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Few-Data Guided Learning Upon End-to-End Point
Cloud Network for 3D Face Recognition

Yi Yu, Feipeng Da, and Ziyu Zhang

Abstract—3D face recognition has shown its potential in many
application scenarios. Among numerous 3D face recognition
methods, deep-learning-based methods have developed vigorously
in recent years. In this paper, an end-to-end deep learning
network entitled Sur3dNet-Face for point-cloud-based 3D face
recognition is proposed. The network uses PointNet as the
backbone, which is a successful point cloud classification solution
but does not work properly in face recognition. Supplemented
with modifications in network architecture and a few-data
guided learning framework based on Gaussian process mor-
phable model, the backbone is successfully modified for 3D face
recognition. Different from existing methods training with a large
amount of data in multiple datasets, our method uses Spring2003
subset of FRGC v2.0 for training which contains only 943 facial
scans, and the network is well trained with the guidance of such a
small amount of real data. Without fine-tuning on the test set, the
Rank-1 Recognition Rate (RR1) is achieved as follows: 98.85%
on FRGC v2.0 dataset and 99.33% on Bosphorus dataset, which
proves the effectiveness and the potentiality of our method.

Index Terms—Deep learning, face recognition, point cloud.

I. INTRODUCTION

ITH the development of deep learning and 3D mea-

surement technology, 3D face recognition has shown
its potential in many application scenarios. Several solu-
tions to 3D face recognition have been proposed including
feature-based, model-based, matching-based, and learning-
based methods, among which learning-based methods are
flourishing in recent years and have shown remarkable per-
formance [1]], [2].

However, whether deep learning can achieve good results,
to a great extent, depends on training data. As is known,
many articles use more and more data to train the network.
Although these methods compare the recognition rate on the
same dataset, they do not use the same training set, which
makes the comparison unfair. As a result, we can only see
that the reported recognition rate improves again and again,
but cannot distinguish whether it is the effect of the method
itself or caused by the increase of training data. Take the state-
of-the-art method proposed in [3] as an example, six datasets
are used in the training process including about 22K scans,
and the real data used for training are ten times more than
those for testing, which makes it easy to obtain satisfactory
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recognition rate. However, in large-scale practical applications,
the training set is usually smaller than the test set, and thus
the recognition rate could be far below expectation, revealing
that 3D face recognition is still an unsolved problem.

In this work, an end-to-end deep learning network entitled
Sur3dNet-Face for point-cloud-based 3D face recognition is
proposed. Taking advantage of a novel training framework
upon Gaussian process morphable models (GPMM), and sup-
plemented with a small amount of real data, the network is
well trained.

The main contributions of this paper are as follows:

1) An end-to-end deep learning network for 3D face recog-
nition is proposed to get face representations directly from 3D
point clouds.

2) A few-data guided learning framework based on GPMM
is established, upon that our network can be well trained with
a small amount of real data.

3) The ablation study is analyzed to determine the pa-
rameters of the proposed network and the comparisons with
other methods are conducted to prove the effectiveness and
the potentiality of our method.

II. RELATED WORK
A. 3D Face Recognition

Numerous 3D face recognition methods have been devel-
oped, as reviewed in [1l], [2], [4], including feature-based,
model-based, matching-based, and learning-based methods.

The first three categories were widely studied in the early
years. For example, Mian et al. [3]] proposed a multimodal face
recognition system, where the 3D and 2D faces are matched
through modified ICP and SIFT descriptors respectively. Mo-
hammadzade and Hatzinakos proposed Iterative Closest Nor-
mal Point (ICNP) [6] to match face surfaces. Liu et al. [7]
developed the harmonic feature-based approach using energies
in spherical harmonics at different frequencies. Elaiwat et al.
[8] calculated Curvelet transform to extract features from semi-
rigid regions. Lei et al. [9] proposed a keypoint-based Multiple
Triangle Statistics (KMTS) method to handle pose variations.

As a latecomer, learning-based methods have gradually
raised its head nowadays. Lei et al. [10] trained the Kernel
Principal Component Analysis (KPCA) to extract feature
representations. Song et al. [11] built 3D models to generate
2D images to improve the accuracy of 2D methods. Gilani
and Mian [12] and Kim et al. [13] employed existing 2D deep
neural networks to solve the 3D face recognition problem by
projecting 3D surface into 2D space as depth map, azimuth
map, and elevation map. Cai et al. [3]] proposed a deep learning



technique based on facial component patches using depth map
of the 3D face as the input of the traditional 2D network.

Some of these methods achieve decent accuracy, but the
majority are still 2D-based networks, where 3D data are firstly
projected into 2D images and then the traditional 2D networks
are utilized to solve the problem.

B. Point Cloud Network

There are many representations of 3D data, among which
point clouds are widely used. Different from traditional deep
learning networks upon 2D images, Charles et al. proposed
PointNet [[14] to directly handle point clouds, and the enhanced
version PointNet++ [15] is established upon PointNet along
with grouping and sampling techniques to synthesize both
global and local features of point clouds.

Similarly, Li et al. proposed PointCNN [14] to learn X'-
transform so that the convolution operator can work on un-
ordered point clouds, and Komarichev et al. proposed A-
CNN computing convolution directly on point clouds through
annular convolution.

Graph Neural Network (GNN) is also introduced into point
cloud networks. For example, DGCNN [16] uses EdgeConv,
a graph-based operation, to carry out convolution in feature
space, and DPAM [[17] uses a graph network to take the place
of sampling and grouping step in PointNet++.

These methods are designed for object classification and
segmentation, though can also be applied to face recognition,
the performance is much lower than face recognition methods
mentioned in the previous subsection.

C. Facial Data Generation

Whether deep learning can achieve good results, to a great
extent, depends on training data. Different from 2D face
datasets, the 3D face data are relatively inadequate for training
a network.

Numerous 3D face generation methods have been devel-
oped. For example, Blanz and Vetter [18] proposed 3D face
morphable model (3DMM) to model 3D faces and upon that
Dou et al. [19] reconstructed 3DMM parameters with a deep
neural network. Also, Liithi et al. [20] proposed GPMM face
model, a generalization of point distribution models.

Different from those model-based methods, GANFIT [21]
and MMFace [22]] utilize 2D faces to reconstruct 3D faces.

Gilani and Mian [12]] and Kim et al. [13] also proposed
data augmentation methods along with their face recognition
networks to generate millions of 2D projected images specially
for their networks from 3D faces on the ground that their
networks use 2D images as the input.

III. METHODOLOGY

In this section, we firstly introduce the architecture of our
network, and then the training details are addressed. The
overall procedure of the proposed method is shown in Fig. [1]

A. Network Architecture

Different from the traditional learning-based 3D face recog-
nition methods [12], [13], our method designs an end-to-end
network directly inputting the coordinate of point cloud, so
as to maintain the advantages of 3D data such as rotation
invariance and transformation invariance. The output of our
network is a feature vector, and the cosine distance between
two feature vectors is calculated to reflect the probability that
the two input faces are grabbed from the same subject.

Specifically, the forward process of our network can be
represented as:

f = Sur3dNet (T') (1)

where I' = {z1, 72, - , 2N, } € RY0*3 is the unordered input
point cloud, Ny denotes the number of points, f € R0 is
the output features.

The architecture of our proposed network is shown in Fig.
and the submodules in the figure will be introduced in the
subsequent subsections.

B. Normal Estimation

As is known, the normal vector is one of the most important
attributes of point clouds. We calculate the normal vectors
n € RNoX3 of the input point cloud I' through Principal
Component Analysis (PCA), during which the corresponding
eigen values e € RNoX1 can also be derived, which reflect the
curvature of the surface. Therefore, the output of the normal
estimation submodule is [ I' n e | € RNox7,

C. Modified PointNet

PointNet [14] learns a function that maps a set of points
to a feature vector, where multi-layer perceptrons (MLPs) are
applied to every point individually before a max-pooling layer
that aggregates features of all points to a global vector.

The backbone of our architecture is similar to PointNet, as
is shown in Fig. @kb), and the modifications are as follows.

1) Ball Query With Physical Size: The coordinates of all
objects are normalized to the range of (—1,1) in PointNet.
However, size is an important attribute of faces, which will
be lost in the normalization process. To avoid this, we discard
the normalization process and directly input the point cloud
with original physical size with the unit of millimeter, and
therefore, the radius of ball query in our network should also
be measured in millimeters.

2) Dithering Farthest Point Sampling (DFPS): The tradi-
tional farthest point sampling (FPS) algorithm is an iterative
process. Given input points T' = {z1, 22, - ,2n, }, in order
to obtain the output set S = {1,292, - ,xn,} With Np
points, Np iterations are required, and the formula for each
iteration is as follows:

x; = arg max (mind (z;, z;)) )

where z; € S is the points already taken out before this
iteration, x; € I' is the point to be taken out in this iteration,
d (x;,x;) is the Euclidean distance between x; and x;, so that
x; € I' is the most distant point relative to the set S.
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Fig. 1. An overview of the proposed few-data guided learning framework for face recognition.

According to our analysis, the main reason for the poor
performance of PointNet in face recognition is that FPS
preferentially selects points at the edge region of the point
cloud. For the closed point clouds generated from CAD model
(e.g. ModelNet dataset), this strategy ensures that more corner
points can be taken out. However, as compared in Fig. 3{a),
in practical scenario, on the ground that the point cloud is
grabbed from one direction, barely including one perspective
of the object, the edge points are rather unstable. Therefore,
the recognition rate of PointNet on the actual measured point
cloud is far below expectation, especially on the face with dif-
ferent posture, where the boundary line can be quite different.
Meanwhile, for the edge points, the neighbors clustered by
ball query are aggregated on one side of the center, leading
to high susceptibility of features to pose variation. To solve
these problems, we propose dithering farthest point sampling
(DFPS) as follows:

x; = arg max (min \d (z;, z;)) 3)
where
\ = {O,d(xj,xNT) >R @

el else

where 7 is the coordinate of nose tip, e; is the eigen value
of z; (as mentioned before in normal estimation subsection),
p is the weighting factor, R is the valid radius beyond which
the )\; will be set to 0 and the corresponding x; will never be
selected by DFPS.

DFPS has different behavior in training phase and testing
phase. During training, random variations are added to R and
p to improve the adaptability of the network. Specifically, in
the testing phase R = 65 and p = 0, while in the training

phase, R and p are random numbers in range of (50, 80) and
(—0.2,0.2) respectively.

The first row of @) ensures that the points output by FPS
are mostly selected in the central area that contains abundant
facial features, avoiding the influence of unstable edge points,
as is shown in Fig. [3[b).

Additionally, it is necessary to explain the second row of
(@) to analyze its principle. As a rule, there is a lot of noise
on the real captured point clouds. Owing to the tendency for
FPS to select distant points, corner points and noise floating
outside the surface of point cloud are prone to be selected. As
the eigen value e; reflects the smoothness near the point x;,
by adjusting the value of p, DFPS will tend to select corner
points (when p increases) or points on the smooth surface
(when p decreases), as is shown in Fig. [3[(c). For different
measurement system, the smoothness of the output point cloud
can be quite different, leading to difficulty in determining p, so
we adopt a more concise strategy that randomly generates p in
training phase. With different p, the coordinates of the sampled
points will dither slightly, so that the trained network can adapt
to different types of noise. Our strategy actually adds more
randomness to the traditional FPS, and the experiments show
that when supplemented with the proposed dithering strategy,
the network gets better results.

As is shown in Fig. [J[a), there are four modified PointNet
layers in our network, and the parameters of each layer are
shown in Table [l

These modifications are seemingly simple, but for the task
of face recognition, they are of great significance. In the
experiments section, the impacts of these modifications on the
recognition rate are compared intuitively through the ablation
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Fig. 2. Architecture of our proposed Sur3dNet-Face, an end-to-end point cloud network for 3D face recognition.
TABLE I
PARAMETERS OF THE FOUR MODIFIED POINTNET LAYERS
Parameter layer 1 layer 2 layer 3 layer 4 Comments
Ny 24576 4096 1024 256 Input point number
Np 4096 1024 256 64 Output point number
I 4 8 16 32 Radius of ball query (mm)
k 24 32 48 64 Ball query point number
F 0 32 64 128 Input feature number
m 32 64 128 256 Output feature number
study. E. Identification

D. Other Details

Our network has no limitation for the number of input
points, but in the training phase, point clouds with different
sizes cannot be stacked into a batch. In order to use a larger
batch size, the input point clouds are firstly downsampled to
Ny = 24576 through random choice. Note that there is no
such limitation in the test phase or in practical use, where the
Ny denotes the actual number of input points.

Batch normalization layer and dropout layer can signifi-
cantly improve the performance of the network, so we add
both on the FC layers (except the last one), and the dropout
rate is 0.5. We use Adam [23] optimizer to train the network
with the initial learning rate of le-3 multiplied by a factor of
0.1 every 10 epochs. Also, the weight decay is set to le-4,
batch size is 32, and the total number of epochs is 35.

Similar to traditional solutions, we take the 256-dimensional
vector from the output of the penultimate FC layer as a face
representation. After acquiring features of both gallery and
probe, we calculate the cosine distance between them, and
afterwards, identity of the probe is determined by the gallery
with minimum distance.

E Training Data

1) Gaussian Process Morphable Models: In order to gener-
ate sufficient training data, we use the GPMM face model [20],
a generalization of point distribution models, which assumes
that any shape I' can be represented as a discrete set of points:

F:{I’l,I’Q,"',‘TN} (5)
where N denotes the number of points.
Shape T is represented as a vector s € R3V:
T
s = [ Tiz Tiy Tiz TNz TNy <INz ] (6)
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GPMM model assumes that the shape variation can be
modeled using a normal distribution:

s~N(p,X) (7

According to the theory proposed by [20], any face s € R3V
can be expressed as:

8:§+BS\/A30[+BE\/AEB (8)

where the parameter o determines the shape of human face,
[ determines the expression of human face, and s is the mean
face model. Bg and Bpg are the basis respectively for shape
and expression, and similarly, Ag and Ag are the variance.
For s, Bs, Bg, As, and Ag, we directly adopt the values
provided by [20].

2) GPMM-Based Data Generation: According to formula
(8). the face generated by GPMM depends on two parameters,
« and 3, where o determines the identity and 3 determines
the expression.

As GPMM is not specially designed for training neural
networks, when using faces generated by formula (8) for
training, the trained network can recognize the frontal faces.
However, in practical application with posture and noise, in
order to improve the variety of the data, the formula should
be modified as:

s:f(§+B5 A5a+BE\/AEB+5> 9)

where f (o) is the random rotation function, § ~ N(0,0%)
is the Gaussian noise, o ~ N (0,02) is the shape coefficient,
B~ N(0, a%) is the expression coefficient.

3) Real Data Guided GPMM-Based Data Generation:
The randomly generating strategy appears difficult to cover
the common expressions in the real faces. Taking the disgust
expression as an example, we observe that few of the faces
with random coefficients look like the disgust. To make our
training data further closer to the real data, we propose an
enhanced strategy matching the real face with GPMM model,
so as to use the real data as a guidance for the expression
coefficient to generate training data.

We denote a pair of real faces in the dataset as (I'y,I'g),
where I'y and I'g are respectively the neutral face and the
expressive face of a certain subject. According to [24], the
registration problem can be solved as:

ay = argmaxp(a)p(FN ’a,g)

55 = argmaxp (5)p (U |5, T) (o
where oy is the shape coefficient of both I'y and I'g, and
BE is the expression coefficient of I'g.

We calculate Sg of each expressive face in the Spring2003
subset of FRGC v2.0 in advance. When generating a face, one
of Bg is randomly selected to obtain S as:

Br=Ag+(1-A)B (an
where ) is a random value between (0,1), 5 ~ N (0, O’%).



Afterwards, B is substituted into formula @]) to generate
the face, so that the faces generated can cover more expres-
sions similar to real faces in datasets. Experiments show that
this strategy can considerably improve the recognition rate of
faces with expressions.

G. Verification Set

To avoid overfitting, a verification set separated from the
training set is usually used in deep learning to verify the
performance of the network. In our method, all the training
samples are generated from GPMM model upon the same
formula, leading to similar distribution. So if we directly take
a part of the training samples as the verification set, the
loss of the verification set will have almost the same trend
as that of the training set, and thus cannot play the role of
verifying whether the network is overfitted. Existing public
datasets contain too few samples for training, but they are quite
sufficient as the verification set. Therefore, we put forward
a strategy training the network with the generated data and
verifying upon the real data.

Since real data in the verification set do not share the
identity with our training data, feature vectors extracted by
the network from the real data are used to calculate the
cosine distance. Through cosine distance, we can evaluate
the recognition performance on the real data verification set
through Rank-1 Recognition Rate (RR1), Verification Rate
(VR) under FAR = 1le—3, and Area Under ROC Curve (AUC).
Taking these three commonly used indicators into account, we
define the loss of the verification set as:

loss =1 — VR x RR1 x AUC (12)

In the experiments, we observe that the loss initially de-
creases with the training epoch, and then it starts to increase,
indicating that the network starts to overfit. The network
parameters with the lowest verification loss are saved as the
final result of the training process.

IV. EXPERIMENTS

In the experiments, the proposed network is implemented
on PyTorch [25]] and is training with i7-8700K CPU and two
GTX1080TI GPU.

We use Face Recognition Grand Challenge (FRGC) v2.0
dataset [26] and Bosphorus dataset [27] to evaluate the per-
formance of the proposed face recognition method.

A. Ablation Study

It takes about 50 hours on our hardware to train the network
with the training set of 3000 identities, each with 200 different
expressions. In order to make more comparisons in a shorter
time, we use training set of 3000 identities for ablation study
unless otherwise specified, and the rank-1 recognition rate
on Bosphorus dataset excluding occlusion subset and posture
subset is the main indicator to evaluate the performance.

TABLE II
RANK-1 RECOGNITION RATE (RR1) UNDER DIFFERENT COMBINATION
OF 7 AND k ON BOSPHORUS DATASET

r k RR1
3,6,12,24 16,24,32,48 86.97%
3,6,12,24 24,32,48,64 80.53%
4,8,16,32 16,24,32,48 95.17%
4,8,16,32 24,32,48,64 97.85%
4,8,16,32 40,48,56,64 96.66%
5,10,20,40 24,32,48,64 94.50%
5,10,20,40 40,48,56,64 95.15%

1) Parameters in DFPS: There are two new parameters
introduced in DFPS, namely R and p. Fig. ] (a) demonstrates
the rank-1 recognition rate on Bosphorus dataset by training
the network with different R values under p = 0 + 0.2. It
can be seen from the blue line that when 45 < R < 75,
the recognition rate has little difference. Meanwhile, when the
random R strategy is adopted, where R is added by a random
variation between -15 and 15 during training phase, as shown
in orange line, the recognition rate is further improved.

Fig. @] (b) depicts the rank-1 recognition rate on Bosphorus
dataset by training the network with different p values under
R = 65+ 15. In fact, even if we use the same parameters for
training, the recognition rate will occasionally show a variation
of 0.5% in each reproduction. Owing to the relatively small
impact of parameter p on the results, it appears difficult to
determine which is the best value from these experimental
results. However, as can be seen from the figure, the random
strategy plays a positive role.

Through this ablation study, the parameters of DFPS is
determined as follows: in the testing phase R = 65 and p = 0,
while in the training phase, R and p are random numbers in
range of (50,80) and (—0.2,0.2) respectively for each mini-
batch.

2) Ball Query Radius: Ball query radius has a significant
impact on the recognition rate. We observed that when r
and k& match a certain proportion, the recognition rate goes
higher. Specifically, a smaller r is more suitable for a smaller
k, and vice versa. Among all the tested combinations, as
shown in Table the combination of r = 4,8,16,32 and
k = 24,32,48,64 gets the best result, and these parameters
are also given in Table [ Note that the recognition rate in
Table [[I) is obtained without using real data guided generation
and verification.

3) Real Data Guided Generation and Verification: The
previous experiments are aimed at network parameters, among
which the highest rank-1 recognition rate we achieve is
97.85%. Afterwards, we make further experiments verifying
the effect of training with a small amount of real data.

There are two real-data-based techniques proposed in this
paper, namely, real data guided generation and real data
verification set. In the experiments, we randomly select about
half of the faces in Spring2003 subset of FRGC v2.0 for real
data guided generation and the other half for real data verifi-
cation set. The results show that our network achieves rank-1
recognition rate of 98.29% with the former technique, real data
guided generation, and when both techniques are applied, the
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rank-1 recognition rate reaches 98.83% on Bosphorus dataset.

4) Training Data Volume: The training data can be ar-
bitrarily generated, but due to the limitation of hardware
performance, we test 10000 identities at most, each containing
200 expressions, and the recognition rate on Bosphorus dataset
is displayed in Fig. [3}

From the experimental results, the rank-1 recognition rate
reaches 99.33% of training with 10000 identities each with
200 expressions. Also, the increasing trend of recognition rate
in the figure indicates that if a larger data volume is used, a
slightly higher recognition rate can possibly be obtained.

B. Comparisons With Other Methods

1) Results on FRGC v2.0: FRGC v2.0 dataset [26] con-
taining 4007 scans of 466 subjects in total is divided into
three partitions as Spring2003 subset, Fall2003 subset, and
Spring2004 subset. Protocol [26] uses the Spring2003 for
training and the remaining for testing. We follow this pro-
tocol taking Spring2003 as real data to train the network.
Specifically, we randomly select about half of the faces in

Spring2003 for real data guidance and the other half for real
data verification set.

The comparisons between our proposed method and the
state-of-the-art methods on FRGC v2.0 dataset are shown
in Table [[TI] where the most representative face recognition
methods are compared. Some methods use the corresponding
2D photos of the 3D faces, which we denote as (2D+3D). Also,
there are some methods using fine-tuning to further improve
the recognition rate, which are marked with (FT).

It can be seen from the table that some deep-learning-
based methods have achieved satisfactory recognition rate
in recent years, especially those with fine-tuning that can
considerably improve the recognition rate. However, in the
actual application scenario, due to the dynamic changes of
the face gallery, the effect of fine-tuning is much lower
than expectation. Among those methods without using fine-
tuning, our method is quite competitive, which achieves rank-
1 recognition rate of 98.85% and verification rate of 96.75%
on FRGC v2.0 dataset.

As is known, whether deep learning can achieve good
results, to a great extent, depends on training data. Different
from those methods training with more and more data to
get a slightly higher recognition rate, the only real data we
use in the training process are the 943 faces in Spring2003
subset. With such a small amount of data, we achieve a higher
recognition rate than some of the latest methods, which proves
the effectiveness and the potentiality of our method.

2) Results on Bosphorus: Bosphorus dataset [27] includes
totally 4666 scans collected from 105 subjects (60 men and
45 woman aged between 25 and 35) with poses changes,
expression variations, and typical occlusions. The yaw rotation
of faces is from 10 degrees to 90 degrees in Bosphorus dataset.
This paper does not involve occlusion and large posture, so
the occlusion subset and the posture subset are excluded. The
neutral scans with file name containing N_N_0 are used to
form the gallery features.

The comparisons between our method and the state-of-the-
art methods on Bosphorus dataset are shown in Table [[V] In
order to make a fair comparison, the recognition rate under



TABLE III
RANK-1 RECOGNITION RATE (RR1) AND VERIFICATION RATE (VR)
UNDER FAR = le — 3 ON FRGC V2.0 DATASET

Method RR1 VR
Mian et al. [3] (2008) (2D+3D) 96.10% 98.60%
Huang et al. [28] (2012) 97.60% 98.40%
Liu et al. [7] (2013) 96.94% 90.00%
Elaiwat et al. [8] (2015) 97.10% 99.20%
Lei et al. [9] (2016) 96.30% 98.30%
Al-Osaimi [29] (2016) 96.49% 98.69%
Ouamane et al. [30] (2017) - 96.65%
Ouamane et al. [30] (2017) (2D+3D) - 98.32%
Gilani et al. [31] (2018) 98.50% 98.70%
Gilani and Mian [12] (2018) 97.06% -
Gilani and Mian [12] (2018) (FT) 99.88% -
Cai et al. [3]] (2019) (FT) 100% 100%
Ours 98.85% 96.75%

TABLE IV
RANK-1 RECOGNITION RATE (RR1) AND VERIFICATION RATE (VR)
UNDER FAR = le — 3 ON BOSPHORUS DATASET

Method RR1 VR
Mian et al. [5] (2008) (2D+3D) 96.40% -
Huang et al. [28] (2012) 97.00% -
Liu et al. [7] (2013) 95.63% 81.40%
Berretti et al. [32] (2013) 95.67% -
Elaiwat et al. [8] (2015) - 91.10%
Lei et al. [9] (2016) 98.90% -
Al-Osaimi [29] (2016) 92.41% 93.5%
Ouamane et al. [30] (2017) (2D+3D) - 96.17%
Gilani et al. [31] (2018) 98.5% -
Gilani and Mian [12] (2018) 96.18% -
Gilani and Mian [12] (2018) (FT) 100% -
Cai et al. [3] (2019) (FT) 99.75% 98.39%
Ours 99.33% 97.70%

the same subsets of Bosphorus is displayed. For the methods
that do not provide the result of each subset, the recognition
rate of the complete dataset is shown.

V. DISCUSSIONS

Although some existing methods have achieved satisfactory
recognition rate, our method has some notable advantages,
upon that we make further discussions.

A. Computational Complexity

Our method designs an end-to-end network directly in-
putting the point clouds, which is faster than those methods
requiring a complex preprocessing. For example, [9] reports
that they need 3.16 s for preprocessing, including detection and
alignment, region segmentation, model registration, and other
steps; and [13] reports that they need 6.08s to generate the
2D images including depth map, azimuth map, and elevation
map from 3D point clouds.

On the hardware platform described in experiments section,
in the training phase with the faces generated in advance, the
forward time and backward time of our network for each mini-
batch (with batch size of 32) is 0.208 s and 0.095s, respec-
tively. When being applied to actual applications, it takes about
0.035 s to detect the nose tip and calculate the normal vectors,

and 0.105 s to extract the feature of a single face using a single
GPU, and there is no additional preprocessing required.

B. Data Generation and Overfitting

There is a common problem in existing deep-learning-based
face recognition methods, that is, owing to the lack of data,
more faces need to be generated by interpolating existing
datasets with each other [[12], [[13]. Although the generated
faces used for training are considered different, they have
implicit overlaps with the test set, meaning that the results
may be obtained to some extent by overfitting.

Comparably, the training data in our method are absolutely
generated from GPMM model, which have little intersection
with real datasets. Therefore, what we listed are actually cross-
dataset results without any fine-tuning, which are closer to the
results in actual application than results of those methods that
take part of the datasets to generate training data and use the
other part to test.

VI. CONCLUSION

An end-to-end deep learning network entitled Sur3dNet-
Face for point-cloud-based 3D face recognition is presented
in this paper, along with the concrete approach for training.
Coupled with real data guided generation and real data veri-
fication set, a few-data guided learning framework based on
Gaussian process morphable model is proposed, upon that the
common problem in 3D face deep learning of lacking training
data is overcome.

Different from existing methods training with more and
more data to get a slightly higher recognition rate, the only
real data we use in the training process are the 943 faces in
Spring2003 subset of FRGC v2.0. With such a small amount
of data, we achieve a higher recognition rate than some of
the latest methods, which proves the effectiveness and the
potentiality of our method.

Furthermore, the ablation study of our method have been
analyzed, and the validity has been proved by experiments.
Without any fine-tuning on test set, the Rank-1 Recognition
Rate (RR1) and Verification Rate (VR) are achieved as fol-
lows: 98.85% (RR1) and 96.75% (VR) on FRGC v2.0 dataset,
and 99.33% (RR1) and 97.70% (VR) on Bosphorus dataset.

In the future research, we will optimize the process of data
generation to generate more occluded and angled faces, so as
to further improve the applicability of our method.
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