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CE-FPN: Enhancing Channel Information for
Object Detection
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Abstract—Feature pyramid network (FPN) has been an effec-
tive framework to extract multi-scale features in object detection.
However, current FPN-based methods mostly suffer from the
intrinsic flaw of channel reduction, which brings about the
loss of semantical information. And the miscellaneous fused
feature maps may cause serious aliasing effects. In this paper, we
present a novel channel enhancement feature pyramid network
(CE-FPN) with three simple yet effective modules to alleviate
these problems. Specifically, inspired by sub-pixel convolution, we
propose a sub-pixel skip fusion method to perform both channel
enhancement and upsampling. Instead of the original 1 x 1
convolution and linear upsampling, it mitigates the information
loss due to channel reduction. Then we propose a sub-pixel
context enhancement module for extracting more feature repre-
sentations, which is superior to other context methods due to the
utilization of rich channel information by sub-pixel convolution.
Furthermore, a channel attention guided module is introduced
to optimize the final integrated features on each level, which
alleviates the aliasing effect only with a few computational bur-
dens. Our experiments show that CE-FPN achieves competitive
performance compared to state-of-the-art FPN-based detectors
on MS COCO benchmark.

Index Terms—Object detection, Feature pyramid network,
Channel enhancement, Sub-pixel convolution

I. INTRODUCTION

Object detection is a fundamental task in computer vision,
which is widely applied to various applications, such as object
tracking [1], [2], person re-identification [3], [4], etc. With
the advances in deep convolutional networks, a number of
deep detectors have been developed to achieve remarkable
performance recently [5], [6], [7], [8], [9], [10], [11]. Among
these detectors, FPN [6] constructs an effective framework
to address the issue of scale variations, a primary challenge
in object detection. In FPN, multi-scale feature maps are
created by propagating the semantical information from high
levels into lower levels. By fusing multi-scale features with
shallow content descriptive and deep semantical features, FPN-
based methods substantially improve the performance of object
detection.

However, there exist two widely-held limitations in FPN
[12], [8]: (1) Information decay during fusion; (2) Aliasing
effects in cross-scale fusion. The existing methods such as
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PAFPN [13], Libra R-CNN [12], and AugFPN [8] can al-
leviate these problems to some extent, but there is still the
possibility of further improvement. Meanwhile, in the light
of our observations, FPN-based methods also suffer from an
intrinsic flaw about channel reduction. We will describe these
issues as following:

Information loss of channel reduction. As illustrated in
Fig. 1(a), FPN-based methods adopt 1x1 convolutional layers
to reduce channel dimensions of the output feature maps C;
from the backbone, which also loses channel information. C;
generally extract thousands of channels in high-level feature
maps, which are reduced to a much smaller constant in F;
(e.g. 2048 to 256).

The existed methods [12], [9] mainly add extra modules
on the channel-reduced maps rather than make full use of C;
as shown in Fig. 1(b), 1(c). EfficientDet [9] develops various
configurations of different FPN channels. It indicates that
increasing FPN channels improves the performance with more
parameters and FLOPs, so EfficientDet still adopts relatively
few channels and proposes complex-connected BiFPN for bet-
ter accuracy. Therefore, declining channels from the backbone
outputs substantially reduces the computation consumption
for subsequent prediction but also brings about the loss of
information.

Information decay during fusion. The low-level and high-
level information are complementary for object detection,
while the semantical information would be diluted in the
progress of top-down feature fusion [12]. PAFPN [13] and
Libra R-CNN [12] propose innovative fusion methods to make
full use of features on each level. Nevertheless, the represen-
tation ability of high-level semantical feature has not been
utilized mostly for larger receptive fields. The exploitation of
context information [8] is a proper approach to improve fea-
ture representation, which prevents increasing computational
burden by adding deeper convolutional layers directly.

Aliasing effects in cross-scale fusion. Cross-scale fu-
sion and skip connections are widely used to improve the
performance [12], [9]. The intuitive and simple connections
achieve the full use of diverse features on each level. However,
there exist semantical differences in cross-scale feature maps,
so that direct fusion after interpolation may cause aliasing
effects [6]. And the miscellaneous integrated features might
confuse the localization and recognition tasks [11]. Motivated
by the refinement of Non-local attention [14] on the integrated
features, more attention modules could be designed to optimize
the fused aliasing features and enhance their discriminative
abilities.

In this paper, we propose three novel components to deal
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Fig. 1: Comparison of feature pyramid networks design in the case of
4 levels. The translucent nodes indicate underutilization. (a). FPN [6]
introduces a top-down pathway to fuse multi-scale features. (b).
Libra R-CNN [12] proposes a balanced FPN with integration and
refinement. (c). EfficientDet [9] adds an extra bottom-up pathway
and skip connections. (d). Our CE-FPN base on the integration
framework, in which sub-pixel enhancement and attention guided
modules are proposed to make the most of rich channel information.

with the issues above respectively. First, inspired by sub-
pixel convolution [15] in super-resolution, we introduce a
sub-pixel skip fusion method for utilizing the original cross-
scale backbone outputs with rich channel information as
shown in Fig. 1(d). Second, we present a sub-pixel context
enhancement module for extracting and integrating diverse
context information from the highest-level feature map. Sub-
pixel convolution is an upsampling method that increases
channel dimensions of low-resolution images first, which also
brings about extra computation and unreliability. It is worth
noting that high-level features in FPN have obtained adequate
amounts of channels, which allows sub-pixel convolution to be
employed directly. Instead of the original 1 X 1 convolution
and upsampling, the proposed methods can alleviate channel
information loss. Hence we extend the original upsampling
function of sub-pixel convolution to fuse channel information,
which is different from CARAFE [16]. Third, we propose
a simple yet effective channel attention guided module to
optimize the final integrated features on each level. The
attention module alleviates the aliasing effect only with a few
computational burdens. We name our whole model as Channel
Enhancement Feature Pyramid Network (CE-FPN), which is
flexible and generalizable for various FPN-based detectors.
Without bells and whistles, by replacing FPN with CE-
FPN, we achieve 38.8 points and 40.9 points Average Pre-
cision (AP) with Faster R-CNN when using ResNet-50 and
ResNet-101 [17] respectively on MS COCO [18] with the

1x schedule in [19]. The experiments results show that our
modules improve performance significantly only with slightly
computational cost. Meanwhile, CE-FPN achieves competitive
performance compared to state-of-the-art FPN-based methods
such as Libra R-CNN [12] and AugFPN [8]. The main
contributions of our work are summarized as follows:

e« We propose two novel channel enhancement methods
inspired by sub-pixel convolution. We extend the intrinsic
upsampling function of sub-pixel convolution to integrate
rich channel information in our modules.

o« We introduce simple yet effective channel attention
guided module to optimize the integrated features on each
level.

o« We evaluate the proposed framework on MS COCO
and obtain significant improvements over state-of-the-art
FPN-based detectors.

II. RELATED WORK
A. Deep object detectors

With the advances in deep convolutional networks, remark-
able progress has been achieved in object detection. Object
detectors based on deep learning are generally divided into
two categories: two-stage detectors and one-stage detectors.
The successful two-stage detectors generate regions of interest
(RO firstly and then refine ROI with classifier and regressor.
Faster R-CNN [20] proposes region proposal network (RPN)
and develops an end-to-end framework, which significantly
improves the efficiency of detectors. The proposed RPN inte-
grates proposal generation with a single convolutional network
that has been a paradigm for the two-stage detector. Numer-
ous extended studies of this framework have been proposed
which improve the performance significantly, such as Mask
R-CNN [21], Cascade R-CNN [22] and CBNet [23].

On the other hand, one-stage detectors adopt a unified
network to achieve locations and classifications directly with
more efficiency yet less accuracy. SSD [5] handles objects of
various sizes on multi-scale features. YOLO [24] makes use
of the whole feature map to predict both classification confi-
dences and bounding boxes. RetinaNet [25] follows the FPN
framework and utilizes focal loss to suppress the gradients
of easy negative samples, which promotes the performance
significantly. Besides, there are extensive proposed one-stage
detectors for enhancing the network architectures or detection
process, such as YOLOvV2 [26], YOLOv3 [27] and DSOD [28].

Recently, increasing researches have made remarkable
progress from different concerns such as anchor-free [29],
[10], multi-scale [13], [12], context extraction [30], [31], and
attention module [32], [11].

B. Multi-scale feature augmentation

FPN [6] constructs an effective framework to address the
issue of scale variations by merging features via a top-down
pathway, which is popularly applied and further studied [8],
[11], [32], [12], [9]. PANet [13] investigates an extra bottom-
up pathway for further increase of the low-level information
in deep layers. Libra R-CNN [12] introduces a balanced



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[ Sub-pixel Context Enhancement ]

o LT
Sup
C IOUS[ Fa
4 on

D
\
A
NG
\\b
|
|
—
|
i
N
N
]
Il '
101paId

F3
Cs
1x1 conv
F>
C2
t

Channel Attention
Guided Module

Fig. 2: An overview of our CE-FPN. We follow the framework of integration map [12]. Sub-pixel Skip Fusion (SSF) is proposed to fuse the
high-level backbone outputs with the channel-reduced features, which can be performed independently without the integrated feature map
1. Sub-pixel Context Enhancement (SCE) extracts and integrates diverse context information from the highest-level feature map to augment
the feature representation of I. Channel Attention Guided Module (CAG) adopts a channel attention module to extract channel weights from

1, and products the final integrated features respectively.

feature pyramid to pay equal attention to multi-scale features
through integration and refinement. NAS-FPN [33] adopts
neural architecture search for learning better fusion among all
cross-scale connections. EfficientDet [9] proposes a weighted
bi-directional FPN to perform easy and fast feature fusion.
And AugFPN [8] proposes a series of augmentation methods
for FPN.

In the aspect of feature augmentation, context information
can facilitate the performance of localization and classifica-
tion [34]. PSPNet [35] utilizes pyramid pooling to extract
hierarchical global context. And [36] proposes a context refine-
ment algorithm to refine each region proposals. Meanwhile,
attention mechanism [37] is generally adopted to enhance
feature representation in various vision tasks. CoupleNet [38]
extracts the attention-related information with global and local
features of the objects. MAD [39] searches for neuron activa-
tions aggressively from high-level and low-level information
streams.

Based on the methods above, we focus on reducing the
information loss due to channel decline in FPN construction
and optimizing the final features after complicated integration.

III. PROPOSED METHODS

In this section, we introduce a Channel Enhancement Fea-
ture Pyramid Network (CE-FPN) to alleviate channel infor-
mation loss and optimize the integrated features. In CE-
FPN, three components are proposed: Sub-pixel Skip Fusion
(SSF), Sub-pixel Context Enhancement (SCE), and Channel
Attention Guided Module (CAG). We will describe them in
detail following.

A. Overall

The overall network architecture is shown in Fig. 2. Fol-
lowing the setting of FPN [6], CE-FPN generates a 4-level

feature pyramid. We denote the output of the backbone as
{Cs,C3,C4,C5}, which have strides of {4,8, 16,32} pixels
with respect to the input image. {F5, F3, F,} are the features
with the same reduced channels of 256 after 1x1 convolution.
The feature pyramid {P», P3, P,} is generated by the top-
down pathway in FPN. We remove the nodes of F5 and Ps,
which are the original highest-level feature with semantical
information for FPN. Because that our proposed methods have
fully utilized channel information from Cj. Repetitive feature
fusion may cause not only more serious aliasing effects, but
also unnecessary computational burdens. The effects of this
procedure are analyzed in Sec IV-D. The integration map
I is produced through interpolation and max-pooling. And
predictions are performed independently at all final results
{Rs2, R3, R4, R5}, which corresponds to the feature pyramid
of the original FPN.

B. Sub-pixel Skip Fusion

In FPN, Residual networks [17] are widely used as back-
bone with the output channels of {256,512,1024, 2048}, in
which high-level features {Cy,C5} contain rich semantical
information. As shown in Fig. 3(a), the 1 x 1 convolution
layers are adopted to reduce channel dimensions of C; for
computation efficiency, which causes a serious loss of channel
information. The further studied FPN-based methods [12], [9],
[13] generally focus on developing effective modules on the
feature pyramid P; with 256 channels, while the rich channel
information of C; are underutilized.

Based on this observation, we expect that the channel-rich
features {Cy, C5} could be developed to improve performance
of the resulting feature pyramid. To this end, we introduce a
direct fusion method to merge low-resolution (LR) features
to high-resolution (HR) inspired by sub-pixel convolution.
Sub-pixel convolution is an upsampling method [15], which
augments dimensions of width and height via shuffling pixels
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Fig. 3: The design ideas of Sub-pixel Skip Fusion (SSF) as a fusion
example of C5. (a) In FPN, 1 x 1 convolution layers are adopted
to reduce channel dimensions before fusion, which loses channel
information. (b) The pipeline of sub-pixel convolution. Channel di-
mensions should be extended before upsampling. (c) In SSF, channel
dimensions of C5 would not reduce for upsampling.

on the dimensions of channel. The pixel shuffle operator
rearranges the feature of shape H x W x C'-r? to rH xrW x C,
which can be mathematically defined as

PS(F)I,y,c = F[x/r],ty/rj,c’w“ mod (y,r)+C- mod (z,r)+c> (D

where r denotes the upscaling factor, F' is the input feature,
and PS(F),,y.c denotes the output feature pixel on coordi-
nates (z,y,c).

As shown in Fig. 3(b), dimensions of the LR image channel
need to be increased first when using sub-pixel convolution
as upsampling, which brings about extra computation. And
the HR image are unreliable that need additional training.
Thus FPN adopts nearest neighbor upsampling for simplicity.
Nevertheless, we observe that the amounts of channels in
{C4,C5} (1024, 2048) are sufficient to perform sub-pixel
convolution. So we introduce Sub-pixel Skip Fusion (SSF) to
upsampling the LR image directly without channel reduction
as shown in Fig. 3(c). SSF utilizes the rich channel information
of {C4,C5} and merge them into F;, which is described as

] 9(Ci) + PS((Cit1))
= { ©(Ci) :

where ¢ denotes 1x1 convolution to reduce channels, and
¢ indicates the index of pyramid levels, ¢ denotes channel
transformation. And the factor r in sub-pixel convolution is
adopted as 2 to double the spatial scale for fusion. ¢ adopts
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Fig. 4: Illustration of Sub-pixel Context Enhancement (SCE).

1 x 1 convolution or split operation to change channel dimen-
sions for double sub-pixel upsampling, which is analyzed in
Sec IV-D. And if channel dimensions fill the bill, ¢ performs
identity mapping. Then the feature pyramid P; are produced
by F; through element-wise summation and nearest-neighbor
upsampling, which is the same as in FPN.

As shown in Fig. 2, SSF can be seen as two extra
connections from Cy to Fy and C; to F3. SSF performs
upsampling and channel fusion simultaneously, which utilizes
the rich channel information of high-level features {Cy,C5}
to enhance the representation ability of the feature pyramid.

C. Sub-pixel Context Enhancement

On the one hand, feature maps of lower levels are endowed
with diverse context information naturally by merging the
semantical information from higher levels in conventional
FPN. But the highest-level feature only contains single scale
context information that is not benefited from others. On the
other hand, input images with higher resolution (e.g. shorter
sizes of 800 pixels) require neurons with larger receptive
fields to obtain more semantical information for capturing
large objects [31], [11]. To alleviate the two issues, we adopt
the framework of integration map [12] and introduce Sub-
pixel Context Enhancement (SCE) to exploit more contextual
information with a larger receptive field on C5. The extracted
context features are merged into the integration map I. SCE
follows the design ideas of SSF to utilizes the rich channel
information of Cs.

The key idea of SCE is to fuse large-field local informa-
tion and global contextual information for generating more
discriminative features. We assume that the shape of input
feature map Cj is 2w x 2h x 8C' , and the output integration
map [ is 4w x4h x C . C is adopted as 256. We perform three
scales of context features through parallel pathways shown as
Fig. 4.

First, we apply a 3x3 convolution on C5 to extract local
information. Meanwhile, it transforms channel dimensions for
sub-pixel upsampling. Then we adopt sub-pixel convolution to
perform double scale upsampling, which is similar to SSF.

Second, the input feature is downsampled to w x h by a
3%3 max-pooling and undergoes a 1x1 convolution layer to
extend channel dimensions. Then it follows a 4x upsampling
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sub-pixel convolution. This pathway obtains rich contextual
information for larger receptive fields.

Third, we perform a global average pooling on C5 for global
contextual information. Afterward, the global feature of 1 x
1 x 8C is squeezed to 1 x 1 x C' and broadcasted to the size of
4w x 4h. The first and third pathways extract local and global
contextual information respectively.

At last, the three generated feature maps are aggregated
to the integration map I by element-wise summation. By ex-
tending feature representations of three scales, SCE effectively
enlarges the receptive field of C5 and refines the representation
ability of I. Therefore, semantical information in the highest-
level feature has been fully utilized for FPN. The nodes of Fj
and P5 are removed for simplicity.

D. Channel Attention Guided Module

There exist semantical differences in cross-scale feature
maps, the miscellaneous integrated features may cause alias-
ing effects to confuse the localization and recognition tasks
[6], [11]. In FPN, 3 x 3 convolution is appended on each
merged feature map to generate the final feature pyramid. The
proposed SSF and SCE fuse more cross-scale feature maps
so that the aliasing effects are more serious than the original
FPN. For mitigating the negative impacts of aliasing effects, an
intuitive solution is to develop attention modules on the feature
pyramid. However, performing independent attention modules
on each level of the pyramid is computation-expensive, since
some detectors adopt a 6-level pyramid or even more. Mean-
while, we expect that the attention mechanism of different
levels can learn from the information of other levels. To
this end, we propose a Channel Attention Guided Module
(CAG) inspired by CBAM [40], which guides each level of
the pyramid to alleviate aliasing effects. CAG extracts channel
weights only through the integration map I. And then the
channel weights are multiplied to each output feature.

The pipeline of CAG is shown in Fig. 5. We first employ
a global average pooling and a global max pooling indepen-
dently to aggregate two different spatial context information.
Next, the two descriptors are forwarded to fully connected lay-
ers respectively. Finally, the output feature vectors are merged
through element-wise summation and a sigmoid function. The
process can be formulated as

CA(z) = o(fc1(AvgPool(x)) + fea(MaxPool(z))), (3)

R, =CA(I)® P, 4)

where CA() represents the channel attention function, o
denotes the sigmoid function, and ¢ indicates the index of
pyramid levels.

CAG is simply designed to reduce the misleading of aliasing
features, rather than sophisticated architecture [8] to enhance
more discriminative abilities of features. So lightweight com-
puting is central to our design and CA() is robust to other
channel attention models.

IV. EXPERIMENTS
A. Dataset and Evaluation Metrics

We perform our experiments on MS COCO [18] benchmark.
It contains 80 categories and consists of 115k images for
training (train-2017) and 5k images for validation (val-2017).
There are also 20k images in test-dev that have no released
publicly labels. We train all the models on train-2017 and
report results of ablation study on val-2017. We submit the
final results to the evaluation server of test-dev for comparison.
The performance metrics follow the standard COCO-style
mean Average Precision (mAP) metrics under different IoU
thresholds, ranging from 0.5 to 0.95 with an interval of 0.05.

B. Implementation Details

All of our experiments are implemented based on mmde-
tection [19]. Mmdetection has been upgraded to v2.0 with
higher baseline performance than v1.0. The performance im-
provement compared with baseline becomes more difficult.
Therefore, we re-implement the baseline on mmdetection v2.0
for fair comparisons. We train and test the detectors with the
resolution of (1333, 800) on 4 NVIDIA Quadro P5000 GPUs
(2 images per GPU). In the training process, 1x schedule
denotes 12 epochs, and 24 epochs for 2x schedule. The
learning rate dropped by 0.1 after 8 and 11 epochs respectively
in 1x schedule, and 16, 22 epochs for 2x schedule. Our
CE-FPN can be applied to any FPN-based detectors. Faster
R-CNN [20] and RetinaNet [25] are chosen as the baseline
detectors, which represent two-stage and one-stage detectors
respectively. FPN [6] and RolAlign [21] are incorporated into
the naive Faster R-CNN to provide a strong baseline. The
initial learning rate of Faster R-CNN and RetinaNet is set to
0.01 and 0.005 respectively. The classical networks ResNet-50,
ResNet-101 [17] and ResNext101-64x4d [41] are adopted as
backbones for comparative experiments. The dimension of the
feature pyramid channel is set as 256. And the other settings
follow the basic framework if not specifically noted.

C. Main Results

To verify the effectiveness of our method for performance
improvement, we evaluate CE-FPN on COCO test-dev subset.
For fair comparisons with the corresponding baselines, we
report our re-implemented results. As shown in Table I, by
replacing FPN with CE-FPN, Faster R-CNN using ResNet-50
and ResNet-101 as backbone achieves 38.8 and 40.9 AP, which
is 1.4 and 1.5 points higher than the baseline respectively.
When using ResNext101-64x4d backbone, a much more pow-
erful feature extractor, our model achieves 43.1 AP. When 2x
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TABLE I: Comparison with baselines and state-of-the-art methods on COCO test-dev. The symbol **’

through mmdetection.

means our re-implemented results

Method Backbone Schedule AP APsg AP;s APs APy APp
Baseline:

RetinaNet* [25] ResNet-50 1x 36.3 55.5 38.7 20.5 40.1 47.5
Faster RCNN* [20] ResNet-50 1x 37.4 58.2 40.4 21.2 40.8 48.1
Faster RCNN* [20] ResNet-101 1x 39.4 60.2 43.0 22.3 43.3 499
Faster RCNN* [20] ResNet-101 2% 39.9 60.3 43.2 23.0 43.8 52.9
Faster RCNN* [20] ResNext101-64x4d 1x 41.8 64.4 45.6 24.7 46.1 54.2

State-of-the-art:
CARAEFE [16] ResNet-50 - 38.1 60.7 41.0 22.8 41.2 46.9
RetinaNet w/ AugFPN [8] ResNet-50 1x 37.5 58.4 40.1 21.3 40.5 47.3
Faster RCNN w/ AugFPN [8] ResNet-50 1x 38.8 61.5 42.0 23.3 42.1 47.7
Faster RCNN w/ AugFPN [8] ResNet-101 1x 40.6 63.2 44.0 24.0 44.1 51.0
Faster RCNN w/ AugFPN [8] ResNet-101 2% 41.5 63.9 45.1 23.8 44.7 52.8
Faster RCNN w/ AugFPN [8] ResNext101-64x4d 1x 43.0 65.6 46.9 26.2 46.5 53.9
Libra RetinaNet* [12] ResNet-50 1x 37.8 57.5 40.5 21.5 40.8 474
Libra RCNN* [12] ResNet-50 1x 38.6 60.0 42.0 22.4 41.3 47.7
Libra RCNN* [12] ResNet-101 1x 40.2 61.2 44.1 22.7 43.6 52.1
Libra RCNN* [12] ResNet-101 2% 41.0 62.0 447 23.3 43.9 52.6
Libra RCNN* [12] ResNext101-64x4d 1x 43.0 64.2 46.9 25.2 459 54.1

Ours:

RetinaNet w/ CEFPN ResNet-50 1x 37.8 57.4 40.1 21.3 40.8 46.8
Faster RCNN w/ CEFPN ResNet-50 1x 38.8 60.5 41.9 22.5 41.7 48.1
Faster RCNN w/ CEFPN ResNet-101 1x 40.9 62.5 44.4 23.5 442 51.4
Faster RCNN w/ CEFPN ResNet-101 2% 41.3 62.7 44.8 23.2 44.4 52.7
Faster RCNN w/ CEFPN ResNext101-64x4d 1x 43.1 64.7 46.9 25.6 46.5 54.0

schedule is adopted, Faster R-CNN with ResNet-101 achieves
39.9 AP due to full training. And the AP boost of CE-FPN still
gains up to 1.4. Hence, CE-FPN can consistently bring non-
negligible performance improvement even with more powerful
backbones. As for RetinaNet, a typical one-stage detector, the
performance is boosted to 37.8 AP from 36.3 AP. In addition,
from column APg, APy and APr (AP results for small,
medium and large objects respectively), we notice that our
model brings comprehensive improvement. All improvements
indicate that our CE-FPN is effective.

Furthermore, we compare our CE-FPN with other state-of-
the-art detectors. Noted that the baseline of mmdetection v2.0
has higher performance than before [42], there seems to be
less improvement in scores. So we also re-implement Libra
RCNN on mmdetection v2.0 for fair comparisons. Compared
with the original report [12], the final performance of our re-
implementation results are similar. As shown in Table I, CE-
FPN achieves competitive performance compared to state-of-
the-art Libra R-CNN and AugFPN.

We also show the comparisons of the qualitative results
between FPN and our CE-FPN in Fig. 6. It can be seen that
CE-FPN generates satisfactory results for small, medium, and
large objects, while the typical FPN generates inferior results.
The typical FPN model occasionally misses some objects since
these objects may be too small or out of the receptive fields.
And it may also localize wrong and aliased objects. Our CE-
FPN is more discriminative and performs much better by
exploring rich channel information and alleviating aliasing ef-
fects. Both models are built upon Faster R-CNN with ResNet-
50 and 1x schedule. The images are chosen from COCO val-
2017. We compare the detection performance with threshold
=0.5.

TABLE II: Effect of each component on COCO val-2017. SSF:
Sub-pixel Skip Fusion, SCE: Sub-pixel Context Enhancement, CAG:
Channel Attention Guided Module.

SSF  SCE CAG | AP | APsy  APrs  APs APy APg
36.1 55.4 38.5 19.8 39.7 47.1

v 36.6 55.8 39.0 20.9 40.2 47.8
v 37.0 56.3 39.3 20.7 40.8 48.1

v 37.1 56.2 39.5 21.1 412 48.2

v v 37.2 56.7 39.7 21.3 41.3 48.6
v v v 37.5 57.3 40.2 21.6 412 48.7

D. Ablation Experiments

We also analyze the effect of each proposed component
of CE-FPN on COCO val-2017 subset. The overall ablation
studies are reported in Table II. We gradually add Sub-pixel
Skip Fusion (SSF), Sub-pixel Context Enhancement (SCE),
and Channel Attention Guided Module (CAG) on RetinaNet
with the backbone of ResNet-50. And the improvements
brought by the combination of SSF and SCE are also presented
to demonstrate the effectiveness of our sub-pixel based mod-
ules. The training process follows 1x schedule (12 epochs).
Ablation experiments are implemented with the same settings
for fair comparisons.

The effect of Sub-pixel Skip Fusion.

We first implement SSF on RetinaNet without the integra-
tion map I. The results show that the naive fusion brings
0.5 points higher AP than the corresponding baseline. When
performing SSF independently, the nodes of Fjs and Pj are
preserved. As mentioned before, SSF can be seen as adding
two extra connections from C5 to Fy and Cy to F3. We also
implement the two connections through 1 x 1 convolution +
linear interpolation and compare it with SSF. The simple linear
upsampling may cause more serious aliasing effects, which
has no sense of performance improvement. Table III proves
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Fig. 6: Qualitative results comparison. The results of FPN are listed by the blue bounding boxes, while those of CE-FPN are the red bounding

boxes.

TABLE III: Ablation studies of Sub-pixel Skip Fusion on COCO
val-2017.

TABLE IV: Ablation studies of Sub-pixel Context Enhancement on
COCO val-2017.

Methods ‘ AP ‘ APs50 APrs5 APg APy APy, Methods ‘ AP ‘ APso APr5 APg APy APy,
baseline 36.1 55.4 38.5 19.8 39.7 47.1 Integration [12] 36.4 55.5 38.7 20.5 40.3 47.7
baseline + linear 36.1 55.3 38.3 19.9 39.6 47.0 PSPNet [35] 36.7 55.9 38.8 20.8 40.4 47.6
baseline + SSF, | 36.6 55.7 39.1 21.0 39.9 47.8 CEM [31] 36.8 56.0 39.0 20.9 40.7 47.7
baseline + SSF} 36.5 55.6 38.7 20.5 40.3 47.7 SCE w/ F'5, P5 37.0 56.4 39.2 20.6 40.6 48.3
baseline + SSF. 36.6 55.8 39.0 20.9 40.2 47.8 SCE w/o F5,P5 | 37.0 56.3 39.3 20.7 40.8 48.1

the effectiveness of SSF.

Specifically, the dimensions of channels in Cy is 1024,
which is exactly 4x of the feature pyramid (256). Thus, no
extra operations are required for extending or squeezing the
channels. And the channels of C5 (2048) will be reduced in
half. We have three schemes to transform channel dimensions
of Cs: (a) adopt 1 x 1 convolution to squeeze 2048 channels
to 1024; (b) select half of the 2048 channels for sub-pixel
convolution; (c) split the 2048 channels into two parts for
sub-pixel convolution respectively, and add them for fusion.
Table III compares the effects of the three schemes. And
Table VI reports FLOPs and parameters of them. Obviously,
the first scheme brings more parameters and computational
cost. And scheme b, ¢ do not introduce extra parameters. But
scheme b abandons half of channel information in C5 so that
its effect is relatively poor. Therefore, we choose scheme c for
SSF. With the simple method, channel information in original
output features is well utilized without computational costs
through sub-pixel convolution.

The effect of Sub-pixel Context Enhancement.

Then we implement SCE on RetinaNet with the integra-
tion map [12]. Table II shows that the module brings 0.9
points higher AP than the corresponding baseline. And the

combination of SSF and SCE can boost the improvement to
1.1. It can be seen that the utilization of high-level features
with rich channel information in the two modules is somewhat
repetitive.

As mentioned before, we remove the nodes of F5 and P;
for simplicity. Thus we implement the two configurations to
demonstrate the effect of this operation. Table IV and Table VI
show that removing F5, Ps does not affect the performance,
and reduce the computational costs and parameters of the
network. It demonstrates that our proposed methods have fully
utilized channel information from C'5. Therefore, we adopt
CE-FPN without F5 and Ps.

For evaluating the superiority of SCE, we conduct experi-
ments where add other context enhancement components on
RetinaNet. PSPNet [35] utilizes pyramid pooling to extract
hierarchical global context. CEM [31] also adopts three path-
ways to generate more discriminative features. These two
modules are also implemented with the integration map and
with linear upsampling. The rest of the settings are the same
as SCE. As shown in Table IV, our SCE achieves 0.3 AP and
0.2 AP higher than PSPNet and CEM respectively. Due to the
increase of high-level semantical features, SCE performs well
on large-scale objects (APr). The results further validate the
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TABLE V: Ablation studies of different configurations of channel
attention modules on COCO val-2017.

Settings ‘ AP ‘ APs50 APrs APg APy APy,
Integration Atten. | 36.7 55.9 39.4 20.9 40.7 479
Part Atten. 37.0 56.1 39.2 20.6 40.8 48.1
Guided Atten. 371 56.2 39.5 21.1 412 48.2

TABLE VI: Comparison of FLOPs and parameters in different
configurations.

Config. | AP | #GFLOPs | #params.(M)
baseline 36.1 250.34 37.74
SSF, 36.6 252.54 39.84
SSF. 36.6 250.34 37.74
SCE w/ F'5, P5 37.0 272.45 65.54
SCE w/o F'5, P5 37.0 271.28 65.01
Part Attention 37.0 250.35 37.77
Guided Attention 37.1 250.35 37.75
CE-FPN (ALL) 37.5 271.29 65.02

effectiveness of utilizing rich channel information by sub-pixel
convolution.

The effect of Channel Attention Guided Module.

Based on the above methods, diverse cross-scale feature
maps are fused into the final feature pyramid. To alleviate
the negative impacts of aliasing, CAG takes advantage of the
integration map to optimize the channel information in output
features. CAG boosts the performance by 1.0 AP.

We also conduct ablation experiments to study different
the effects of different attention configurations. The channel
attention module based on Eq 3 is adopted in all three
configurations. First, we add a self-attention mechanism only
on the integration map (Integration Attention). This procedure
further refines features to be more discriminative. Second, we
perform channel attention on each part of output features (Part
Attention). It attempts to eliminate the negative impacts of
aliasing effects independently at each level. The third one
is our CAG, which extracts channel weights through the
integration map and then multiplies to each level (Guided
Attention). Table IV and Table VI shows the performance
and computational costs of these attention modules. From
the results we can observe that CAG is better than other
configurations.

Computational Costs.

Table VI demonstrates the computation increase of our
proposed methods. It is worthy to note that SSF does not
introduce extra computation and parameters. SCE brings a few
computational burdens and CAG causes slight computation
costs. When adding all components, CE-FPN increases slight
computational costs and achieves significant improvement
compared to the baseline.

E. Inference speed

We also test the inference speed of CE-FPN. The inference
time is the average over COCO val-2017 split. All the runtimes
are tested on NVIDIA Quadro P5000. When using ResNet-50
backbone with the input of (1333, 800), Faster R-CNN with
CE-FPN can run at 9.8 fps, and the Faster RCNN with FPN
can run at 10.5 fps. The inference speed is decreased by about

6.67%. Since the performance of our CE-FPN is similar to that
of AugFPN, we compare its inference speed. When replacing
FPN with AugFPN in Faster R-CNN, the inference speed has
dropped by 17.2% [8]. The comparison result validates the
speed superiority of our methods.

V. CONCLUSION

In this paper, we propose a novel channel enhancement
feature pyramid network (CE-FPN) with three simple yet
effective components to alleviate channel information loss
and the aliasing effects. Specifically, we extend the intrinsic
upsampling function of sub-pixel convolution to utilize rich
channel information in Sub-pixel Skip Fusion (SSF) and
Sub-pixel Context Enhancement (SCE). Then we introduce
Channel Attention Guided Module (CAG) to alleviate the
aliasing effects on each feature level. Our experiments demon-
strate that our CE-FPN well generalizes to various FPN-based
detectors and achieves significant improvement only with a
few computation increases. In future work, we will verify the
generalization of CE-FPN on more backbones and other vision
tasks with multi-scale.
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