) =

m∑
i=1

wiN
(
zi;�i, �

2
i

)
,

(4)p𝜃(z|x, 𝜃, 𝜇̃, 𝜎̃2) =

m∑
i=1

𝜋iN
(
zi;𝜇̃i, 𝜎̃

2
i

)
,
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When deal with text data, we sharp the sequence text to Euclidean matrix space. We set 
the longest sample as the dimension of the Eculidean matrix column, and the dimension 
of word vector is the row dimension of Eculidean matrix space. In a word, we construct 
text data as a shape similar to that of image data.

Embedding layer. We utilize a multi-layer convolutional neural network as the 
embedding layer. The embedding layer is stacked by convolutional layer and pooling 
layer. The parameters of layers and activation function are introduced in detail in the 
experiments.

Calculation layer. This layer calculates the mean and variance of the output features. To 
avoid overfitting, we constrain the sample by adding noise that follows normal distribution.

Hidden layer. A hidden layer aggregates the output of calculation layer and noise. In 
the encoder-decoder framework, the hidden layer generates feature representation better for 
next clustering.

Category prediction layer. We use a deep regularized clustering (Details are shown 
in Section 3.3) to predict the category from the hidden feature representation. A Softmax 
layer employs the hidden layer as input to predict category. To optimize the model, we 
construct a relative entropy constraint term i.e.(KL) to optimize the prediction results itera-
tively. In addition, in order to adjust the tightness of the boundary, we introduce an adjust-
ment factor � . We use � to combine two types of lower evidence boundary optimization 
methods to achieve the adjustable boundary (Details are shown in Section 3.4).

Decoder:
Embedding layer. The embedding layer of the decoder is symmetrical to that of the 

encoder. We use the de-convolution structure with the same parameters. The main task of 
this layer is to restore the input of the model through the features of the hidden layer, which 
is called the reconstruction stage.

Output layer. As the output of the decoder embedding layer, the sample x’ of the output 
layer reconstructs the sample x of the input layer. The output sample x’ is used to form the 
reconstruction loss with the input sample, which is one of the components of the encoder-
decoder framework.

3.3 � Deep regularized clustering of BaDEC

In an ingenious view, [5] presents a regularized clustering based on a single Softmax node. 
Whereas, one Softmax node cannot get stable forecast results from the complex feature 
space. Thus, we develop a novel regularized clustering in our BaDEC. We utilize n Soft-
max nodes instead of the single layer obtains more accurate prediction results. We define 
the clustering layer as follows.

(5)pik =
1

n

∑
n

softmax(zi + ai)

(6)=
1

n

n∑
h=1

P(yi = k|(zi + ai), �h)
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where P(yi=k∣ zi ) denotes the probabilistic of sample i belongs to category k. �=[1,2,..,k]∈ 
Rdz , � denotes the parameters of Softmax function. For the hidden layer vectors z by 
encoder, we define clustering prediction layer using a Softmax logistic regression func-
tion f� : Z ⟶ Y  to pick the cluster for each sample. Similar to [5], we expect to introduce 
a regularization term on the target variable and propose the empirical label distribution of 
the target variable. By predicting the constraints, we can learn high-confidence representa-
tions. The fk and qik can be defined as (8) and (9).

Besides, we define a relative entropy constraint term KL(pik ∥ qik ), which is to make the 
predicted categories more balanced. By category prediction layer, we can avoid the simi-
larity calculation between samples, and obtain the difference of samples automatically. 
Therefore, this design contributes to more precise clustering prediction results generation.

3.4 � Boundary‑aware variational auto‑encoder of BaDEC

Our proposed BaDEC is based on variational auto-encoder. In this subsection, we first define 
the next generation of variational evidence, so as to set training objective for the model. The 
evidence lower bound is defined in VAE as (10).

To achieve boundary-aware variational auto-encoder of our framework, we then redefine 
the ELBOGVAE as (11).

(7)
=

1

n

n�
h=1

exp
�
�T
k

�
zi + ai

��
k∑

k�=1

exp
�
�T
k�

�
zi + ai

�� ,

(8)fk = P(y = k) =
1

n

∑
i

qik.

(9)qik =

pik∕

�∑
i�
pi�k

� 1

2

∑
k�
pik� ∕

�∑
i�
pi�k�

� 1

2

.

(10)

ELBOVAE(�,�, x)

=∫ q�(z|x) log
p�(x, z)

q�(z|x)dz
= log p�(x) − KL(q�(z|x)|p�(x, z)).

(11)

ELBOGVAE(𝜃,𝜙, x)

=� q𝜙
(
z;w,𝜇, 𝜎2

)
log

p𝜃
(
z|x, 𝜃, 𝜇̃, 𝜎̃2

)

q𝜙
(
z;w,𝜇, 𝜎2

) dz

= log p𝜃
(
z|x, 𝜃, 𝜇̃, 𝜎̃2

)
− KL

(
q𝜙(z;w,𝜇, 𝜎

2
)|p𝜃

(
z|x, 𝜃, 𝜇̃, 𝜎̃2

))

≤ log p𝜃(x).
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Based on the above definitions, our variable bound is designed by a dynamic combination 
to obtain adjustable evidence lower bounds. In other words, we define the ELBOBaDEC of 
our BaDEC by considering ELBOVAE and ELBOGVAE with � , and we set 0 ≤ � ≤ 1, as (13).

3.5 � Network optimization

In this subsection, we construct boundary-aware variable evidence lower bounds flex-
ibly, by minimizing KL(q(zi ∣w,u,�2)∥ p(zi ∣ xi,ũ,�2)), KL(pik ∥ qik ), and ∥ x − x�∥1�2 . The 
reconstruction loss of the model is defined as (14).

We define the overall objective function as (15).

During the sampling is non-derivable, our training strategy can be seen as a Reparameteri-
zation Trick [12] and we use the SGVB to estimate, for zi=�+� e, where e is an auxiliary 
noise variable e ∼N(0,1). According to the Reparameterization Trick, KL(q(zi ∣w,u,�2)∥p(zi 
∣ xi,ũ,�2 )) can be rewritten as (16).

Finally, we use the Reparameterization Trick from [12] to transform the sample distribu-
tion into a derivable object, then we use SGVB to optimize the objective, the objective can 
be rewritten as (17).

(12)KL(p(x)||q(x)) = � p(x) ln
p(x)

q(x)
dx ≥ 0.

(13)

ELBOBaDEC(𝜃,𝜙, x) ≥ 𝜆 log p𝜃(x)

+ (1 − 𝜆) log p𝜃
(
z|x, 𝜃, 𝜇̃, 𝜎̃2

)

⇒ log p𝜃
(
z|x, 𝜃, 𝜇̃, 𝜎̃2

) ≤ ELBOBaDEC(𝜃,𝜙, x)

≤ log p𝜃(x).

(14)lossres = ||xi� − xi||
1

2 .

(15)min

⎛⎜⎜⎝

𝜆(KL(q𝜙(z�x)�p𝜃(x, z))
+(1 − 𝜆)KL(q𝜙(z;w,𝜇, 𝜎

2)��p𝜃(z�x, 𝜃, 𝜇̃, 𝜎̃2))

+KL(qik��pik) + lossres

⎞⎟⎟⎠
.

(16)log q�(z|x(i)) = logN
(
z;u(i), �2(i)I

)
.

(17)

L =min(�
(
− log �2(i) + �2(i) + �2(i) − 1

)

+ (1 − �)
1

2

J∑
j=1

(
− log �j

2(i) + �j
2(i) + �j

2(i) − 1
)

+ qik log
qik

pik
+ ||xi� − xi||

1

2 ).
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4 � Experiments

In this section, we first introduce the datasets, then describe the details of the experiment, it 
mainly includes the parameters setting, evaluation metrics, and experimental results and analysis.

4.1 � Datasets

To evaluate the performance of BaDEC, follow these existing excellent deep clustering work 
[7, 16, 24, 26], we employ six benchmark datasets are to test the performance of clustering. 
In particular, MNIST, Fashion-MNIST, USPS and CIFAR-10 are image datasets; 20NEWS 
and REUTERS are text datasets. The statistics of six datasets as shown in Table 1.

•	 MNIST: The MNIST1 dataset is consists of 10 classes handwritten digits. MNIST is 
the most popular image clustering, classification datasets, the main characteristics of 
the sample is clear, simple background.

•	 Fashion-MNIST [23]: A MNIST-like fashion product database,2 and consists of 10 
categories fashion product. Mainly fashion products such as clothes, shoes and bags, 
and more difficult to distinguish than MNIST.

Table 1   Statistics of the selected 
six datasets

Dataset Examples Classes Sample size Data type

MNIST 60000 10 28×28 image
Fashion-MNIST 60000 10 28×28 image
CIFAR-10 60000 10 28×28×3 image
USPS 9298 10 16×16 image
20NEWS 2965 4 300 d-embedding text
REUTERS 10000 4 300 d-embedding text

1  http://​yann.​lecun.​com/​exdb/​mnist/
2  https://​github.​com/​zalan​dores​earch/​fashi​on-​mnist

34317

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist


Multimedia Tools and Applications (2022) 81:34309–34324	

1 3

•	 CIFAR-10: The CIFAR-10 datasets consists of 10 categories, including airplane, auto-
mobile, bird, and cat, etc. The intersection between the categories is empty.

•	 USPS: The USPS dataset contains 9298 grayscale images, obtained from the scanning 
of handwritten digits from envelopes by the U.S. postal service.

•	 20NEWS: 20Newsgroups3 is a popular database for text classification or clustering. 
We used four categories: comp.graphics, sci.electronics, talk.politics.guns, rec.motor-
cycles.

•	 REUTERS: Reuters4 dataset has 810,000 English news, following DEC, we used 4 
categories: corporate, government markets, and economics.

4.2 � Experiment setting

In BaDEC, we design the structure of encoder of embedding layers as a multi-layer con-
volutional neural network for all sets, for the CNN-layer as Convk

l
 , l is the number of fil-

ter and k is the size of the kernel, the stride sets 3. In encoder embedding, we set Conv3
64

-Conv3
64

-Conv5
128

-Conv5
128

-Conv5
128

 , where d is the dimension of input data. The decoder 
embedding layer is CNN layers same as the encoder. We set dropout is 0.5, mini-batch is 
128. In text clustering task, we use BERT [3] pre-training model to initialize word embed-
ding. For different lengths of text, we use tail alignment for text data, and the dimension of 
word embedding is dw=300. The learning rate is 0.01, and use SGVB optimizer. The hid-
den layer space dimension zi sets 40. The number of distributions m ∈[1, 50] in the mixed 
Gaussian distribution. The n Softmax nodes of regularized clustering layer, n = 8. The 
embedding layer has 5-layer convolutional neural networks, the optimal bound parameter 
� = 0.5.

4.3 � Evaluation metrics

The evaluation of the clustering task is to measure the correctness and purity of the category. 
Follow these recent works [7, 16, 24, 26], we use clustering accuracy(ACC) and normalized 
mutual information(NMI) to evaluate the performance of the model. ACC is defined as (17).

NMI is defined as (18).

4.4 � Baseline methods

To evaluate the performance of BaDEC, we compare it with several popular baseline 
method. In particular, to verify the effectiveness of our representation learning, we set up 

(18)ACC = max
m

∑n

i=1
1{li = m(ci)}

n

(19)NMI(l, c) =
I(l, c)

1

2
[H(l) + H(c)]

4  https://​github.​com/​phili​ppere​my/​Reute​rs-​full-​data-​set

3  http://​qwone.​com/​jason/​20New​sgrou​ps/
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four comparison methods based on K-Means. For the accuracy of the overall clustering 
task, we select five comparison models. The detailed description of comparison baseline 
methods are as follows.

•	 K-Means: As a classic clustering method, it is widely used to compare the performance 
of clustering. We run K-Means [27] algorithm in the original feature space.

•	 K-Means+AE: In order to reflect the effectiveness of feature-Autoencoder, we employ 
the K-Means algorithm to pick cluster from feature that generated by auto-encoder.

•	 K-Means+VAE: In order to reflect the effectiveness of feature-Variational AutoEn-
coder, we run K-Means algorithm in the VAE [12] feature space.

•	 K-Means+BaDEC: In order to show the advantages of our features, we run K-Means 
algorithm in the BaDAC(ours) hidden embedding space.

•	 DEC [24]: The deep embedded clustering learns feature representations and cluster 
assignments by using deep neural networks. We use the authors’ released code of DEC, 
and the parameter settings follow the original settings.

•	 IDEC [7]: IDEC is an improved version of DEC with local structure preservation. We 
set the parameters and hyper-parameter the same as DEC.

•	 SDEC [19]:It is a semi-supervised deep embedding clustering that jointly optimize 
cluster labels assignment and learn features.

•	 VaDE [11]: VaDE is an unsupervised and generative approach to clustering that com-
bines gaussian mixture model and variational auto-encoder.

•	 ClusterGAN [16]: ClusterGAN is an architecture that enables clustering in the latent 
space, and the latent space is created by a mixture of discrete and continuous latent 
variables.

•	 BaDEC ( � = 1 ): When the parameter � = 1 , our BaDEC is to optimize a standard evi-
dence lower bound similar to DEC.

•	 BaDEC ( � = 0 ): When the parameter � = 0 , our BaDEC is to optimize a tighter evi-
dence lower bound similar to IDEC.

•	 BaDEC ( 0 < 𝜆 < 1 ): When the parameter 0 < 𝜆 < 1 , our BaDEC adjusts the tight-
ness of the bound by adjusting the value of lambda. The experimental result is optimal 
obtained by adjusting the parameters �.

4.5 � Experimental results and analysis

We evaluate the performance of the model from the aspect of feature learning and over-
all performance of clustering. We report the result of baseline methods and BaDEC 
in Table  2 with ACC and NMI and we show partial clustering visualization results for 
Fashion-MNIST and MNIST dataset in Fig. 3. We analyze the experimental results from 
three aspects as follows. In order to compare the performance of the model from multiple 
aspects, we argue three questions.

RQ1. Can our model efficiently complete feature representation learning? If yes, do we 
learn better features than other methods?

RQ2. Whether our method can achieve excellent clustering performance? If yes, what 
are the advantages that we have over existing methods?
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RQ3. Is the parameter � we set valid? If yes, what impact will the value of the param-
eter have on the performance of the model?

Experiment 1 To answer RQ 1. Effect of representation learning To estimate the 
representation performance of our model, we set up four comparison methods based 
on K-Means. We use K-Means algorithm to cluster calculation by different feature rep-
resentation spaces. It can be seen from the experimental results as shown in Table  2, 
despite we set the same feature dimension, the complex embedding space of the model 
is more suitable for clustering tasks. Compared with the original feature space, the clus-
tering results of AE, VAE, and BaDEC have great improvement. This is due to the fact 
that encoding framework can learn more effective representation of the features of the 

Table 2   The results of our proposed framework and several baseline methods on six benchmark datasets

The best results are marked with bold symbol

Methods MNIST(%) Fashion(%) CIFAR-
10(%)

USPS(%) 20NEWS(%) REU-
TERS(%)

Metrics ACC​ NMI ACC​ NMI ACC​ NMI ACC​ NMI ACC​ NMI ACC​ NMI

K-Means 55.4 53.8 47.5 51.5 21.8 10.1 65.3 62.8 33.76 0.71 53.3 52.7
K-Means+AE 78.6 71.2 48.2 51.3 27.4 23.9 68.2 61.4 40.8 18.6 71.3 64.9
K-Means+VAE 79.3 71.6 50.3 51.4 28.0 23.4 70.3 61.1 45.3 23.1 73.5 70.7
K-Means+BaDEC(zi) 83.5 78.1 62.3 56.4 30.6 25.3 71.1 62.3 49.6 27.9 76.3 69.2
DEC [24] 84.3 77.6 51.6 54.6 26.3 25.7 74.1 74.3 50.1 44.4 75.6 70.4
IDEC [7] 88.4 86.7 52.9 55.7 25.1 24.7 76.2 78.5 53.6 44.5 77.4 69.2
ClusterGAN [16] 95.0 89.0 63.0 64.0 45.2 40.1 84.9 82.4 78.7 77.3 83.1 79.5
SDEC [19] 86.1 82.9 54.5 51.6 27.3 17.2 76.4 77.7 78.12 46.4 80.5 78.4
VaDE [11] 94.5 87.6 55.2 57.3 36.8 34.1 56.6 51.2 67.4 43.5 80.9 77.3
BaDEC ( � = 1) 84.6 78.5 53.6 50.5 34.6 31.7 75.2 73.6 61.7 56.7 79.1 74.7
BaDEC ( � = 0) 89.1 86.5 56.3 54.9 38.5 37.7 79.6 77.2 65.3 60.6 81.5 76.4
BaDEC ( � = 0.5) 96.3 88.6 63.7 67.2 49.7 34.6 87.4 85.8 79.7 74.5 83.6 81.3

Fig. 3   The partial clustering visualization results on Fashion-MNIST and MNIST datasets
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sample. Besides, the original sample contains too much redundant information, which 
may cause inaccurate results in the process of similarity calculation. In contrast, the 
VAE’s embedding space is much better than the original space, but there are some 
points between the categories that are not easy to resolve, which can cause computa-
tional errors.

Table 2 shows that our BaDEC has great improvement compared to AE and VAE in 
feature representation space capabilities. Several observations can be made. In encoder-
decoder frameworks without adding adversarial sham are easy fall into overfitting. First, 
both VAE and BaDEC are generative models, because the noise term is added, which can 
make the two stages of encoding and decoding adversarial learning. Due to the noise, the 
model avoids the overfitting. By comparing models without generative capabilities, VAE 
and BaDEC have learned richer feature representation. Therefore, VAE and BaDEC have 
certain advantages in feature learning than AE. Compared to VAE, our BaDEC constructs 
an unified framework that performs both feature learning and cluster prediction tasks 
simultaneously. By a joint training object, BaDEC gets the high-confidently feature rep-
resentation. Besides, BaDEC uses a variable optimization bound to better optimize the 
evidence boundary. In the cluster loss term, the model constructs a clustering constraint 
and the iterative optimization feature space via iteration learning. In a word, the BaDEC 
can learn clustering high-confidently feature representation through the constructed frame-
work, and complete the cluster prediction task simultaneously.

Experiment 2 To answer RQ 2. Overall performance of clustering For the overall clus-
tering effect of the model, we select five popular clustering models, DEC, IDEC, SDEC, 
ClusterGAN and VaDE. DEC is a representative method which can perform feature space 
learning and cluster analysis on real data simultaneously. IDEC and SDEC are optimized 
models based on DEC, and the clustering accuracy is improved by 4.1% and 2.9% on maxi-
mum compared to DEC model respectively. Compared with models based on DEC, VaDE 
utilizes the Gaussian mixture distribution as clustering prediction, then iteratively performs 
clustering feedback the process of embedding feature leaning. VaDE avoids to utilizes par-
tition clustering method, and it uses a mixed Gaussian distribution to constrain the sample. 
Compared with VAE-based and VaDE models, BaDEC propose a prediction mechanism 
to replace the clustering algorithm which mitigates the unreliability of similarity calcu-
lation. As observed in Table 2, compared to SDEC, the average improvements achieved 
by BaDEC are 10.9% for ACC, for 14.9% NMI. ClusterGAN is a generative model based 
on generative adversarial networks, BaDEC archives broadly better results than it. It is 
because ClusteringGAN is a kind of adversarial work, our BaDEC is weaker on the two 
NMI values, MNIST and 20NEWS. In this view, BaDEC obtains the differences between 
samples through the learning of neural networks. To mitigate the complexity and unreli-
ability of similarity calculations, BaDEC employs a joint optimization object to train the 
framework. Thus, BaDEC has greatly improvement on the overall task of clustering com-
pare to the baseline methods. Compare to BaDEC ( � = 1) and BaDEC ( � = 0), BaDEC by 
adjusting the value of � , better performance is obtained. Once again proved the advantage 
of boundary-aware.

Experiment 3 To answer RQ3. Parameter sensitivity analysis Compared with the VaDE 
model, in the BaDEC framework, similar to VaDE, we also use a mixed distribution in the 
framework. We sample from mixed Gaussian distribution and add the � to change the tight-
ness of the evidence bound which can better perform feature embedding learning. Also, 
we use clustering constraints to constrain the model training, making the clustering results 
more accurate. Figures 4 and 5 have shown the impact of the parameter � on the REUTERS 
and USPS datasets. It shows that the variation of ACC and NMI with epoch sizes. As the 
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results we find that when � is between 0.3 and 0.8, the optimization is better. We analyze 
BaDEC in terms of the ability to feature embedding space and the overall clustering perfor-
mance. The results show that our model has greatly improvement than the baseline models. 
Thus, the feature space is good enough, then the classification layer of a prediction layer 
can accurately predict the category of the sample. The experimental results verify that the 
effectiveness of our BaDEC.

5 � Conclusion and further work

In this paper, we aim to design a deep clustering framework based on boundary-aware 
variational auto-encoder and automated clustering. In the framework of BaDEC, we can 
learn feature embedding and clustering tasks simultaneously. To avoid direct similar-
ity calculation between samples, we employ automated clustering mechanism to measure 

Fig. 4   Impact of the parameter � on REUTERS dataset. It shows that the variation of ACC and NMI with 
epoch sizes

Fig. 5   Impact of the parameter � on USPS dataset. It shows that the variation of ACC a,c and NMI b,d with 
epoch sizes
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the difference between samples. Especially, we design a boundary-aware variational auto-
encoder to adjust evidence lower bounds automatically for deep clustering. Finally, we 
define a constructing combination objective optimization function to train our model better. 
The experimental results verify that our proposed BaDEC achieves significantly improve-
ment on various datasets compared to popular baseline methods. In other words, the 
method we propose is a general framework. However, there are certain limitations. These 
limitations are mainly the common challenges of deep clustering methods. For example, 
data with better data distribution tends to get better results. However, the complexity of 
data distribution is still a very serious challenge. In the future, we will analyze more com-
plicated data (for example, graph data of social network) to gain accurate representation for 
deep clustering.
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