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Abstract A large amount of data and applications need to be shared with
various parties and stakeholders in the cloud environment for storage, com-
putation, and data utilization. Since a third party operates the cloud plat-
form, owners cannot fully trust this environment. However, it has become a
challenge to ensure privacy preservation when sharing data effectively among
different parties. This paper proposes a novel model that partitions data into
sensitive and non-sensitive parts, injects the noise into sensitive data, and per-
forms classification tasks using k-anonymization, differential privacy, and ma-
chine learning approaches. It allows multiple owners to share their data in the
cloud environment for various purposes. The model specifies communication
protocol among involved multiple untrusted parties to process owners’ data.
The proposed model preserves actual data by providing a robust mechanism.
The experiments are performed over Heart Disease, Arrhythmia, Hepatitis,
Indian-liver-patient, and Framingham datasets for Support Vector Machine,
K-Nearest Neighbor, Random Forest, Naive Bayes, and Artificial Neural Net-
work classifiers to compute the efficiency in terms of accuracy, precision, recall,
and F1-score of the proposed model. The achieved results provide high accu-
racy, precision, recall, and F1-score up to 93.75%, 94.11%, 100%, and 87.99%
and improvement up to 16%, 29%, 12%, and 11%, respectively, compared to
previous works.
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1 Introduction

Data storage, computation, utilization, analysis, and sharing are the vital re-
quired services for any organization to improve performance [1]. Numerous
applications and data are shifting from the local to the cloud due to various
benefits such as minimum cost, maximum efficiency, and high scalability [2].
Sensitive sample data also are shared with the cloud or other parties for dis-
tinguish services [3]. However, users hesitate to share data with the cloud for
computation and storage since a third party manages it [4], and data may be
misused as well as owners lose control of their data [5] [6]. The cloud may
also provide outsourced data to other entities for different purposes [7]. Due
to these reasons, data protection has become a critical challenge for any orga-
nization. Therefore, there is a need for a mechanism that can protect sensitive
data. For this, the different kind of techniques, such as cryptography, differ-
ential privacy, k-anonymity, etc., are used to preserve the data for privacy
reasons before transferring it to the cloud platforms [8] [9].

To address the aforementioned challenges, we propose a novel Privacy-
Preserving Model based on Differential approach (PPMD) for sensitive data in
the cloud environment. In the proposed model, owners partition their data into
sensitive & non-sensitive [10]-[12], and different statistical noise is injected into
sensitive data according to various applications and owner’s queries [13]-[15].
Differential privacy protection is considered on the owner’s side because they
do not want to share actual data. The resulted data is uploaded to the cloud
platform, and classification services are provided [16]. The machine learning
algorithms are applied over resulted data for classification. The cloud platform
obtains classified data from the classification model and sends it to the data
owner rather than other parties. Fig. 1 presents a bird-eye view of the proposed
work and highlights our consecutive contributions to preserve data privacy
and perform classification tasks in the cloud environment. The summary of
the main contributions of PPMD are as follows:

• PPMD allows various data owners to share outsourced data securely. To
protect data against stealing or leakage, noise is injected, and noise-added
data is shared.

• PPMD uses the cloud platform for storage, computation, and performing
classification tasks over collected data from multiple owners. All entities
are considered to be untrusted to protect data with enhanced privacy.

• PPMD maintains the degree of accuracy because of the data partition into
sensitive & non-sensitive parts and statistical noise addition.

• A series of experiments are conducted using the distinct dataset to vali-
date the practicality of the proposed model. Besides, the comparisons are
performed among the various a) datasets, b) classifiers, and c) distinctly
preprocessed data using differential privacy and with the state-of-the-art
works to prove the superiority of PPMD.

Organization: The rest of this paper proceeds as follows. Section 2 describes
the related work. In Section 3, we present the proposed model PPMD, and the
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Fig. 1: Bird eye view of the proposed work

process of data partition is shown in Section 4. The data classification steps
are defined in Section 5. Section 6 shows the implementation and evaluates
the results of the experiment with statistical analysis. Finally, a conclusion
and the direction of the future work are described in Section 7. The list of
notations with their definitions is shown in Table 1 used in this paper.

Table 1: List of Terminologies with their Explanatory Terms

DOid: Data Owners CSP : Cloud Service Provider
Pid: Patients Di: Actual data
Ni: Noise CM : Classification Model
DS

i : Sensitive data CA: Classification Accuracy
DNS

i : Non-sensitive data P : Precision

D̄S
i : Noise-added data D̂i: Preprocessed data

R: Recall D̂
t
′ : Training data

D̂
t
′′ : Testing data FS: F1-score

Ai: Data attribute s
′

Scaling parameter
µ: Mean σ: Standard deviation
ε: Privacy budget n∗: Count of classes
n: Number of data objects L: Label item
C: Object category

2 Related work

Yuan and Yu [17] proposed a secure, efficient, and accurate multiparty Back-
Propagation Neural (BPN) network-based scheme that allowed two or more
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parties, each having an arbitrarily partitioned data set, to conduct the learning
collaboratively. But, this scheme focused on facilitating data processing with-
out considering the algorithm efficiency. Yonetani et al. [18] proposed a doubly
permuted homomorphic encryption (DPHE) based privacy-preserving frame-
work. It enabled multiparty protected scalar products with a reduction of the
high computational cost. However, DPHE supports either addition or multi-
plications at a particular time. A system that utilizes additively homomorphic
encryption to protect the gradients against the curious server is presented in
[19]. This system achieved identical accuracy to a corresponding deep learning
system, i.e., asynchronous stochastic gradient descent (ASGD) trained over
the common dataset of all participants. All classifiers from multiple parties
are trained over the single-source domain in this scheme, but the trade-off is
a lower accuracy rate. To provide the privacy-preserving classification service
for users, Li et al. [20] proposed a scheme for a classifier owner to delegate a
remote server. But during the launch of a classification query, user interactions
were often involved in this scheme. Li et al. [21] proposed a data protection
scheme that enables a trainer to train a Naive Bayes classifier over the dataset
provided jointly by the different data owners. To preserve the privacy of the
data, ε-differential privacy is utilized. But, adversaries still have the ability
to forge and manipulate the data in this scheme. Ma et al. [22] proposed a
privacy-preserving deep learning model, namely PDLM, to train the model
over the encrypted data under multiple keys. A privacy-preserving calculation
toolkit was adopted to train the model based on stochastic gradient descent
(SGD) in a privacy-preserving manner. The model reduced the storage over-
head, but the classification accuracy is less, and the computation cost is high.
Li et al. [23] proposed a privacy-preserving machine learning with multiple
data provider (PMLM) scheme with improved computational efficiency and
data analysis accuracy. The authors used public-key encryption with a double
decryption algorithm (DD-PKE) and ε-differential privacy. But the scheme
suffered from less accuracy as well as less data sharing. To protect the confi-
dentiality of sensitive data without leakage, a privacy-conserving outsourced
classification in cloud computing (POCC) framework was introduced [24] un-
der various public keys using a fully homomorphic encryption proxy technique.
However, data owners and storage servers are deemed to be in the same trust-
worthy domain that no longer exists in the cloud environment. Gao et al. [25]
proposed a scheme to avoid information leakage under the substitution-then-
comparison (STC) attack. A privacy-preserving classification mechanism was
designed by adopting a double-blinding technique for Naive Bayes, and both
the communication and computation overhead was reduced. But this scheme
is unable to obtain the discovery of truth that protects privacy. To apply the
deep neural network algorithms over the encrypted data, Hesamifard et al. [26]
revert a neural networking-based framework named CryptoDL while consid-
ering the existing limitations of homomorphic encryption schemes. Although
the approach works well to secure private data, but the data is protected
using a key that is not feasible. Phong and Phuong [27] constructed a privacy-
preserving system, namely the server-aided network topology (SNT) system,
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and the fully-connected network topology (FNT) system, depending on the
connection with SNT and FNT server. In these systems, multiple machine-
learning trainers can use the SGD or its variants over the combined dataset
without sharing the local dataset of each trainer. The constructed systems used
the weight parameters rather than the gradient parameters and achieved an
accuracy similar to SGD. Wei et al. [28] proposed a framework, namely, nois-
ing before model aggregation federated learning (NbAFL), which prevents the
information leakage effectively. The client’s data is protected by using a differ-
ential privacy mechanism. However, this framework requires a large amount of
noise to add and sacrificing mode utility. Gupta et al. [29] proposed a machine
learning and probabilistic analysis-based model, namely MLPAM. It supports
multiple participants to share their data safely for different purposes by us-
ing encryption, machine learning, and probabilistic approaches. The proposed
model provided a mechanism that reduced the risk associated with the leakage
for prevention coupled with detection. The experimental results showed that
the proposed model ensured high accuracy and precision. A summary of the
literature review is depicted in Table 2.

Table 2: Tabular sketch of the literature review

Model/Scheme
/Framework

Workflow & Implementa-
tion

Outcomes Drawback

A secured
scheme for
processing
ciphered text
[17]

• The arbitrarily parti-
tioned data is encrypted
using a doubly homo-
morphic encryption
scheme

• Experiments are per-
formed on the Amazon
EC2 cloud

• Security analysis
proves that this
scheme is secure,
scalable, and efficient

• Less error rates

High com-
putation
and com-
munication
complexity

A privacy-
preserving
framework
for visual
learning [18]

• A homomorphic cryp-
tosystem is used to
update high-dimensional
classifiers

• The experiments are per-
formed on the CelebA
and Life-logging datasets

• Achieve 84% accu-
racy by performing
facial recognition
tasks

• Minimize the compu-
tational cost of homo-
morphic encryption

Does not as-
sist the mul-
tiple opera-
tions (addi-
tion or mul-
tiplication)

A secure deep
learning sys-
tem for pa-
rameters pro-
tection [19]

• The homomorphic
encryption and asyn-
chronous stochastic
gradient are adopted to
encrypt trained parame-
ters

• The Adam optimizer is
used for training with in-
put learning rate 10−4

• More effective in pro-
tecting sensitive in-
formation from the
curious server

• Achieve the same ac-
curacy as that of the
centralized DL algo-
rithm

The local
data can
still be sur-
reptitiously
extracted
from two
adjacent
versions of
parameters
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A secure
outsourcing
scheme for
the classifica-
tion service
[20]

• The additive homo-
morphic encryption
technique is used to
protect the data

• The experiments are con-
ducted on the LAN server

• More practical and
less communication
cost

Only sup-
port a
single-party
setting

A privacy-
preserving
scheme for
learning al-
gorithms
[21]

• The differential privacy
mechanism was used to
protect the data

• The LAN server was used
to conduct the experi-
ments

• Achieve data privacy
will not break while
the training data

• Less computational
time requires for
training

Paillier cryp-
tosystem can
only work
with integers

A privacy
preserving
deep learning
model to
train over
the encrypted
data [22]

• The model is trained
based on stochastic gra-
dient descent, the feed-
forward, and a back-
propagation procedure

• The experiments were
conducted over MNIST,
CIFAR-10 datasets

• Minimize the storage
overhead

• Errors are calcu-
lated to evaluate the
performance of the
model

Low ef-
ficiency
utilizing
the dis-
tributed two
trapdoors
public-key
cryptosys-
tem

A privacy-
preserving
machine
learning
scheme for
data protec-
tion [23]

• A double encryption al-
gorithm and differential
privacy mechanism was
used to preserve data pri-
vacy

• MAGMA programming is
used to perform the cryp-
tosystem

• Enhance the com-
putational efficiency
and data analysis
accuracy

• The security analysis
proves that the model
is more secure

High compu-
tational cost
due to the
dependence
on integer
factorization

A privacy-
preserving
outsourced
classification
framework
for confi-
dentiality of
sensitive data
[24]

• A fully homomorphic en-
cryption proxy technique
is utilized to encrypt data

• The naive bayes classifier
is performed over multi-
ple datasets for experi-
ment work

• Reduce power con-
sumption by cloud
clusters

• Less computational
overhead

The data is
encrypted
with a single
key, and
it is not
suitable for
multi-user
systems

A privacy-
preserving
Naive Bayes
classifier
scheme to
prevent in-
formation
leakage [25]

• A double-blinding tech-
nique is used to avoid the
attacks

• The GNU Multi-
Precision library and
the OpenSSL library are
used for programming

• Reduce the computa-
tion cost because of
not using fully homo-
morphic encryptions

• More efficient due to
offline phase of server

Not suitable
for the multi-
label dataset
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A CryptoDL
framework
for applying
deep neural
network algo-
rithms over
encrypted
data [26]

• The polynomial approxi-
mation is used for contin-
uous activation functions

• The experiments are con-
ducted on MNIST and
CIFAR-10 datasets

• Perform proper
privacy-preserving
training and classifi-
cation tasks

• The security model
proves that the server
cannot access the in-
put data

High com-
putation
cost and less
accuracy

A privacy-
preserving
deep learning
model for
input privacy
[27]

• The input data is pro-
tected through symmet-
ric encryption

• A multilayer perceptron
and a convolutional neu-
ral network are used for
experiments

• Achieve the same
learning accuracy as
SGD

• The security analysis
proves that no train-
ing information will
be revealed using the
weight parameters

To up-
date weight
causes low
efficiency
and no con-
sideration
for output
privacy

A privacy-
preserving
framework
for data
protection
[28]

• To preserve privacy of
data, the Gaussian noise
is added to it

• The experiments are per-
formed on the MNIST
dataset using multi-layer
perception

• Maintain a pri-
vacy level with a
low-performance loss

• Achieve high level
privacy-preserving
and secure capabili-
ties

Noise in-
evitably
reduces the
accuracy

A machine
learning and
probabilistic
analysis-
based model
for secure
sharing data
[29]

• The differential privacy,
encryption, machine
learning, and probabilis-
tic approaches are used
to encrypt, noise addi-
tion, and share the data
of multiple participants

• The SVM, Random For-
est, KNN, and Naive
Bayes classifiers train the
model on Glass, Iris,
Wine, and Balance Scale
datasets

• Minimize the risk
affiliated with the
leakage for preven-
tion and detection

• Achieve high accu-
racy and precision up
to 97% and 100%

Does not
provide ef-
ficient data
sharing and
management
in multiple
environ-
ments

The major limitations of the existing works are that the models injected
the noise into entire data and/or protected it using various encryption ap-
proaches followed by machine learning-based classification, which reduced ac-
curacy and/or increased computation cost. The earlier models considered a sin-
gle owner and/or a single untrusted entity. Unlike the previous works, PPMD
partitions the data using k-anonymization, injecting the noise into the sensitive
part of data to make it private and applying various state-of-art classifiers. It
also permits multiple owners to share outsourced data securely while treating
all participating entities involved as untrustworthy.
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3 Proposed model

The proposed model architecture, named PPMD (Fig. 2), comprises the in-
volved entities and their communication with essential flows. This architecture

Noised Data

Classified
Data

Cloud Service Provider Sanitization

Data Owners Data
Non-Sensitive Data Sensitive Data

Noise

Data Classification

Classification
Model (CM)

Sanitized
Data

K-Anonymization

Noise Addition

Fig. 2: Proposed PPMD architecture

contains two entities Data Owners (DOid) and Cloud Service Provider (CSP )
which are described as follow:

1) DOid: An entity that generates data and requests to CSP for services.
DOid sends sensitive/non-sensitive data, but noise is added into sensitive
data before transferring it to CSP . DOid applies ε-differential privacy to
protect sensitive data. Since it is assumed that DOid can’t leak its data but
may leak other owners’ data. Therefore, DOid is considered an untrusted
entity.

2) CSP : An entity that gathers all data from DOid and provides facilities of
storage and computation. It offers classification services to DOid through
the classification model (CM ). It trains CM using machine learning al-
gorithms over collected data and accesses classified data from CM. These



Multimedia Tools and Applications 9

obtained results are shared among DOid. In PPMD, CSP is treated as a
semi-trusted entity, as it strictly follows the protocol but is curious to learn
the information.

Let the data owners DOid = {DO1, DO2, . . . , DOn} has data D = {D1, D2,
. . . , Dn}, where the data object Di ∈ D is independent and can be of any type
and size. DOid needs to share D with the semi-trusted party like CSP for
storage, computation, and performance enhancement. But, DOid can’t share
D because it contains sensitive data also. Therefore, before sharing, DOid

partitions his data into sensitive data DS and non-sensitive data DNS using
the k-anonymization mechanism. In order to make DS private, {DO1, DO2,
. . . , DOn} procure noisy data D̄S = {D̄S

1 , D̄
S
2 ,. . . , D̄S

n} by adding noise N
= {N1, N2, . . . , Nn} into DS = {DS

1 , DS
2 , . . . , DS

n} using the ε-differential
privacy. DOid has noise-added data D̄S & non-sensitive data DNS that are
combined, and sanitized data D̂ = {D̂t,1, D̂t,2, . . . , D̂t,n} is obtained. DOid

sends D̂ to CSP that performs the classification tasks over it to make a fit
CM. Any query can be made by DO1, DO2, . . . , DOn to CSP . The results
of these queries are received by CSP from CM, and sent to the corresponding
entity DO1, DO2, . . . , DOn. Algorithm 1 shows the operational summary of
the proposed model. Initially, data Di is divided into DS

i and DNS
i . Afterward,

noise vector Ni is generated and performed the addition operation on DS
i and

Ni. The classification operation is carried out over noisy & non-sensitive data
using the machine learning algorithms, and unknown class labels are obtained
from CM. The accuracy, precision, recall, and F1-score are calculated using
these class labels.

Algorithm 1: PPMD model operational summary

Input: Actual data D, Sensitive data DS , Non-sensitive data DNS , Noise vector
N , input vector D̂

Output: CA, P , R, and FS
1 Initialize data D := {D1, D2, . . . , Dn}, D̄S := {D̄S

1 , D̄S
2 , . . . , D̄S

n}, N := {N1, N2,
. . . , Nn}

2 for i = 1, 2, . . . , n do
3 Data Partition (Di)
4 Ni = Lap(0,1)

5 D̄S
i = DS

i + Ni

6 D̂i = (D̄S
i , DNS

i )

7 Data Classification (D̂i)
8 end for
9 CA = (#Correctly classified sample / #test sample) * 100

10 P = (TP )/(TP + FP )
11 R = (TP )/(TP + FN)
12 FS = 2 ∗ (P ∗R)/(P +R)
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4 Data partition & noise addition

In PPMD, DOid = {DO1, DO2, . . . , DOn} has data D = {D1, D2, . . . , Dn}
in the form of relation, D1, D2, . . . , Dn has attributes {A1, A2, . . . , At1}, {A1,
A2, . . . , At2}, . . . , {A1, A2, . . . , Atn}. These relations {D1, D2, . . . , Dn} are
partitioned into two relations sensitive and non-sensitive based on row-level
data sensitivity of using k-anonymization approach by applying Eq. (1) and
(2). The Algorithm 2 presents the partition of data D1 into DS

1 = {A1, A2,
. . . , At1−p} and DNS

1 = {At1−p+1, At1−p+2, . . . , At1}, D2 is partitioned into
DS

2 = {A1, A2, . . . , At2−q} and DNS
2 = {At2−q+1, At2−q+2, . . . , At2}, . . . , Dn

is partitioned into DS
n = {A1, A2, . . . , Atn−r} and DNS

n = {Atn−r+1, Atn−r+2,
. . . , Atn} respectively, where p, q, r, s ∈ Z.

DS
i =

∏
(A1,A2,...,Ati−s)

(Di) (1)

DNS
i =

∏
(Ati−s+1,Ati−s+2,...,Ati

)

(Di) (2)

Algorithm 2: Data Partition

Input: Actual data D with n̈ records, the value of k̈ for k-anonymity
Output: Sensitive data DS , Non-sensitive data DNS

1 Initialize data D := {D1, D2, . . . , Dn}, DS := {DS
1 , DS

2 , . . . , DS
n}, DNS :=

{DNS
1 , DNS

2 , . . . , DNS
n }

2 Set p̈ =
⌊
n̈
k̈

⌋
3 for i = 1, 2, . . . , n do
4 for ë = 1, . . . , p̈ do
5 Randomly select distinct records rë ∈ Di

6 while (Di 6= φ) do

7 Add the records rë to DS
i

8 DNS
i = Di \ {rë}

9 end while
10 end for

11 return DS
i , DNS

i
12 end for

For instance, let the proposed PPMD model consist of fifty patients Pid

= {P1, P2, . . . , P50} having data D = {D1, D2, . . . , D50} in the vector form
{xï,yï}, shown in Table 3, which contains both sensitive and non-sensitive
data. Therefore, we need to separate the Patients Report into two relations a)
Patients Report1 with attributes Age & Gender, and b) Patient Report2 with
attributes TB, DB, ALG, and Disease, correspondingly shown in Tables 4 and
5. In this way, diseases can’t be recognized without knowing Age and Gender.

To preserve the privacy of sensitive data, noise is inserted into the tuples
of Patients Report1 using differential privacy before transferring to the cloud
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Table 3: Patients Report

Age Gender TB DB ALG Disease

65 Male 0.7 0.1 3.3 1
62 Female 10.9 5.5 0.2 0
68 Female 7.3 4.1 3.3 1
58 Male 3.9 2.0 0.4 1
72 Female 3.2 3.7 3.4 0
46 Male 6.4 1.0 2.2 1
.
..

.

..
.
..

.

..
.
..

.

..

34 Female 4.6 2.4 3.1 1

Table 4: Patients Report1
(Sensitive)

Age Gender

65 Male
62 Female
68 Female
58 Male
72 Female
46 Male
...

...

34 Female

Table 5: Patients Report2
(Non-sensitive)

TB DB ALG Disease

0.7 0.1 3.3 1
10.9 5.5 0.2 0
7.3 4.1 3.3 1
3.9 2.0 0.4 1
3.2 3.7 3.4 0
6.4 1.0 2.2 1
...

...
...

...

4.6 2.4 3.1 1

platform. But, Patients Report2 is outsourced to the same cloud platform
without performing any operation. DOid generates a noise vector N = {N1,
N2, . . . , Nn} using the probability density function, and distribution function
using Eq. (3).

N =
1

2s′
· (exp(−|rn|

s′
)) (3)

where rn is input, s
′

is the scale parameter, and N is a noise vector, which
is drawn from the Laplacian distribution with scale s

′
. The generated noise

vector N is added in the corresponding data DS = {DS
1 , DS

2 , . . . , DS
n} as

D̄S
i = DS

i + Ni where i ∈ [1, n]. After adding noise, DS data becomes noise-
added data D̄S = {D̄S

1 , D̄
S
2 ,. . . , D̄S

n} i.e. Patients Report3, shown in Table 6.
D̄S and DNS data are combined using the sanitization process, and sanitized
data D̂ = {D̂t,1, D̂t,2, . . . , D̂t,n} is transferred to CSP .

5 Data classification

CSP obtains D̂ = {D̂t,1, D̂t,2, . . . , D̂t,n} from DOid and prepossess it by using
the normalization function given in Eq. (4), where Ts is training sample, µ, and
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Table 6: Patients Report3
(Noise-added Data)

Age Gender

65.23 1.65
62.35 0.79
68.64 0.69
58.75 1.49
72.96 0.67
46.74 1.69

...
...

34.56 0.96

σ are the mean and the standard deviation of the training sample, respectively.

D̂ =
(Ts − µ)

σ
(4)

It is assumed that data D̂= {D̂t,1, D̂t,2, . . . , D̂t,n} belong to n∗ ≤ n classes

C = {C1, C2, . . . , Cn∗} where n∗ is count of classes,
⋃n∗

i=1 Ci = D and Ci

⋂
Cj

= Φ,∀i,j = 1, 2, . . . , n∗ ∧ i 6= j. The steps for the classification of data are

illustrated in Fig. 3. In which, data {D̂t,1, D̂t,2, . . . , D̂t,n} is divided into train-

ing data D̂t′ = {D̂t,1, D̂t,2, . . . , D̂t,n−k}, and testing data D̂t′′ = {D̂t,n−k+1,

D̂t,n−k+2, . . . , D̂t,n}. The training data {D̂t,1, D̂t,2, . . . , D̂t,n−k} is used to

train CM , whereas accuracy of CM can be measured by testing data {D̂t,n−k+1,

D̂t,n−k+2, . . . , D̂t,n}. During the testing process, the data object {D̂t,n−k+1,

D̂t,n−k+2, . . . , D̂t,n} is given to CM , which identifies their classes. CM an-

alyzes {D̂t,n−k+1, D̂t,n−k+2, . . . , D̂t,n} and produces a Label vector L =
{Lt,n−k+1, Lt,n−k+2, . . . , Lt,n} as an output, whereas Li′ ∈ L specifies Ci ∈ C
to which D̂t′′ ,i′ ∈ D̂t′′ pertains. The classification accuracy (CA) is calculated
using Eq. (5), whereas CI indicates the number of items correctly classified
and TI indicates the total number of test items.

CA =
CI

TI
(5)

The precision (P ), and recall (R) are calculated using Eq. (6) and (7) re-
spectively, whereas TR indicates the total number of items returned by the
classifier and RI indicates the total number of relevant items. The F1-score
(FS) is measured using Eq. (8).

P =
CI

TR
(6)

R =
CI

RI
(7)
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Fig. 3: Classification flow for shared data

FS =
2PR

P +R
(8)

Sanitized data D̂ is the combination of both noisy data D̄S and non-
sensitive data DNS , which is given to the input layer with n nodes. A multi-
layer perceptron (Fig. 4) architecture consists of three layers: one input layer,
one hidden layer, and one output layer. The input layer receives the data and
prepares it for feeding the hidden layer H with n2 nodes. The hidden layer
H is responsible to process the acquired results from input layer. The results
of H is Hn2

= {ϕ1D̂t1 , ϕ2D̂t2 , . . . , ϕn2
D̂tn + b1}, where ϕ, b1 are the weight

and bias, respectively. The obtained results from the hidden layer is given to
the output layer. The activation function is used to activate the neuron at the
hidden layer as well as at the output layer. The results of the last layer with n3
nodes as y = {ϕ1h1, ϕ2h2, . . . , ϕn3

hn2
+ b2} is achieved, where b2 is the bias.

The final classification result L = {Lt,n−k+1, Lt,n−k+2, . . . , Lt,n} is obtained
from CM . The steps for the data classification have been described by Algo-

Data
Owners

Input Layer Hidden Layer Output Layer

Fig. 4: Learning Model for privacy preserving

rithm 3. Steps 3 to 5 in this algorithm display the Support Vector Machine
(SVM) classifier’s efficiency. In steps 6 to 8, the procedure for the K-Nearest
Neighbor (KNN) classifier is provided. Using steps 9 to 11, the Random Forest
(RF) classifier classifies the data. The Naive Bayes (NB) classifier is conducted
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using step 12. Finally, the Artificial Neural Network (ANN) task is addressed
in steps 13 to 18.

In algorithm 1, steps 2 to 8 perform the classification over noised data using
a classification model, whose time complexity depends on the data partition,
noise addition, and classifier usage. The data is separated using step 3, which
takes the time O(n2), and space O(n), where n be the total number of input
records. To preserve the privacy of the data, noise is generated in step 3 and
added using the Laplace mechanism in step 4, which requires O(n2) time, and
O(n) space. The classification model is performed using steps 7, which needs
O(n3) time, and O(n2) space. Therefore, the total time complexity, and space
complexity of PPMD is O(n3) = (O(n2) + O(n2) + O(n3)), O(n2) = (O(n) +
O(n) + O(n2)), respectively. PPMD complexity analysis implies that the aid
of endurable time and space protects the data, which establishes its potency.

Algorithm 3: Data Classification

Input: Input vector D̂, weight w, bias b, activation function f(x)
Output: unknown class label ȳ, tree numbers n tree

1 Initialize input vector D̂ = {D̂1, D̂2, . . . , D̂n}, D̂1 = {(x1, y1), (x2, y2), . . . ,
(xï, yj̈)}, w, b

2 for i = 1, 2, . . . , n do

3 zi =
∑

D̂i · wT + b
4 f(zi) > 0, ȳi := 1
5 f(zi) < 0, ȳi := 0
6 for Compute Set I contains the minimum sets of k do

7 distance d (D̂i, ȳi)
8 end for

9 for ẗ = 1, 2, . . . , n tree do

10 tree classification(D̂i, ȳi)
11 end for
12 ȳi = argmaxy P (y)

∏
P (Xi | y)

13 for k̈ = 1, 2 do

14 for l̈ = 1, . . . , nk̈+1 do

15 z
(k̈+1)

l̈
=

n∑̂
t=1

x
(k̈)

t̂
· w(k̈)

t̂
+ b

(k̈)

l̈

16 ȳi = f(z
(k̈+1)

l̈
)

17 end for
18 end for
19 return ȳi
20 end for
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6 Performance evaluation

6.1 Experimental setup

The experiments are performed on a machine equipped with Intel (R) Core
(TM) i5-4210U CPU @ 1.70GHz clock speed. The computing machine runs
Ubuntu 64-bit and has 8 GB of the main memory RAM. Python 2.7.15 pro-
gramming language is used to complete the classification tasks. The five dis-
tinct classifiers: SVM, KNN, RF, NB, and ANN, have been used to train CM
over training data.

6.2 Datasets and classification parameters

Heart Disease, Arrhythmia, Hepatitis, Indian-liver-patient, and Framingham
datasets are taken from the UCI Machine Learning Repository [30] to train
CM. There are 303, 452, 155, 583, 303 instances, 75, 280, 20, 11, 14 attributes,
and 2, 13, 2, 2, 2 classes (binary and multi-class) in these datasets, correspond-
ingly as shown in Table 7.

Table 7: Basic information of four datasets

Dataset #Instances #Features #Classes Samples in Samples in
training set test set

Heart Disease 303 75 2 272 31
Arrhythmia 452 280 13 406 46

Hepatitis 155 20 2 139 16
Indian-liver-patient 583 11 2 524 59

Framingham 303 14 2 272 31

To train CM, 9/10 of data is used as training data from the entire dataset,
while the rest is used as test data. For a particular case, there are 303 instances
in the Heart Disease dataset. The 272 instances (i.e., 9/10 of 303 instances)
are used as training samples and the remaining 31 instances for testing sam-
ples. The machine learning model is carried out over Clean, PPMD, PMLM
[23], NbAFL [28], and MLPAM [29]. We have used the Laplace mechanism to
generate the noise. However, PPMD, PMLM, NbAFL, and MLPAM schemes
contain noise. The results of CM are measured using test data, and the CA,
P , R, and FS are computed from these results.

6.3 Results

The CM obtains the classification results including CA, P , R, and FS over
Clean, PPMD, PMLM [23], NbAFL [28], and MLPAM [29], as demonstrated
in Figs. 5(a)-(e) to 8(a)-(e). In PPMD, the maximum value of CA is 93.75%
on the Arrhythmia dataset using the ANN classifier. The minimum value of
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CA is 62.50% on the Hepatitis dataset using the KNN classifier. The average
value of CA is 72.20%, 73.40%, 73.61%, 70.03%, and 84.11% over Heart Dis-
ease, Arrhythmia, Hepatitis, Indian-liver-patient, and Framingham dataset,
respectively. The highest value of P is 94.11% on the Indian-liver-patient
dataset using the NB classifier. The lowest value of P is 43.33% on the Heart
Disease dataset using the ANN classifier. The average value of P is 69.33%,
53.51%, 74.18%, 78.23%, and 76.15% over Heart Disease, Arrhythmia, Hepati-
tis, Indian-liver-patient, and Framingham dataset, respectively. The maximum
value of R is 100% on the Indian-liver-patient dataset using the SVM classi-
fier. The minimum value of R is 39.13% on the Arrhythmia dataset using the
ANN classifier. The average value of R is 59.62%, 62.48%, 82.30%, 76.95%, and
84.06% over Heart Disease, Arrhythmia, Hepatitis, Indian-liver-patient, and
Framingham dataset, respectively. The highest value of FS is 87.99% on the
Hepatitis dataset using the RF classifier. The lowest value of FS is 41.37%
on the Arrhythmia dataset using the ANN classifier. The average value of
FS is 62.84%, 57.20%, 79.48%, 75.97%, and 78.77% over Heart Disease, Ar-
rhythmia, Hepatitis, Indian-liver-patient, and Framingham dataset, respec-
tively. The datasets’ performance descends in order: Framingham, Hepatitis,
Indian-liver-patient, Heart Disease, and Arrhythmia.

6.4 Comparison

The experimental results are compared with clean data, PMLM [23], NbAFL
[28] as well as MLPAM [29], which is implemented on the same platform
(Figs. 5(a)-(e) to 8(a)-(e)). The PPMD outperforms PMLM [23], NbAFL [28],
and MLPAM [29] in all the cases because the proposed model reduces the
impact of injecting noise by separating data into sensitive and non-sensitive
parts. From Table 8, it is observed that the highest difference for CA among
PPMD, PMLM, NbAFL, and MLPAM is 15.83% on the Hepatitis dataset
using ANN classifier, and the lowest difference is found 0.0% on the Heart
Disease dataset using SVM classifier, and the Hepatits dataset using KNN
classifier. Likewise, the maximum gap for P is 28.39% on the Heart Disease
dataset using the RF classifier, but the lowest difference is found 0.0% on
the Arrhythmia dataset using the ANN classifier. The R of PPMD maximum
improved by 11.33% from PMLM, NbAFL, and MLPAM on the Heart Disease
dataset using the RF classifier, whereas the smallest improvement is 0.0% on
the Hepatitis dataset using ANN classifier, and on the Indian-liver-patient
dataset using the SVM, KNN, RF classifiers. The highest difference for FS is
10.56% on the Arrhythmia dataset using the KNN classifier, while the lowest
difference for FS is 0.03% on the Framingham dataset using the KNN classifier.

Moreover, the results of PPMD are less than the results of Clean data in
all the cases due to noise addition. Table 9 shows that the maximum gap for
CA between PPMD and clean data is 6.25% on the Hepatitis dataset using
the SVM, KNN, RF, and NB classifiers, but the smallest gap is found 0.12%
on the Framingham dataset using the ANN classifier. Similarly, the highest
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Table 8: Improvement in the values of CA, P , R, and FS of PPMD in com-
parison with the values on PMLM [23], NbAFL [28], MLPAM [29]

Data Class Decrements in the value of parameters
set ifier CA P R FS

[23] [28] [29] [23] [28] [29] [23] [28] [29] [23] [28] [29]
SVM 3.22 0.0 6.45 5.00 4.04 7.26 10.9 4.72 11.19 5.33 4.43 8.79
KNN 3.23 3.23 3.23 1.92 2.17 5.81 4.16 2.15 5.37 2.19 1.47 2.69

Heart RF 1.01 1.01 1.01 24.45 22.94 28.39 11.33 1.5 1.72 5.25 3.63 7.64
Disease NB 3.22 3.22 3.75 2.67 1.13 4.58 3.51 2.15 4.37 2.30 1.09 5.03

ANN 0.61 3.06 3.80 0.48 0.48 0.48 3.23 3.23 3.23 1.95 0.20 1.95
SVM 2.18 2.18 4.35 5.86 5.58 5.93 2.18 2.18 4.35 5.59 5.14 5.73
KNN 6.52 2.17 6.52 9.30 8.45 10.77 6.52 2.17 6.52 9.98 4.01 10.56

Arrhy RF 4.35 2.17 8.70 3.94 0.93 5.00 4.35 4.35 8.70 6.32 4.92 7.91
thmia NB 1.56 1.56 3.74 1.13 1.26 1.76 1.56 1.56 3.74 3.07 0.29 3.91

ANN 0.25 0.25 1.08 0.0 0.53 1.05 1.75 0.67 2.18 2.24 0.56 4.06
SVM 6.25 6.25 6.25 4.10 4.58 4.58 9.85 4.16 10.41 6.48 4.56 9.48
KNN 6.25 0.0 0.0 4.76 2.19 2.19 1.52 1.52 2.08 4.92 1.92 4.93

Hepa RF 12.50 6.25 12.50 1.65 1.65 11.91 1.28 3.36 9.61 7.99 3.38 9.73
titis NB 6.25 6.25 6.25 6.41 4.76 11.97 5.50 1.92 1.92 1.81 0.33 5.43

ANN 15.11 8.0 15.83 4.28 2.48 5.95 0.0 0.0 8.34 2.57 1.67 2.09
SVM 1.69 3.39 5.08 1.69 3.39 6.15 0.0 0.0 2.44 1.12 2.27 3.43

Indian KNN 1.69 1.69 3.39 1.67 2.75 3.26 0.0 0.39 0.75 1.35 1.35 1.77
Liver RF 1.69 3.39 5.08 6.01 0.24 4.60 0.0 1.06 4.3 1.54 2.62 4.81
Patient RF 1.70 1.70 3.39 2.45 1.81 5.23 2.77 0.05 7.03 4.87 2.98 5.14

ANN 3.05 1.46 3.24 9.49 3.77 9.49 4.48 1.70 2.56 3.82 1.67 5.24
SVM 0.71 0.24 2.12 2.76 1.18 4.09 0.71 0.24 2.12 1.21 0.55 2.37
KNN 0.71 0.24 1.18 0.90 0.74 2.29 0.71 0.24 1.18 0.03 0.04 0.98

Frami RF 1.18 0.71 2.13 2.04 1.77 3.24 1.18 0.71 2.13 0.35 0.38 1.32
ngham NB 0.95 0.24 2.13 1.62 0.28 2.26 0.95 0.24 2.13 1.49 0.23 1.56

ANN 0.24 1.13 9.23 0.09 1.08 1.29 1.69 1.22 1.69 0.11 0.90 0.90

difference for P is 8.09% on the Hepatitis dataset using the RF classifier,
while the lowest difference is found 0.0% on the Hepatitis dataset using the
KNN classifier. The R of PPMD the maximum decrement by 8.72% from clean
data on the Hepatitis dataset using the RF classifier. The smallest decrement
is 0.0% on the Arrhythmia dataset using the ANN, Hepatitis dataset using
SVM, and Indian-liver-patient dataset using SVM and ANN classifiers. The
highest difference for FS is 11.71% on the Heart Disease dataset using the
RF classifier, but the lowest difference for FS is 0.03% on the Framingham
dataset using the ANN classifier. But still, the results of PPMD are almost
equal and also offer more protection compared to the clean data.

6.5 Statistical analysis

Statistical analysis is used to validate the CA, P , R, and FS of the proposed
model. In this context, the non-parametric test is applied to the dataset that is
not normally distributed. The null hypothesis states that the acquired results
from different methods are statistically identical in the Wilcoxon signed-rank
test. This test compares the performance of PPMD model to that of the ex-
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isting PMLM [23], NbAFL [28], and MLPAM [29] models. The test is run on
the dataset with a significance level [31] (p-value) of 0.05 to determine the
importance of classifying parameters. Table 10 demonstrates the results of the
test statistics.

While comparing PPMD and PMLM [23], it is observed that the null hy-
pothesis for CA, P , R, and FS is rejected because their p-values are less than
0.05, indicating that PPMD for the Heart Disease dataset is valid. The null hy-
pothesis is rejected for CA, R, and FS but accepted for P on the Arrhythmia
dataset. The null hypothesis is rejected for CA, P , and FS, whereas accepted
for R on the Hepatitis, and Indian-Liver-Patient datasets. The null hypothesis
is rejected for CA, P , R, and FS on the Framingham dataset.

Similarly, comparing PPMD, and NbAFL [28], the null hypothesis is re-
jected for P , R, and FS but accepted for CA on the Heart Disease dataset. The
null hypothesis is rejected for CA, P , R, and FS on the Arrhythmia dataset.
The null hypothesis is rejected for P , and FS but accepted for CA, and R
on the Hepatitis dataset. The null hypothesis is rejected for CA, P , and FS,
whereas accepted for R on Indian-live-Patient dataset. The null hypothesis is
rejected for CA, P , R, and FS on the Framingham dataset.

Table 9: Reduction in the values of CA, P , R, and FS of PPMD in comparison
to the values on clean data

Dataset Classifier % decrement in the value of parameters
CA P R FS

SVM 3.23 1.92 2.19 2.05
KNN 3.22 3.08 4.76 2.65

Heart Disease RF 2.21 4.61 7.78 11.71
NB 3.23 3.58 3.92 4.37
ANN 0.61 1.83 3.23 2.54
SVM 2.17 3.07 2.17 2.86
KNN 2.18 2.28 2.18 1.45

Arrhythmia RF 2.17 3.80 2.17 1.86
NB 1.75 3.84 1.75 3.94
ANN 0.65 1.10 0.00 0.49
SVM 6.25 5.24 0.00 3.13
KNN 6.25 0.00 7.57 3.08

Hepatitis RF 6.25 8.09 8.72 2.91
NB 6.25 6.67 4.89 3.90
ANN 2.63 7.94 6.25 7.24
SVM 1.70 1.70 0.00 1.10
KNN 1.70 2.99 0.37 0.42

Indian Liver RF 1.70 0.97 1.67 0.96
Patient NB 1.69 0.33 1.28 1.06

ANN 3.05 1.23 0.00 0.63
SVM 0.71 0.37 0.71 1.43
KNN 0.71 0.95 0.71 1.37

Framingham RF 0.41 0.21 0.41 0.35
NB 1.41 1.17 1.41 1.15
ANN 0.12 0.02 0.05 0.03
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Moreover, comparing PPMD and MLPAM [29], the null hypothesis is re-
jected for CA, P , R, and FS on the Heart Disease and Arrhythmia datasets.
The null hypothesis is rejected for P , R, and FS but accepted for CA on the
Hepatitis dataset. The null hypothesis is rejected for CA, P , R, and FS on
the Indian-Liver-Patient and Framingham datasets.

Table 10: Wilcoxon test statistics (p-value is 0.05)

Data Classification Comparison of Comparison of Comparison of
set Parameters PPMD, PMLM [23] PPMD, NbAFL [28] PPMD, MLPAM [29]

p-value Result p-value Result p-value Result
CA 0.042 RE 0.68 AC 0.43 RE

Heart P 0.043 RE 0.43 RE 0.43 RE
Disease R 0.043 RE 0.42 RE 0.43 RE

FS 0.043 RE 0.43 RE 0.43 RE
CA 0.043 RE 0.42 RE 0.43 RE

Arrhy P 0.068 AC 0.43 RE 0.43 RE
thmia R 0.043 RE 0.43 RE 0.43 RE

FS 0.043 RE 0.43 RE 0.43 RE
CA 0.039 RE 0.59 AC 0.66 AC

Hepa P 0.043 RE 0.43 RE 0.43 RE
titis R 0.068 AC 0.68 AC 0.43 RE

FS 0.043 RE 0.43 RE 0.43 RE
CA 0.042 RE 0.43 RE 0.41 RE

Indian P 0.043 RE 0.43 RE 0.43 RE
Liver R 0.180 AC 0.68 AC 0.43 RE
Patient FS 0.043 RE 0.43 RE 0.43 RE

CA 0.043 RE 0.42 RE 0.42 RE
Frami P 0.043 RE 0.43 RE 0.43 RE
ngham R 0.043 RE 0.42 RE 0.42 RE

FS 0.043 RE 0.43 RE 0.43 RE

AC: The null hypothesis is accepted, RE: The null hypothesis is rejected

7 Conclusion and future work

This paper proposed a novel model named PPMD that preserves the privacy
of outsourced sensitive data provided by various data owners in a real cloud
environment. PPMD allows multiple data owners to outsource their data to
the cloud for storing and computation. In this work, data owners added dif-
ferent statistical noise to sensitive data according to their queries for data
protection. The cloud service provider has also provided the classification ser-
vice. The experiments have been conducted, and results show that PPMD
ensures high accuracy, precision, recall, and F1-score improvement up to 29%
over the existing works. The model’s performance over the well-known data
sets and comparison with existing works showed that PPMD is more secure,
efficient, and optimal. The future aim of this work would be to share collected
data among requesting users and devise a more efficient privacy-preserving
mechanism to protect the data for various owners.
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