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Abstract The state-of-the-art fingerprint matching systems achieve high accuracy on
good quality fingerprints. However, degraded fingerprints obtained due to poor skin
conditions of subjects or fingerprints obtained around a crime scene often have noisy
background and poor ridge structure. Such degraded fingerprints pose problem for
the existing fingerprint recognition systems. This paper presents a fingerprint restora-
tion model for a poor quality fingerprint that reconstructs a binarized fingerprint im-
age with an improved ridge structure. In particular, we demonstrate the effectiveness
of channel refinement in fingerprint restoration. The state-of-the-art channel refine-
ment mechanisms, such as Squeeze and Excitation (SE) block, in general, create SE-
block introduce redundancy among channel weights and degrade the performance
of fingerprint enhancement models. We present a lightweight attention mechanism
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that performs channel refinement by reducing redundancy among channel weights
of the convolutional kernels. Restored fingerprints generated after introducing pro-
posed channel refinement unit obtain improved quality scores on standard fingerprint
quality assessment tool. Furthermore, restored fingerprints achieve improved finger-
print matching performance. We also illustrate that the idea of introducing a channel
refinement unit is generalizable to different deep architectures. Additionally, to quan-
tify the ridge preservation ability of the model, standard metrics: Dice score, Jaccard
Similarity, SSIM and PSNR are computed with the ground truth and the output of the
model (CR-GAN). An ablation study is conducted to individually quantify the im-
provement of generator and discriminator sub-networks of CR-GAN through channel
refinement. Experiments on the publicly available IIITD- MOLF, Rural Indian Fin-
gerprint Database and a private rural fingerprint database demonstrate the efficacy of
the proposed attention mechanism.

Keywords Fingerprints - Restoration - Denoising - Biometrics - Deep convolutional
neural networks

1 Introduction

Accurate matching performance of fingerprints-based authentication systems pro-
motes their usage in various applications ranging from border security, access con-
trol to law enforcement. However, poor quality fingerprint images resulting due to
aging, dry/wet fingers, creases, or uncontrolled interaction of the subjects with the
fingerprint sensors adversely affect the performance of the state-of-the-art fingerprint
matching systems [1][2]. Furthermore, the rural population of developing countries
often has poor fingertip skin quality due to the large amount of manual work. As a
result, state-of-the-art fingerprint minutiae extractors fail to correctly extract minu-
tiae on degraded rural fingerprints, leading to unsatisfactory matching performance.
Some fingerprints are degraded due to the very nature of their acquisition, e.g., latent
fingerprints. Latent fingerprints are collected from a crime scene and have poor ridge
structure accompanied by structured noise. The structured noise in a latent fingerprint
may exist due to stains, lines, overlapping text, and many times overlapping finger-
prints in the background. Sample degraded fingerprints are shown in Figure 1 (a). To
overcome the challenges offered by degraded fingerprints, its restoration is primarily
performed via an enhancement model. An enhancement model is targeted to remove
background noise, improve the contrast between ridges and valleys and predict miss-
ing ridge details. As a result, enhanced fingerprint image helps accurate minutiae
extraction and improved fingerprint matching performance (see Figure 1 (b)).
State-of-the-art fingerprint enhancement models employ convolutional neural net-
works (CNNs) as the backbone architectures. However, studies indicate that deep
architectures often learn redundant features [3][4]. Channel refinement is a state-
of-the-art technique to improve the representational power of a CNN by facilitating
learning of robust features. It has been successfully applied in image classification,
scene classification and object detection [3] [4]. Unlike natural images, the train-
ing datasets in the fingerprint domain are relatively very small. The state-of-the-art
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Fig. 1 (a) Sample fingerprints from publicly available databases used in this research: first row- Rural In-
dian Fingerprint Database [5] depicting dry, wet fingerprint images and fingerprints with degraded ridges
due to warts, scars, and creases. Second row- IIITD- MOLF Database [6] illustrating challenges such as
background noise, unclear ridge details, and overlapping fingerprints in the background (b) left column
showcases the match score between original probe and gallery fingerprints obtained using standard finger-
print matching tool NBIS [7] while the right column showcases the higher matching score obtained on the
enhanced images generated by the proposed CR-GAN.

channel refinement technique SE-block [3] introduces a large number of additional
model parameters into the architecture of fingerprint enhancement model. We ob-
serve that SE- block introduces redundancy among channel weights and degrades the
performance of fingerprint enhancement models. To address the limitations of SE-
block, this paper proposes a lightweight channel-level attention mechanism (referred
as channel refinement unit) which refines the channel weights learnt by a deep learn-
ing based enhancement model. We show that channel refinement reduces redundancy
among channel weights of fingerprint enhancement models and helps to learn robust
features. Learning of robust features helps the enhancement model localize the fin-
gerprint ridge pixels better, facilitating improved minutiae extraction and fingerprint
matching performance. To the best of our knowledge, this is the first work to demon-
strate the effectiveness of channel refinement in fingerprint enhancement.

Research Contributions

The contribution of this research is six folds:
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We benchmark the performance of state-of-the-art fingerprint enhancement mod-

els on a publicly available Rural Indian Fingerprint database and a private rural

Indian fingerprint database and demonstrate that the proposed approach signifi-

cantly outperforms the state-of-the-art.

— The effectiveness of Squeeze and Excitation (SE) block [3] is studied by introduc-
ing SE block into a state-of-the-art fingerprint enhancement model. Visualizations
of correlation matrices show that SE block creates redundancy among channel
weights and does not generalize for fingerprint reconstruction. However, the pro-
posed channel refinement unit successfully reduces redundancy among channel
weights.

— Generalization performance of proposed channel refinement on different deep
architectures is demonstrated.

— A detailed comparison with state-of-the-art generative adversarial network based
fingerprint enhancement models showcasing the superior performance of the pro-
posed CR-GAN is given.

— Ablation study is conducted to gain insights on the effectiveness of introducing
channel refinement in the network architecture.

— Superior performance achieved on challenging fingerprint databases of the rural

Indian population and a latent fingerprint database demonstrate the generalization

ability of the proposed work.

2 Related Work
2.1 Attention Mechanisms

Attention is a means to influence the network parameters of a CNN to focus on the
most informative components of the input. Attention mechanisms in CNNs are moti-
vated by the human visual system. Humans do not process the whole scene at once,
rather sequentially in partial glimpses. Similarly, attention mechanisms are designed
to empower the CNN architectures to identify salient features and improve its repre-
sentational power[8] [9]. Next, we summarize state-of-the-art attention mechanisms
proposed in the literature.

Squeeze and Excitation (SE) block [3] is one of the most widely used attention
mechanisms. It understands the relationship between channels and adapts the fea-
tures such that inter-dependencies among channels are taken care of. [4] and [10] are
concurrent works which exploit both spatial and channel level information. The au-
thors propose spatial attention and a channel attention module. Recalibrated features
from both the modules are fused to obtain the final output feature map. Hu et al. [11]
modify the squeeze operation of SE-block and propose Gather-Excite block. The
gather operation performs a parameterized aggregation of feature responses while
the excitation operation is similar to excite operation of SE-block. Huang et al. pro-
pose criss-cross attention [12] to capture contextual information in images. Singh et
al. [13] propose calibration of features through attention weights. Bello et al. [14]
propose to augment convolution operations with self-attention to improve a model’s
performance.
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Attention mechanisms are successfully utilized in many applications including
image classification, sequence learning, object detection, image captioning and scene
classification [3] [4] [15] [16]. Motivated by the success of attention mechanisms
in image processing and computer vision applications [17] [18] [19], we propose a
lightweight channel refinement mechanism for improving the feature representations
of fingerprint images. The proposed channel refinement unit is similar to the SE-
block [3]. However, SE-block performs redundant transformations, which not only
introduces additional parameters but also creates redundancy across features. A de-
tailed comparison between SE-block and the proposed channel refinement unit is
provided in Section 5.3.

2.2 Fingerprint Enhancement

Vatsa et al. [20], Puri et al. [5], and Tiwari et al. [21] assess the fingerprint quality of
the rural Indian population. These studies conclude that the fingerprint quality of the
rural Indian population is poor. Furthermore, these studies also report the unsatisfac-
tory performance of the state-of-the fingerprint matching systems on the rural Indian
population. While the challenges in the rural fingerprint matching have been identi-
fied, the effectiveness of fingerprint enhancement models on the rural population has
not been established so far. We now summarize the literature on the enhancement of
poor quality fingerprints, in general, below.

Classical image processing techniques based enhancement: Hong ef al. [22]
propose computation of ridge orientation and frequency on normalized fingerprint
images. Enhanced image is obtained by applying Gabor filters tuned to the computed
orientation and frequency. Gottschlich and Schonlieb [23], Turroni et al. [24], Ramos
et al. [25], Wang et al. [26] and Gottschlich [27] propose contextual filtering of fin-
gerprint images in spatial domain. Chikkerur et al. [28] propose short time Fourier
transform (STFT) to obtain the local ridge orientation and frequency. The obtained
contextual information is used to filter the fingerprint image. Hsieh et al. [29] propose
wavelet transform based fingerprint image enhancement. Ghafoor et al. [30] propose
Fourier and spatial domain based contextual filtering for fingerprint enhancement.
Jirachaweng and Areekul [31] propose discrete cosine transform based fingerprint
enhancement. Yoon et al. [32] propose zero pole and distortion model for orientation
estimation to perform fingerprint enhancement. Gupta et al. [33] exploit density of
minutiae and direction of orientation field through a high order polynomial for re-
constructing a poor quality fingerprint image. Le et al. [34] propose adaptive singular
value decomposition of wavelet sub-bands to discard noisy background and improve
the clarity of fingerprint ridge patterns. Manickam et al. [35] improve contrast of fin-
gerprint images using type-2 fuzzy sets and extract scale invariant feature transform
(SIFT) feature points. Later, the authors SIFT feature points to match fingerprints.

Learning based enhancement techniques: Yang er al. [36] propose localized
dictionaries for fingerprint enhancement. Chen et al. [37] propose multi-scale dic-
tionaries based fingerprint enhancement. Liu et al. [38] propose multi-scale sparse
coded dictionaries for enhancement. Xu et al. [39] learn multi-scale dictionaries and
exploit principal component analysis (PCA) for reducing dimensionality of dictio-
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naries. Fingerprint image is enhanced using these dictionaries and spectra diffusion.
Sahasrabudhe and Namboodiri [40] propose deep belief networks for enhancement of
fingerprints. Schuch et al. [41] propose a deconvolutional autoencoder (DeConvNet)
for enhancement of fingerprint images. Reddy KNV and Namboodiri [42] propose hi-
erarchical markov random field based filtering. Svoboda et al. [43] propose a autoen-
coder network which minimizes gradient and orientation between the output and tar-
get enhanced image. Horapong et al. [44] propose a spectral autoencoder based feed-
back mechanism to identify anomalously enhanced fingerprint regions. The poorly
enhanced regions are iteratively enhanced to improve quality of fingerprint ridge pat-
terns. Qian et al. [45] propose DenseUnet based fingerprint enhancement. Liu and
Qian et al. [46] propose a nested Unet based architecture that optimizes a combi-
nation of local and global losses for segmentation and enhancement of poor quality
fingerprint images. Wong and Lai [47] and Li ef al. [48] propose multi-tasking au-
toencoder which enhances fingerprint image while also predicting orientation details.
Sharma and Dey [49] propose a quality adaptive fingerprint enhancement algorithm
which first assesses the quality of a fingerprint image and then applies quality adap-
tive pre-processing. Finally, the pre-processed image is enhanced through standard
enhancement algorithms. Joshi et al. [50] propose to incorporate model uncertainty
into an existing fingerprint enhancement model to assess confidence of the fingerprint
enhancement model. Medeiros ef al. [51] propose a convolutional neural network to
select the best enhancement model for a given poor quality fingerprint image. Finger-
print enhancement methods have been revisited by Schuch et al. [52].

Joshi et al. [53] [54] propose a generative adversarial network (GAN) based fin-
gerprint enhancement algorithm (FP-E-GAN) and show its superior performance.
Karabulut et al. [55] propose a cycle-consistent GAN for unpaired translation from
distorted domain to non-distorted domain. Recently, Joshi et al. [56] propose intro-
duce data uncertainty in fingerprint enhancement models and show that data uncer-
tainty guided GAN (DU-GAN) outperforms state-of-the-art fingerprint enhancement
models. GAN is the state-of-the-art architecture for image generative applications.
Therefore, such an approach constitutes a promising architecture for fingerprint en-
hancement. However, fingerprint images have minor intensity variations compared
to natural images. We hypothesize that it is highly likely that many of the channel
weights (of the convolutional kernels) learnt by the GAN might be redundant and
may not contribute to fingerprint enhancement.

In this paper, we take FP-E-GAN [53] as the backbone network and introduce the
proposed channel refinement unit into it and fabricate a novel architecture: CR-GAN.
The proposed channel refinement unit ensures that different salient features are learnt
by the model, and redundancy among channel weights is reduced. We demonstrate
that smoother enhanced images with lesser artifacts are generated after the introduc-
tion of the channel refinement unit, and improved matching performance is obtained.
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Fig. 2 The proposed channel refinement unit (CRU) refines the channel weight vector X to Xye. CRU
reduces redundancy among channel weights and ensures that relevant features are learnt by the fingerprint
enhancement model. The adversarial training of CR-GAN ensures that the enhanced image output by the
generator network preserves ridge structure and does not have artifacts.

3 Proposed Model

We approach fingerprint enhancement as an image-to-image translation problem. The
enhancement model is trained to remove noise and output a binarized fingerprint
image with improved ridge-valley details.

3.1 Channel Refinement Unit:

Given an input tensor X € RLXHXCthe channel refinement unit (CRU) generates
an output tensor X,,.,, with refined values, as shown in Figure 2. Convolution oper-
ators extract local features corresponding to their receptive field. However, to assess
the effectiveness of each channel towards fingerprint enhancement, global informa-
tion originating from the overall activation over the fingerprint image is required. To
obtain the global representation (Rep) of each of the C channels in a convolution
block, CRU has a global average pooling (gap) layer which takes the average of all
the activations corresponding to each channel, resulting in a C' dimensional tensor,
Rep=[ry,r2,...rc] where r; € R.

To understand the relative importance of each of the C' channels, C, 1x1 depth
wise convolution (dwc) operations are performed resulting in an output W=[w1, wa, .
..wc], where w; € R. The refined weights are obtained after applying batch normal-
ization (bn) and sigmoid (o) activation on W, giving an output tensor A=[a1, as, ...ac]
(a; € R), which has refined weights for each channel. The refined output X, is the
element wise product of the input X=[z1, 2o, ...x¢] (Where z; € R"*H) with the
corresponding refined channel weight.

A = o(bn(dwc(gap(X))))

Xnew = [xl c Q1,2 A2, ...TC * aC]
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Fig. 3 Flowchart illustrating the network architecture of the proposed CR-GAN. The generator sub-
network generates an enhanced binarized fingerprint image while the discriminator sub-network classifies
it as real or fake.

(b) Discriminator Network

3.2 Network Design of CR-GAN

Figure 3 depicts the network architecture of the proposed CR-GAN. The genera-
tor has an autoencoder architecture. The encoder sub-network of the generator learns
noise-invariant features, which the decoder sub-network learns to convert into a high-
quality binarized fingerprint image. The backbone network, training loss, and other
hyperparameters are adopted from the state-of-the-art generative adversarial network-
based fingerprint enhancement model [53]. We introduce a channel refinement unit
after the convolutional blocks in both the generator and the discriminator. This fabri-
cates a novel architecture: CR-GAN.

The network architecture of the generator and discriminator sub-networks of
the proposed CR-GAN are described in Table 1 and Table 2 respectively. Convl1-
Conv3 and Resnet block facilitate the extraction of noise-invariant features. (Note
that Resnet Block followed by CRU denotes the combination of CRU post-ResNet
Block, repeated nine times.) These features are upsampled into a binarized enhanced
fingerprint image by Deconvl and Deconv2. Discriminator network employs convo-
lutional blocks Conv5-Conv9 to extract features at different scales so as to classify a
given fingerprint image as real/fake. Introduction of CRU after each of these blocks in
the generator and discriminator sub-networks offers the flexibility of modifying the
channel weights such that the activation of important features is high and activation
of redundant/less significant features is low.

Figure 3 shows the refinement of the channel weights at each convolutional block.
Different convolutional block captures features at different scales. The introduction
of a refinement unit after each convolutional block helps the model to effectively
learn the correlation between channels and adapt the channel weights accordingly.
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As a result, it provides the proposed model with the independence to enhance or
deprecate activations of features corresponding to different scales. This characteristic
refinement of channel weights in accordance with the importance of each feature at
each convolutional block helps the proposed model to better preserve the relevant fin-
gerprint features while running down the contractive and expansive pathways. This,
in effect, boosts the localization power and, by consequence, enhancement the per-
formance of the proposed CR-GAN. Detailed architecture of CR-GAN is provided in
Table 1 and Table 2.

Block Kernels Size | Stride Padding Layers

Convl 64 7 1 3 Conv. Layer + Batch Norm + ReLu

CRU 1 1 1 0 Adaptive Avg. Pooling + Conv.
Layer + Batch Norm + Sigmoid

Conv2 128 3 2 1 Conv. Layer + Batch Norm + ReLu
+ Conv. Layer + Batch Norm

CRU 1 1 1 0 Adaptive Avg. Pooling + Conv.
Layer + Batch Norm + Sigmoid

Conv3 256 3 2 1 Conv. Layer + Batch Norm + ReLu
+ Conv. Layer + Batch Norm

CRU 1 1 1 0 Adaptive Avg. Pooling + Conv.
Layer + Batch Norm + Sigmoid

ResNet 256 3 2 1 Conv. Layer + Batch Norm + ReLu

Block + Conv. Layer + Batch Norm

CRU 1 1 1 0 Adaptive Avg. Pooling + Conv.
Layer + Batch Norm + Sigmoid

Deconvl 128 3 2 1 Conv. Layer + Batch Norm + ReLu
+ Conv. Layer + Batch Norm

CRU 1 1 1 0 Adaptive Avg. Pooling + Conv.
Layer + Batch Norm + Sigmoid

Deconv2 | 64 3 2 1 Conv. Layer + Batch Norm + ReLu
+ Conv. Layer + Batch Norm

CRU 1 1 1 0 Adaptive Avg. Pooling + Conv.
Layer + Batch Norm + Sigmoid

Conv4 1 7 1 3 Conv. Layer + Tanh

Table 1 Architecture of generator network of the proposed CR-GAN.

3.3 Training

Training of CR-GAN requires paired data comprising degraded fingerprint images
and the corresponding good quality enhanced images. However, the state-of-the-art
fingerprint enhancement algorithms cannot generate reliable paired enhanced images
(for poor quality input fingerprints) that can be used for training the proposed model.
Another challenge is that there is only one rural fingerprint dataset available in the
public domain. As a result, to have sufficient test cases for evaluating the perfor-
mance of the proposed model, we create a synthetic degraded fingerprint database for
training. Synthetic degraded fingerprint images are created from good quality finger-
print images (generated from a synthetic fingerprint generation tool [57]) by adding
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Block Kernels Size | Stride | Padding Layers

Conv5 64 4 2 1 Conv. Layer + LeakyReLu

CRU 1 1 1 0 Adaptive Avg. Pooling + Conv.
Layer + Batch Norm + Sigmoid

Conv6 128 4 2 1 Conv. Layer + Batch Norm +
LeakyReLu

CRU 1 1 1 0 Adaptive Avg. Pooling + Conv.
Layer + Batch Norm + Sigmoid

Conv7 256 4 2 1 Conv. Layer + Batch Norm +
LeakyReLu

CRU 1 1 1 0 Adaptive Avg. Pooling + Conv.
Layer + Batch Norm + Sigmoid

Conv8 512 4 1 1 Conv. Layer + Batch Norm +
LeakyReLu

CRU 1 1 1 0 Adaptive Avg. Pooling + Conv.
Layer + Batch Norm + Sigmoid

Conv9 1 4 1 1 Conv. Layer

Table 2 Architecture of discriminator network of the proposed CR-GAN.

.

\
\

\\

Fig. 4 Samples images from the synthetic dataset created to train the fingerprint enhancement model.

various noise, applying various morphological operations and blending with varying
backgrounds. As shown in Figure 4, the synthetic training set captures noise pat-
terns typically observed in degraded and poor quality fingerprint images. The paired
enhanced images for the noisy training images is obtained by the binarization of
the good quality fingerprint image by NBIS [7]. The fingerprint enhancement model
is trained on 10500 synthetic fingerprints and corresponding ground-truth binarized
images. The network is trained on Nvidia V100 GPU, adam optimizer with A=10,
£1=0.5, 82=0.999, learning rate=0.02 and batch size=2.
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4 Experiments Evaluation
4.1 Databases

Degraded fingerprint impressions typically occur either due to poor skin conditions or
due to background with structured noise. To analyze the performance of the proposed
fingerprint enhancement model on poor quality fingerprints, we evaluate the proposed
fingerprint enhancement model on two challenging rural fingerprint databases. For
assessing the performance of the model on fingerprints with noisy background, we
evaluate it on a latent fingerprint database. Details on all three databases is provided
below.

1. HITD-MOLF [6]: It is the most extensive publicly available latent database with
4400 latent fingerprints. The gallery fingerprints are acquired through the optical
sensor from the same subjects.

2. Rural Indian Fingerprint database [5]: It is a publicly available database that com-
prises 1631 fingerprint images, with ten impressions of each finger. It contains
samples from the rural population rigorously involved in manual work, including
farmers, carpenters, villagers, etc.

3. A private rural fingerprint database comprising of 1000 fingerprint images. These
images are acquired from 500 fingers using an optical fingerprint sensor. This
database is especially challenging due to ample cases of the elderly population
and degraded fingerprints.

4.2 Evaluation Metrics

1. Fingerprint Quality Assessment: A fingerprint enhancement model is designed
to improve fingerprint image quality. We use the NFIQ module of NBIS [7] to
assess the fingerprint image quality of the enhanced images generated by the en-
hancement model. NFIQ outputs a score in the range 1-5, where 1 signifies the
best and 5 signifies the worst quality. We acknowledge that NFIQ?2 [58] is a more
robust fingerprint quality assessment metric. However, NFIQ2 fails to process
any of the three fingerprint image databases used in this research. As a result, we
evaluate the quality of enhanced images using NFIQ.

2. Ridge Structure Preservation: One of the most critical characteristics of a fin-
gerprint enhancement model is to preserve the fingerprint ridge details during en-
hancement. To quantify the ridge preservation aspect of the fingerprint enhance-
ment algorithm, we calculate SSIM value [59] between the ground truth bina-
rized fingerprint image and the output of the proposed CR-GAN. However, since
the ground truth binarization cannot be reliably generated on the test datasets,
we synthetically generate test cases of noisy images by adding various noise and
background variations into good quality synthetic fingerprints obtained from [57].
The ground truth binarization is obtained from the good quality fingerprints using
the binarization module of NBIS [7].

3. Matching Performance: The end goal of a fingerprint enhancement model is to
facilitate improved matching performance. A fingerprint matching system may
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operate in two different modes: identification and verification. The identification
mode of operation is targeted to find a list of potential matches. Verification mode
of operation, on the other hand, outputs where the input fingerprint matches with
the gallery or not. We analyze the matching performance of reconstructed fin-
gerprints in both modes of operation. Latent fingerprint matching is evaluated
on an identification setting, so Rank-50 accuracy and cumulative matching char-
acteristic (CMC) curves are plotted for IIITD-MOLF. However, rural fingerprint
matching is evaluated in a verification setting. Hence, we report the average equal
error rate (EER) and plot the detection error tradeoff (DET) curves. Fingerprint
matching is performed using Bozorth [7] and MCC matcher [60], [61], [62], [63]
(for both the matchers, minutiae are extracted using MINDTCT [7]).

5 Comparison with State-of-the-art
5.1 Performance on Latent Fingerprint Database

To establish the fact that the introduction of the proposed CRU into FP-E-GAN helps
to learn more useful features, we compare the new architecture CR-GAN with FP-E-
GAN on all the metrics as described in Section 4.2. Figure 5 (a) and Table 3 demon-
strate that the average NFIQ score improves from 1.91 by FP-E-GAN to 1.77 by
CR-GAN (lesser score indicates better quality). This illustrates the fact that channel

40
o I Raw 35 35
FP-E-GAN
n —_~ 4 o~ 30
%o B CRGAN |R g,
2 < <
£ g o
- © © 20
“6 2000 5 ’5
. 8 8 15
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0 1 2 3 4 5 1 10 20 30 40 50
Quality score Rank
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Fig. 5 (Comparison of results on IIITD-MOLF database by FP-E-GAN and CR-GAN: (a) histogram of
NFIQ scores; CMC curve comparing the identification performance obtained using (b) Bozorth (c) MCC

Enhancement Avg, NFIQ E::;:ll?:lement Al- | Bozorth| MCC
Algorithm Score 2
Raw Image 5.45 6.06
E;ggzgls (53] T'g? Svoboda eral. [43] | NA 2236
CR-GAN 1'77 FP-E-GAN [53] 28.52 34.43
: CR-GAN 29.30 35.25

Table 3 Comparison of average quality
scores obtained using NFIQ on IITD-
MOLF database.

Table 4 Comparison of identification performance ob-
tained on IIITD-MOLF database when matched across Lu-
midigm gallery.
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l

S$SIM=0.7613 | SSIM=0.8590

55IM=0.7681 | S5IM=0.8510

Fig. 6 Sample test cases comparing the ridge preservation ability of FP-GAN and CR-GAN.

Input FP-E-GAN CR-GAN

Fig. 7 Sample cases comparing the results of FP-E-GAN and CR-GAN on IIITD-MOLF database.

refinement helps CR-GAN to reconstruct better quality latent fingerprints than FP-
E-GAN. Figure 6 and Table 4 demonstrate that CR-GAN outperforms FP-E-GAN
on predicting missing/unclear ridge information and matching performance. Sample
reconstructed fingerprints from IIITD-MOLF database are illustrated in the Figure
7 while the CMCs are plotted in Figure 5 (b) and (c). CR-GAN outperforms FP-E-
GAN on all the three evaluation metrics as used in [53]. These results indicate that the
introduction of the proposed CRU improves the latent fingerprint enhancement per-
formance of the baseline FP-E-GAN. Next, we evaluate the performance of CR-GAN
on rural fingerprints.
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Enhancement Algo- | Matching Avg. EER
rithm Algorithm

Raw Image Bozorth 16.36
STFT [28] Bozorth 18.13
Hong et al. [22] Bozorth 11.01
DeConvNet [41] Bozorth 10.93
FP-E-GAN [53] Bozorth 7.30
CR-GAN Bozorth 5.72
Raw Image MCC 13.23
STFT [28] MCC 14.52
Hong et al. [22] MCC 11.46
DeConvNet [41] MCC 10.86
FP-E-GAN [53] MCC 5.96
CR-GAN MCC 4.45

Table 5 Average EER obtained on Rural Indian Fingerprint Database by various state-of-the-art finger-
print enhancement techniques.

Table 6 Comparison of average NFIQ scores
obtained on Rural Indian Fingerprint database.

1200

1000

No. of Images
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Raw Image 2.94
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Hong et al. [22] 2.05
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CR-GAN 1.42
FP-E-GAN 1.31
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Enhancement Matching Avg. EER
Algorithm Algorithm

DeconvNet [41] Bozorth 28.75
FP-E-GAN [53] Bozorth 17.06
CR-GAN Bozorth 13.23
DeconvNet [41] MCC 26.80
FP-E-GAN [53] MCC 15.85
CR-GAN MCC 11.52

Table 7 Average EER obtained on the private fin-

gerprint database.
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Fig. 8 Comparison of state-of-the-art fingerprints enhancement schemes on the Rural Indian Fingerprint
database: (a) histogram of NFIQ scores; DET curves obtained using (b) Bozorth (c) MCC

5.2 Comparison with State-of-the-art Fingerprint Enhancement Algorithms

In order to compare the performance of the proposed CR-GAN, we benchmark state-
of-the-art fingerprint enhancement algorithms: [22] (Hong), [28] (STFT), [41] (De-
ConvNet) and [53] (FP-E-GAN) on the rural Indian fingerprint databases described
in Section 4.2. Fingerprint matching (verification) performance evaluated through
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Fig. 9 Sample cases of successful enhancement by CR-GAN (proposed) and comparison with the state-
of-the-art fingerprint enhancement algorithms.

average equal error rate (EER) is reported in Table 5 and Table 7. Corresponding
DET curves are plotted in Figure 8 (b) and (c). Average EER is significantly reduced
across both the rural fingerprint databases irrespective of the choice of the fingerprint
matching algorithm. This illustrates the fact that the proposed channel refinement unit
improves the performance of FP-E-GAN [53]. As a result, CR-GAN outperforms the
state-of-the-art enhancement algorithms on both datasets. These results verify the
claim that some redundant channel weights are indeed learnt while training FP-E-
GAN, and therefore, refinement of channel weights helps to improve the performance
of FP-E-GAN. Next, we compare the fingerprint quality scores obtained by CR-GAN
with state-of-the-art fingerprint enhancement algorithms. In Figure 8 (a), we plot the
histogram of NFIQ values, while the average NFIQ score is reported in Table 6. Re-
sults show that the quality of enhanced fingerprints generated by CR-GAN is at par
with FP-E-GAN, while matching performance is significantly improved.

Figure 9 illustrates sample restored fingerprint images obtained using the exist-
ing state-of-the-art fingerprint enhancement algorithms and the proposed CR-GAN.
For all the sample inputs, CR-GAN outputs the smoothest ridges compared to the
existing fingerprint enhancement algorithms. The first row depicts the case of high
pressure while acquiring the fingerprint impression. As a result, very thick ridges are
obtained, and valleys are not clearly visible. CR-GAN performs the best in predict-
ing ridges and valleys and generates a fingerprint image with high ridge-valley clarity.
The second row depicts the case of poor ridge clarity due to non-uniform pressure.
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Fig. 10 Comparison of SE-GAN and CR-GAN on the Rural Indian Fingerprint database: (a) histogram of
NFIQ scores; DET curves obtained using (b) Bozorth (c) MCC

[ Model [ Gen. | Disc. | Total |
FP-E-GAN 11376129 2765505 14141634
CR-GAN 11383041 2768193 14151234
SE-GAN 12072081 3165177 15237258

Table 8
[3].

Comparison of model parameters introduced by proposed channel refinement unit with SE-block

Enhancement Matching Avg. EER
Enhancement Avg. NFIQ Algorithm Algorithm
Algorithm Score SE-GAN Bozorth 1234
SE-GAN 1.76 CR-GAN Bozorth 5.72
CR-GAN 1.42 SE-GAN MCC 10.50
Table 9 Comparison of SE-block and the pro- CR-GAN MCC 445

posed channel refinement unit on NFIQ scores.

Table 10 Comparison of SE-block and proposed

channel refinement unit on average EER.

Unclear ridge details present in the input fingerprint image are correctly predicted
by CR-GAN, while many of the state-of-the-art enhancement algorithms generate
spurious ridge details. Likewise, in the third and fourth row, CR-GAN outperforms

other algorithms in predicting the missing ridge details in the region where creases
are present.

5.3 Comparison with Squeeze and Excitation block

This section compares the performance of the proposed CRU with the state-of-the-
art channel-level attention mechanism Squeeze and Excitation (SE) block [3]. We
replace the proposed CRU in the CR-GAN architecture with the SE block and refer
to the resulting model as SE-GAN. In Table 8, we compare the number of parameters
and observe that CR-GAN has lesser parameters than SE-GAN. This shows that the
proposed CRU has lesser parameters compared to SE-block.

Table 9 compares the average fingerprint quality scores obtained by CR-GAN
and SE-GAN. Figure 10 (a) presents the corresponding histogram of NFIQ values.
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Fig. 11 Comparison of correlation matrix obtained for channel weights of different layers in left to right:
FP-E-GAN, SE-GAN, and CR-GAN. The first, second, and the third row represent layer numbers 3, 16,
and 21, respectively, in FP-E-GAN (and corresponding layers in SE-GAN and CR-GAN).

Results show that the CR-GAN reconstructs better quality fingerprints compared to
SE-GAN. To compare matching performance, average EER is reported in Table 10.
Corresponding DET curves are plotted in Figure 10 (b) and (c). The average EER
obtained by CR-GAN is significantly lesser compared to the SE-GAN for both the
fingerprint matching algorithms. These results show that SE-block is not suited for
fingerprint enhancement as the matching performance obtained by SE-GAN is infe-
rior compared to the baseline FP-E-GAN. The proposed CR-GAN, on the other hand,
outperforms SE-GAN and FP-E-GAN which demonstrates that the proposed CRU
is well suited for fingerprint enhancement. These results also demonstrate the fact
that the improved performance of CR-GAN cannot be simply attributed to increased
model capacity as a result of the increased number of parameters in CR-GAN com-
pared to FP-E-GAN. SE-GAN has more number parameters than CR-GAN, yet much
inferior performance compared to FP-E-GAN. In order to analyze the effect of intro-
ducing the proposed CRU on features learnt by the model, we plot the correlation
matrix between channel weights of layers of FP-E-GAN, SE-GAN, and CR-GAN in
Figure 11.

A channel refinement technique is in principle designed to reduce redundancy
among channel weights of the backbone network. However, we find that instead of
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Fig. 12 Sample cases comparing the reconstructed fingerprints obtained using SE-GAN and CR-GAN.

reduced correlation among channel weights, SE-GAN has higher correlation among
channels as compared to the baseline FP-E-GAN. This shows that introduction of
SE-block creates redundancy among features (high correlation values indicate high
redundancy). CR-GAN, on the other hand, has the smallest correlation values. This
indicates that the proposed channel refinement unit reduces redundancy among fea-
tures and helps to learn robust features. Learning of more robust features by CR-GAN
compared to FP-E-GAN and SE-GAN helps CR-GAN to outperform both FP-E-
GAN and SE-GAN. Figure 12 compares sample restored fingerprint images obtained
using proposed CR-GAN and SE-GAN. In all the cases, CR-GAN outperforms SE-
GAN. CR-GAN reconstructs fingerprints with smoother ridges, higher ridge-valley
clarity, and lesser spurious ridge features compared to SE-GAN.

5.4 Generalization of Channel Refinement Unit to Different Choices of Network
Architectures for Fingerprint Enhancement

So far, we observe that the introduction of the proposed CRU improves the perfor-
mance of a generative adversarial network based fingerprint enhancement model.
Next, we analyze whether the proposed CRU can generalize for different choices of
network architectures for fingerprint enhancement. For this experiment, we take Unet
[64] and DeConvNet [41] (an autoencoder based state-of-the-art fingerprint enhance-
ment model) as the baseline network architectures. On both of these architectures, we
introduce CRU after every convolution block (similar to CR-GAN) and develop new
architectures called CR-Unet and CR-DeConvNet respectively. To assess whether the
introduction of the proposed CRU improves the performance of Unet and DeCon-
vNet, we compare the performance of CR-Unet and CR-DeConvNet with Unet and
DeConvNet respectively. We also compare the performance of CR-Unet with spa-
tial attention based Unet architecture called Attention Unet (Att-Unet) [65]. Imple-
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Fig. 13 Generalization of proposed channel refinement unit across state-of-the-art deep architectures
(evaluated on the Rural Indian Fingerprint database): (a) histogram of NFIQ scores; DET curves obtained
using (b) Bozorth (¢) MCC

Enhancement Matching Avg. EER
Algorithm Algorithm
Unet [64] Bozorth 11.35
DeConvNet [41] Bozorth 10.93
Enhancement Avg. NFIQ Att-Unet [65] Bozorth 9.50
Algorithm Score FP-E-GAN [53] | Bozorth 7.30
DeconvNet [41] 1.95 CR-DeConvNet Bozorth 6.53
CR-DeConvNet 1.78 CR-Unet Bozorth 5.99
Unet [64] 1.45 CR-GAN Bozorth 5.72
Att-Unet [65] 1.51 DeConvNet [41] | MCC 10.86
CR-Unet 1.45 Unet [64] MCC 10.58
CR-GAN 1.42 Att-Unet [65] MCC 9.08
Table 11 Comparison of average NFIQ qual- FP-E-GAN [53] MCC 5.96
ity scores obtained (on Rural Indian Fingerprint CR-Unet MCC 2.5
database) by state-of-the-art deep architectures. CR-DeConvNet MCC 5.45
CR-GAN MCC 4.45

Table 12 Average EER obtained on Rural Indian
Fingerprint Database by various state-of-the-art deep
architectures.

mentation of baseline Unet and Att-Unet are taken from https://github.com/
LeeJunHyun/Image_Segmentation.

First, we compare the fingerprint quality scores of the enhanced fingerprint im-
ages generated by different models. The average NFIQ score is reported in Table
11, while the histogram of NFIQ values is plotted in Figure 13 (a). Results verify
the claim that the proposed CRU improves enhancement performance. The quality
scores of fingerprints reconstructed by CR-Unet and CR-DeConvNet are better than
Unet and DeConvNet respectively. Average EER obtained by all state-of-the-art deep
architectures is reported in Table 12, while the corresponding DET curves are plotted
in Figure 13 (b) and (c). For both the fingerprint matchers, average EER is signifi-
cantly reduced. These results demonstrate the fact that redundant features are learnt
by state-of-the-art deep architectures, when trained for fingerprint enhancement. The
proposed CRU reduces redundancy among features and helps to learn robust features.
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Fig. 14 Samples showcasing the generalization ability of proposed channel refinement unit on (a) Unet
and (b) DeConvNet architectures and comparison with proposed CR-GAN.

As a result, enhancement performance of CR-Unet and CR-DeConvNet turns out to
be far better than Unet and DeConvNet respectively. All these results demonstrate
the fact that the idea of introducing the proposed channel refinement unit generalizes
over different state-of-the-art deep architectures.

We also observe that CR-Unet outperforms Att-Unet [65] by a significant mar-
gin. Att-Unet exploits spatial attention while CR-Unet exploits channel-level atten-
tion. The fact that CR-Unet outperforms Att-Unet on both fingerprint quality score
and matching performance demonstrates that channel-level attention is more use-
ful for fingerprint enhancement than spatial attention. Interestingly, we also observe
that both CR-Unet and CR-DeConvNet architectures proposed for this experiment
outperform FP-E-GAN. However, since the baseline performance of FP-E-GAN is
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significantly better compared to the baseline performance of Unet and DeConvNet.
As a result, the proposed CR-GAN outperforms CR-Unet and CR-DeConvNet. In
Figure 14 (a), we compare the sample reconstructed fingerprints generated by Unet,
Att-Unet, and CR-Unet. We find that the fingerprints generated by CR-Unet have bet-
ter ridge-valley clarity and lesser spurious features compared to Unet and Att-Unet.
Similar observations are noted when CR-DeConvNet is compared to DeConvNet, as
shown in Figure 14 (b).

6 Comparison with State-of-the-art Generative Adversarial Network Based
Fingerprint Enhancement Models

This section compares the performance of the proposed CR-GAN with the state-of-
the-art generative adversarial network based fingerprint enhancement models Cycle-
GAN [55] and DU-GAN [56]. Figure 15 (a) and Table 13 compare the average NFIQ
fingerprint quality sore obtained on enhanced images generated using Cycle-GAN,
DU-GAN and the proposed CR-GAN. We find that the fingerprint quality of images
generated by CR-GAN are significantly better than Cycle-GAN and competitive with
DU-GAN. Figure 15 (b) and (c) and Table 14 present the average EER obtained by
all the models. We find that Cycle-GAN is unable to preserve ridge structure during
enhancement due to which it obtains unsatisfactory performance. Proposed CR-GAN
on the other hand, obtains the best enhancement performance indicated by lowest
EER compared to Cycle-GAN and DU-GAN.
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Fig. 15 Comparison of the proposed CR-GAN with state-of-the-art generative adversarial network based
fingerprint enhancement models Cycle-GAN and DU-GAN on the Rural Indian Fingerprint database: (a)
histogram of NFIQ scores; DET curves obtained using (b) Bozorth (c) MCC
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Enhancement Matching Avg. EER
Algorithm Algorithm
Enhancement Avg. NFIQ
Algorithm Score Cycle-GAN [55] | Bozorth 29.52
DU-GAN [56] Bozorth 7.13
Cycle-GAN[55] | 1.76 CR-GAN Bozorth 5.72
DU-GAN [56] 1.26
CR-GAN 1.42 Cycle-GAN [55] | MCC 27.96
DU-GAN [56] MCC 5.13
Table 13 Comparison of the NFIQ quality CR-GAN MCC 4.45
score obtained by the proposed CR-GAN, . .
Cycle-GAN and DU-GAN. Table 14 Comparison of the average EER obtained
by the proposed CR-GAN, Cycle-GAN and DU-
GAN.

7 Analysis of the Proposed Model
7.1 Ridge Structure Preservation

Various kinds of noise patterns can accompany a degraded input fingerprint. In order
to quantify the ridge preservation ability of the proposed CR-GAN on different noise
patterns observed in degraded input fingerprints, we calculate SSIM similarity scores
between the ground truth binarized image and the output of CR-GAN corresponding
to the given input. A high similarity score indicates that the model preserves ridge de-
tails viz. fingerprint pattern type, the orientation of ridges, and minutiae details of the
input fingerprint image while enhancing them. Figure 16 presents sample degraded
fingerprints (first column from left) and the enhanced images generated using CR-
GAN (rightmost column). The second column represents the corresponding ground
truth binarized fingerprint images. High similarity scores between the output of CR-
GAN and ground truth are obtained, which demonstrates the fact that the proposed
CR-GAN preserves the ridge structure of the input fingerprint while enhancing it.

7.2 Ablation Study

We also conduct an ablation study on the proposed CR-GAN to individually quan-
tify the effect of introducing the proposed CRU on generator and discriminator sub-
networks. We explore three different variants, when the proposed channel refinement

Refinement Matching Avg. EER
Algorithm
Discriminator Bozorth 7.68
Generator Bozorth 6.79
Both Bozorth 5.72
Discriminator MCC 5.81
Generator MCC 4.73
Both MCC 4.45

Table 15 Ablation Study: Average EER obtained on the Rural Indian Fingerprint Database through the
application of proposed channel refinement on the GAN architecture.
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Jaccard: 94.60 Jaccard: 96.55 Jaccard: 97.30
SSIM: 85.16 SSIM: 89.57 SSIM: 90.96
PSNR: 12.63 PSNR: 14.61 PSNR: 15.50
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Fig. 16 Sample synthetic test cases illustrating the ridge preservation ability of CR-GAN and its variants
used for the experiments on ablation study.

unit is applied: only the generator, only the discriminator, and both generator and
discriminator. Average EER obtained for all the three variants is reported in Table 15
and the corresponding DET curves are plotted in Figure 17 (a) and (b). Sample recon-
structions generated by all the three variants are shown in Figure 16 and Figure 17 (c).
Results demonstrate the fact that channel refinement of the generator turns out to be
more beneficial compared to the refinement of the discriminator, which makes sense
as the generator is directly targeted to generate the enhanced image and therefore
has a much deeper architecture, leading to much more redundant channel weights
compared to the discriminator, which has a fairly smaller architecture and thus less
redundant features. Furthermore, as expected, the best performance is obtained when
channel weight refinement is applied on both the generator and discriminator sub-
networks.

7.3 Successful Cases
Figure 18 illustrates some of the successful cases of enhancement by the proposed

CR-GAN. The first and second columns (from left) are latent fingerprints and repre-
sent the case of unclear ridge structure due to the presence of non-uniform chemical
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Fig. 18 Sample successful reconstructions by the proposed CR-GAN.
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Fig. 19 Sample challenging cases and comparison with the state-of-the-art fingerprint enhancement algo-
rithms.

powder (while lifting the latent fingerprint). In both cases, CR-GAN successfully re-
constructs fingerprints with good ridge-valley clarity. The third column represents
the scenario of unclear valleys due to thick ridges resulting from high pressure or wet
finger. Once again, proposed CR-GAN correctly infers ridge and valley information
and generates a good quality enhanced image. The fourth and fifth columns represent
the case of missing ridge information due to creases or cuts. CR-GAN successfully
predicts the missing ridge details in the region where creases and cuts are present.

7.4 Challenging Cases

Figure 19 illustrates the performance of CR-GAN on some of the challenging cases.
In the first row, near the scarred region, CR-GAN generates spurious ridge patterns.
In the second row, around the region of high pressure, the ridges in the input finger-
print are too dark. As a result, CR-GAN generates non-smooth and spurious ridges.
However, in all the cases, CR-GAN outperforms the baseline FP-E-GAN (and other
state-of-the-art fingerprint enhancement models as well). This reaffirms the fact that
refinement of channel weights improves the model performance, both qualitatively
and quantitatively.

8 Conclusion

This paper illustrates that the refinement of channel weights improves the baseline
FP-E-GAN’s performance and the resulting model outperforms state-of-the-art fin-
gerprint enhancement models. We also demonstrate that the proposed channel refine-
ment unit is useful for simpler architectures such as Unet and DeConvNet as well.
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We compare the proposed channel refinement unit to state-of-the-art channel level
attention module SE-block and demonstrate that the improved performance cannot
be simply attributed to increased model capacity. In the future, we plan to explore
whether channel refinement can generalize over other modules of an automated fin-
gerprint matching system as well.
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