
Multimedia Tools and Applications manuscript No.
(will be inserted by the editor)

A Genetic Programming Approach for Searching on
Nearest Neighbors Graphs

Javier A. Vargas Muñoz · Zanoni Dias ·
Ricardo da Silva Torres

Received: date / Accepted: date

Abstract Nearest neighbors graphs have gained a lot of attention from the
information retrieval community since they were demonstrated to outperform
classical approaches in the task of approximate nearest neighbor search. These
approaches, firstly, index feature vectors by using a graph-based data struc-
ture. Then, for a given query, the search is performed by traversing the graph
in a greedy-way, moving in each step towards the neighbor of the current ver-
tex that is closer to the query (based on a distance function). However, local
topological properties of vertices could be also considered at the moment of
deciding the next vertex to be explored. In this work, we introduce a Genetic
Programming framework that combines topological properties along with the
distance to the query, aiming to improve the selection of the next vertex in
each step of graph traversal and, therefore, reduce the number of vertices ex-
plored (scan rate) to find the true nearest neighbors. Experimental results,
conducted over three large collections of feature vectors and four different
graph-based techniques, show significant gains of the proposed approach over
classic graph-based search algorithms.

Keywords Distance learning · Genetic programming · Image retrieval ·
Graph-based indexes · Nearest neighbor searches · Network theory

Javier A. Vargas Muñoz*
University of Campinas
E-mail: javier.munoz@ic.unicamp.br

Zanoni Dias
University of Campinas
E-mail: zdias@g.unicamp.br

Ricardo da Silva Torres
Norwegian University of Science and Technology
E-mail: ricardo.torres@ntnu.no

2 Javier A. Vargas Muñoz et al.

1 Introduction

A high amount of multimedia content is being generated every second due to
the large use of low-cost portable devices and the growth of internet access in
the last decades. This leads to the creation of large collections of multimedia
content, and, at the same time, to the need for mechanisms that, efficiently,
support the task of retrieving relevant information from these collections. Ad-
vances in multimedia representation have allowed the design of techniques that
map multimedia objects (e.g., image, text, audio, and video) into feature vec-
tor spaces (commonly in the scale of hundreds or thousand of dimensions)
fostering the creation of effective search systems.

In this context, the Nearest Neighbors (NN) search is a problem broadly
studied in the literature. This problem consists in searching for the nearest
points to a query from a set of points with arbitrary dimensionality (that
represents multimedia objects), considering a given distance function. There
are two well-known variants of this problem: the K-Nearest Neighbors and
Range Queries. The first consists in searching for the K points that are closer
to the query than any other point in the set. The second aims to find all points
that are inside of the hypersphere with the query as center and radius r. This
paper refers only to the first problem (often referred to as K-NN search).

A straightforward solution to this problem is the linear search algorithm,
which scans the entire collection of feature vectors (objects) and returns those
with the lowest distance to the query point. However, this solution is not
scalable in scenarios with millions of vectors and high concurrency of queries.
Alternative data structures were proposed for efficient exact searches yielding
a logarithmic time complexity (e.g., KD-Tree [9] and R-Tree [20]), although
this logarithmic property is only guarantied for low dimensional data. More
accurate methods for representing multimedia objects usually employ high
dimensional data. For this search scenario, many approximate approaches were
proposed to assess the efficiency of NN searches at the cost of losing precision
of results. These last approximate techniques can be roughly divided into four
groups: space-partitioning trees [13, 37, 44, 45, 54], hashing-based [3, 8, 23, 27,
34,53], quantization [4,7,11,16,26,28,31,52], and nearest neighbor graphs [14,
21,24,35,36].

In recent works [5] and benchmarks,1 NN-graph-based approaches have
shown to outperform consistently classical and recent approximate approaches
for NN search. In NN-graph-based techniques, firstly, all feature vectors of
the collection are indexed by means of a graph, where each feature vector is
associated with a unique vertex and connected with the other near ones. Then,
the search of NN is performed by traversing the graph in a greedy way, with
similar strategy to the hill climbing optimization procedure [39], starting in
some vertex, and, in each step, selecting the neighbor of the current vertex that
is closer to the query (based on some distance function) as the next vertex to be
explored. Methods for the construction of these graphs differ considerably, but

1 ANN benchmark: https://github.com/erikbern/ann-benchmarks (As of June 2021).

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 3

the search algorithm employed in these works did not change significantly from
the previous idea, and all of them select the next vertex in the graph traversal
based only on the distance to the query. The selection of the next vertex
to be explored plays an important role at converging efficiently to the true
nearest neighbors. Other kinds of properties of vertices could help improving
the selection of the next vertex, such as, the local topological properties of
vertices. For example, if one vertex has a very high degree, then we could
avoid exploring it, since it would be very costly to visit all its neighbors.

In the context of networks, there are many metrics [12] broadly studied
in the literature that capture different properties of the topology of vertices’
neighborhood. In this work, we propose a Genetic Programming (GP) frame-
work to find a near-optimal scoring function that takes into consideration
both the classical distance-to-the-query and local topological properties of
vertices. The scores obtained by this function are used to sort the vertices
aiming to minimize the number of vertices explored to discover the true near-
est neighbors. GP has been shown to perform well in optimization scenarios
like this [2, 10, 30, 43]. In the context of the GP approach, an individual from
the population corresponds to a candidate scoring function.

1.1 Contributions

In this work we explored a novel idea to exploit different topological properties
of vertices in order to improve the navigation on NN graphs at search time.
The main contributions of these work are listed bellow:

– We introduce a novel Genetic Programming (GP) framework that aims
to discover a near-optimal combination of local topological properties of
vertices along with the classical distance-to-the-query, which improves the
criterion for selection of the next vertex to be explored in the search algo-
rithm, leading to a more efficient discovery of the true NN.

– The proposed formulation is domain-agnostic. In the training phase, the
GP framework is capable of determining suitable combination functions
that capture the overall properties of a given dataset. Those functions are
expected to lead to more efficient searches.

– We validated our search approach on a recent technique for NN graph
construction [51], along with the three other previous techniques con-
sidered [50], showing the consistency of our results independently of the
dataset and the NN graph construction technique. Also, parts of this work
were presented in the PhD thesis of the first author [49].

This paper is an extension of our previous work [50]. Different from that
paper, we included two new topological properties to the GP framework that
improved our previous results. Furthermore, we experimented on two other col-
lections of image feature vectors, in which our search approach demonstrated
to outperform classical search algorithms as in the case of the collection of
textual feature vectors.

4 Javier A. Vargas Muñoz et al.

In the next section, background concepts about NN graphs and Genetic
Programming are presented. Those concepts will be employed in Section 3
to describe our approach. In Section 4, the experimental protocol adopted to
validate the performance of our approach and the experimental results are
detailed. Finally, Section 5 concludes the paper and presents future research
directions.

2 Background Concepts

This section provides an overview of NN graphs and Genetic Programming.

2.1 Nearest Neighbor Graphs

NN graphs present an easy-to-understand scheme for multimedia indexing.
Each multimedia collection object is represented as a vertex in the graph, and
each of them is connected to the most similar ones, i.e., to those objects whose
feature vectors are the closest ones. The näıve algorithm for the construction
of NN graphs consists in, for each vertex, scanning the whole collection and se-
lecting the K-nearest vertices as their neighbors. Therefore, this search scheme
results in a quadratic solution at the collection size. In real scenarios with mil-
lions of feature vectors, this näıve algorithm is unpractical. In the following,
we describe some efficient approaches that have been proposed to speed up the
creation of approximate NN graphs. Also, we provide details on how searches
are performed over those graphs.

2.1.1 Creation of NN graphs

NN graphs have also been used in other tasks, such as image annotation [22,
32, 46, 47]. In this section, however, we only considered those graph construc-
tion techniques that were employed in the task of NN search. There are two
approaches commonly employed for constructing NN graphs, which are illus-
trated in Fig. 1. In the first approach, sub-figure (a), an initial graph is con-
structed (could be randomly) to connect vertices, and, then, at each iteration,
the neighbors of each vertex are updated, in order to discover closer or more
adequate neighbors. In the second approach, sub-figure (b), vertices and/or
edges are added incrementally to the current graph, that could be initialized
as an empty graph with neither edges nor vertices. Many approaches have
been proposed to construct approximate NN graphs based on these ideas. In
the next paragraphs, we briefly describe some state-of-the-art techniques that
we employed in this work as baselines methods.

KGraph [14]: This method creates an initial graph containing all vertices,
where each vertex is connected to a list of K randomly selected vertices. Then,
iteratively, based on the simple assumption that “a neighbor of a neighbor is
also likely to be a neighbor,” the method improves the list of neighbors of each

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 5

Fig. 1 Illustration of the two typical approaches for NN graph construction. (a) initial
graph optimization; (b) incremental construction by adding edges and/or vertices.

vertex by exploring the neighbors of their neighbors and replacing them by
those which are closer to some vertex in the current list. The objective is to
discover the set of true K-nearest neighbors for each vertex. This optimiza-
tion process stops when the list of neighbors of all vertices does not change
significantly.

SW-graph [35]: Initially, the graph has neither vertices nor edges. Every
vertex is inserted into the graph, one at a time. When one vertex is inserted, it
is performed a K-NN search on the current graph, with an algorithm similar
to that one described in the next section. Then, undirected edges, between
that vertex and every K-NN found, are created. The graph construction ends
when all vertices are inserted.

HNSW [36]: This algorithm for graph construction is similar to the one
used for the SW-graph, since it also uses the search algorithm to find the
vertices (in the current graph) that will be connected to the new inserted
vertex. However, this algorithm creates a hierarchy of graphs, where edges in
top layers correspond to long edges (edges that connect distant vertices), while
bottom layers contain short edges (edges that connect closer vertices). A new
vertex is inserted first in the graph of a random layer, then in the graph of the
layer below this, and so on, until the ground layer is reached.

FANNG [21]: Differently from the techniques above, initially the graph
contains all vertices but no edges. A simple process is repeated though a num-
ber of iterations. At each iteration, a greedy search is performed from one
vertex (start) towards another (target), both selected randomly. If the target
vertex is not reached successfully, then a directed edge is created from the last
vertex visited to the target vertex. Next, this process is applied in the oppo-
site direction, from the target to the last vertex visited. Otherwise, nothing
is altered on the graph. This process is repeated until a maximum number of
searches are performed or a rate of successful searches is reached.

HCNNG [51]: To create the NN graph, this method performs multiple
hierarchical clustering executions, then, on each cluster created, the points
inside them are connected through a Minimum Spanning Tree (MST). Finally,

6 Javier A. Vargas Muñoz et al.

1 Function SearchNN(G, q, T)
Data: NN graph G, query point q
Data: maximum distance calculations T
Result: nearest vertex n, nearest vertex distance d

2 n← some vertex in G
3 d← distance(n, q)
4 Q← initialize priority queue with tuple [n, d]
5 while T > 0 do
6 v ← Q.pop()
7 foreach u ∈ Neighbors(v) do
8 if T > 0 and u not visited then
9 d∗ ← distance(u, q)

10 Q.push([u, d∗])
11 T ← T − 1
12 if d∗ < d then
13 n← u
14 d← d∗

15 return n, d

Algorithm 1: Algorithm for search in NN graphs.

the method merges all the MSTs and generates a global NN graph for all the
points.

2.1.2 Search in NN graphs

As seen in previous section, techniques for NN graph construction are based on
conceptually different strategies. However, most of search algorithms used on
these NN graphs rely on roughly the same strategy. This strategy is detailed in
Algorithm 1. The traversing starts by initializing the global minimum (nearest
neighbor) at some vertex on the graph (lines 2-3), and a priority queue to help
to select the next vertex to be explored (line 4) at each step (an iteration of
loop in line 5), this is, the vertex in the queue with the minimum distance
to the query. In each step of traversal, after the next vertex is selected (line
6), the neighbors of this vertex are scanned (line 7). For any neighbor, if it
was not visited previously (line 8), then it is pushed to the queue (lines 9-10).
Also, if any neighbor is closer to the query than the global minimum, then it is
updated (lines 12-14). When the maximum number of vertices to be explored
is reached, the global minimum discovered is returned (line 15).

An example is illustrated in Fig. 2, with starting vertex v0 and query
point q (red point). The first vertex is taken from the queue (v0), then, their
neighbors are explored and pushed to the queue. In the next step, from the
vertices on the queue, the closest to the query is taken and explored (v1), and
so on until the maximum number of distance calculation is reached. Note that
the definition of the next vertex to be explored does not depend only on the
neighbors of the current vertex, as all vertices on the queue are candidates
(blue vertices, after the 3rd step).

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 7

Fig. 2 Example of search using Algorithm 1.

Malkov et al. [35] presented a modified version of this algorithm, which
considers a different stop condition. According to their proposal, a graph is
traversed until a set of K-nearest neighbors remains unchanged at a given iter-
ation. Also, they proposed to perform multiple searches, with different starting
vertices, and then combine the results of such searches to return the best k
vertices. Harwood and Drummond [21] also proposed to use the nearest vertex
to the data mass center as starting vertex for search. Differently from previous
ideas, Vargas et al. [51] introduced a pruning strategy to avoid scanning all
neighbors at any step of traversing, just those neighbors in the “direction” of
the query.

The traversal strategies employed on graphs for NN searches, as those
mentioned above, are not directly related to the well-known strategies for
search on graphs/networks, like the A∗ [17] or other landmark -based algo-
rithms [15,19,42,48], since those techniques were devised for the approximate
shortest path problem between two vertices on a graph (P2P). The definition
of distance is different in both problems. In the context of NN search, the dis-
tance between two vertices is defined (commonly) as the Euclidean distance
between their respective feature vectors. On the other hand, for P2P, the dis-
tance is defined as the shortest path between two vertices (sum of the edge
weights contained in the path). Also, in the NN search problem, it does not
matter the cost of the path taken, since it leads to an early discovering of
the vertices with the minimum distance (between their feature vectors) to the
query, which in most of cases (the query) is represented by an unseen vector on
the graph construction phase. Therefore, solutions for those problems cannot
be mapped to each other.

In this paper, we adopt the conventional version of the search algorithm
in our experiments, shown in Algorithm 1, as it allows us to control the scan
rate of a graph through the parameter T . Note that this algorithm can be
easily adapted to search for the K-nearest neighbors, by simply adding a list
to maintain the K-nearest neighbors seen in the whole traversing process.

8 Javier A. Vargas Muñoz et al.

Fig. 3 Example of tree representation of a GP individual.

2.2 Genetic Programming

Genetic Programming (GP), introduced first by Koza [29], is a problem solving
technique inspired in the biological inheritance and evolution. Each potential
solution is called individual, and is commonly represented by a tree. Fig. 3
presents a tree representation of the mathematical function f(a, b, c) = a ×
a − ((b × c)/2). The whole GP process to discovery near-optimal solutions is
detailed in the following steps:

1. Create initial population: initially, a population of fixed size is created,
where each tree (individual) is defined randomly. A tree is composed of
functions (white nodes in Fig. 3) and terminals (gray nodes). Functions
are the internal nodes, employed to combine the terminals, usually math-
ematical functions. Terminals are the leaf nodes, employed as inputs of
individuals.

2. Evolve population: through a number of generations, individuals are
evolved by employing genetic operators. The following steps are repeated
at each generation.

2.1. Compute fitness of individuals: at the beginning of each generation,
the fitness value is computed for all individuals. The fitness value is an
indicator of how well an individual performs in a given task. Therefore,
this function is application dependent.

2.2. Select individuals for genetics operators: an important factor to-
wards the convergence of the evolution process is the technique em-
ployed for selecting individuals that will be used for genetic operators.
There are many techniques proposed in the literature [25]. Usually,
these approaches are based on the fitness value of individuals or on
their relative order in the whole population (rank-based).

2.3. Apply genetic operators: genetic operators are applied on selected
individuals to create individuals for the next generation. The following
operators are commonly used:

i. Reproduction: this operator takes a percentage of the individu-
als with best fitness values and copies them directly to the next
generation. This operator guaranties that the best individual of a
generation will be at least as good as best individual of the previous
generation.

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 9

Fig. 4 Example of the mutation operator.

Fig. 5 Example of the crossover operator.

ii. Mutation: this operator is applied on a individual by taking a ran-
domly selected subtree and replacing it with a randomly generated
tree. Fig. 4 illustrates this operator. The purpose of mutation is to
add a minimum of diversity to the population.

iii. Crossover: this operator takes two individuals and exchanges two
randomly selected subtrees. An example is shown in Fig. 5. The
objective of crossover is to create new diverse individuals by ex-
changing genetic information from parents.

2.4. Replace old population: the population of the next generation is
composed of individuals created in step 2.3, then, the evolutionary pro-
cess returns to step 2.1.

3. Select best individuals: the fitness of individuals of the last generation
is computed, and, then, the best individuals are returned.

3 GP-based Graph-based Searches

As shown in Algorithm 1, in the classical approach for searching on NN graphs,
vertices of graph are scored in the priority queue based only on their distances
to the query, so the vertex with minimum score (minimum distance) is taken
from the queue in each step and its neighbors visited. However, local topolog-
ical information of vertices can be used to improve the criterion for selection

10 Javier A. Vargas Muñoz et al.

of the next vertex to be explored. We explore the idea of better scoring those
vertices that are expected to allow a faster discovery of the true nearest neigh-
bors. We modeled this scoring function as a combination of the distance and
topological properties through basic mathematical operators, therefore, we
adopted the classical tree representation of GP individuals for mathematical
functions, as detailed in the previous section.

Next sections detail the proposed approach for discovering appropriate
vertex scoring functions to guide graph-based searches, highlighting its main
components.

3.1 Pipeline for GP-based distance learning

An overview of the proposed framework to discovery a more suitable scoring
function for search on NN graphs is shown in Fig. 6. The whole process is
similar to the GP process detailed in Section 2.2.

Algorithm 2 summarizes how the whole learning process is performed. At
first, an initial population of candidate solutions is created randomly (Line 2),
by employing a set of functions composed of mathematical operators, and a
set of terminals associated with several Search Dependent (SD) and Search
Independent (SI) properties – described in the next section. Line 3 refers to
the computation of the baseline search results for all queries of the training set.
The goal is to maximize the difference between the effectiveness performance
(recall) when the GP framework is used compared to using the L2 metric.
Then, this initial population is evolved over several generations (Lines 4-10).
In the beginning of each generation, the fitness of each individual is evaluated
(Lines 5-7). In our formulation, we compute the fitness function based on
the search performance of the scoring functions encoded as GP individuals.
Therefore, given an individual f̂(x), to compute its fitness value, we average the

search performance on a training set of queries obtained by using f̂(x) function
in lines 3 and 9 of Algorithm 1 (i.e., the distance function is implemented using

f̂(x)). The exact computation of this fitness value is detailed in Section 3.3.

After the fitness evaluation, some individuals are selected (Line 8) to be
subjected to genetic operators (Line 9), and, finally, a new population is cre-
ated, composed of the individuals produced by the genetic operators (Line 10).
At the end of this evolutionary process, the most fitted individual (scoring

function f̂(x) in the algorithm) seen through the whole process is selected,
and employed in the search algorithm to support the execution of new queries
(Line 11).

Fig. 7 illustrates an example of a hypothetical individual that could be dis-
covered by the proposed GP-based framework. This tree represents the vertex

scoring function f̂(x) = (D×D)
P − ((N×J)+E)

2 , which combines the following
properties of a given vertex x: distance to the query (D), preferential attach-
ment (P), vertex degree (N), Jaccard coefficient (J), and the edge weight (E).
All these properties are described in the next section.

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 11

Fig. 6 GP-based framework to discover better scoring functions for NN searches.

1 Function LearnScoringFunction(G, Q)
Data: NN graph G, training queries Q
Result: scoring function f̂

2 P ← create an initial random population of scoring functions f
3 RL2 ← ∀q ∈ Q, search the NN on G using L2

// computation of the baseline search results

4 for g generations do
5 for f ∈ P do
6 Rf ← ∀q ∈ Q, search the NN on G using f
7 fitness(f)← Recall(Rf)−Recall(RL2)

8 S ← select individuals from P based on fitness
9 P ′ ← apply genetic operators on S

10 P ← P ′

11 return f̂ ∈ P with max fitness value

Algorithm 2: Scoring function learning process.

Fig. 7 Example of individual in the proposed framework.

3.2 Vertex properties

The set of properties described in the following will be used as terminals on GP
individuals of the evolutionary process. They are listed in Table 1. Let v be the

12 Javier A. Vargas Muñoz et al.

Table 1 List of vertex properties employed as terminals on GP individuals.

Symbol Property

D Distance
L Path length
E Edge weight
N Vertex degree
C Common neighbors
J Jaccard coefficient
P Preferential attachment
A Adamic Adar
R Edge redundancy

current vertex at search that was popped from queue in line 6 of Algorithm 1,
and u the neighbor of v being explored (line 7). We considered two types of
properties to be taken into account by the scoring function discovery process:
Search Dependent (SD) and Search Independent (SI).

Properties from the first group can only be computed at search time. We
included in our method the following search dependent properties:

– Distance (D): this is the traditional distance from vertex u to the query
point (computed in line 9 of Algorithm 1).

– Path length (L): we can adapt Algorithm 1 to keep track of the length of
the path (number of vertices) from the starting vertex to u. In the example
shown in Fig. 2, L(u) = 3 (path from v0 to u).

On the other hand, search independent properties depend on the local
topology of NN graph’s vertices, thus, these properties can be pre-computed
offline, adding no extra cost at search time. Let τ be the function that returns
the set of neighbors of a given vertex. Thus, in Fig. 2, τ(v2) = {v1, u, x, y} and
τ(u) = {v2, r, s, w, y}. We will use these two vertices to illustrate this type of
properties. We considered the following properties from this category:

– Edge weight (E): the weight of the edge between v and u. In our work,
E(v2, u) = dist(v2, u).

– Vertex degree (N): the degree of u, given by N(u) = |τ(u)|. For example,
N(u) = 5.

– Common neighbors (C): the number of common neighbors between
vertices v and u, given by C(v, u) = |τ(v)∩ τ(u)|. For example, C(v2, u) =
|{y}| = 1.

– Jaccard coefficient (J): a broadly used similarity measure commonly
employed in information retrieval tasks, defined as:

Jaccard(v, u) =
|τ(v) ∩ τ(u)|
|τ(v) ∪ τ(u)|

for example, J(v2, u) = 1/8 = 0.125.

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 13

– Preferential attachment (P): another well-known metric in networks.
This metric serves as an indicator that vertices with many neighbors will
create more connections in the future (in dynamic graphs). This metric is
given by:

PrefAttach(v, u) = |τ(v)| × |τ(u)|
for example, P (v2, u) = 4× 5 = 20.

– Adamic Adar (A): a classical metric employed initially in the context of
link prediction that is defined by:

AdamicAdar(v, u) =
∑

x∈τ(v)∩τ(u)

1

log |τ(x)|

for example, A(v2, u) = 1
log |τ(y)| = 1

log(2) = 3.32.

– Edge redundancy (R): we introduce this binary property that takes the
value of 0 if there is a vertex w (different from v and u) that is neighbor
of v and u, otherwise, this property takes the value of 1. For example,
R(v2, u) = 0, since exists a neighbor in common between v2 and u (y).

To illustrate how the properties described above are combined, suppose
that the best scoring function found through the evolution process was f̂(x) =
(D×D)
P − ((N×J)+E)

2 , and consider that v2, u, and q in Fig. 2 represent the
points (4, 4), (5, 3), and (10, 10), respectively. Then, the score that will be

associated with vertex u will be: f̂(u) = (
√
72×
√
72)

20 − ((5×0.125)+
√
2)

2 = 2.58.
We selected this set of properties based on their associated low computa-

tional cost, an important requirement, as our method is expected to support
searches on large graphs.

3.3 Fitness computation

It is of paramount importance to define an adequate fitness function based
on what we are aiming to optimize. As we intend to discover scoring func-
tions that improve search performance on NN graphs, we decided to use a
conventional metric on information retrieval known as recall to measure the
search performance for a given individual f̂ . Recall@k is defined as the rate of
relevant objects ranked at the first k positions.

Also, in order to have an indicator of the improvement in terms of the recall
obtained by using f̂ instead of the classical approach, we defined the fitness
function as the difference of the recall obtained between the search based on f̂
and the search based only on the distance to the query. Formally, this fitness
function is given by:

fitnessNN (f̂) =
1

|T |
∑
T∈T

(
g(T, f̂)− g(T, L2)

)
(1)

where the function g(T, s) computes the average recall@1 obtained on a train-
ing set of queries Q, by using s as scoring function at search, and limiting

14 Javier A. Vargas Muñoz et al.

the number of vertices explored to T . Also, L2 represents the function that
computes the Euclidean distance between any vertex and a query. The reason
why to average the gain obtained for different values of T is to discover scor-
ing functions that perform well regardless the maximum number of vertices
allowed to explore.

4 Experiments

This section presents the experimental protocol employed to validate the pro-
posed technique, and our experimental results.

4.1 Datasets

We experimented with three different datasets, one textual and two images
collections. These datasets have been extensively used in several evaluation
protocols adopted in studies similar to ours [21,36,51]. The employed datasets
are described next.

– GloVe:2 this dataset contains vector representations of words extracted
by a well-known method for word representation [40] from a corpus of 2
billions of tweets, resulting in 1.2 millions of 100-dimensional vectors. From
this set, we selected randomly 1 million of vectors for graph construction,
and 10 thousand as queries for search evaluation.

– YFCC100M:3 the Yahoo-Flickr Creative Commons 100 Million (YFCC-
100M) contains 99.2 million photos and 0.8 million videos from Flickr (we
only considered the images). We employed the feature vectors provided by
Popescu et al. [41], representing improved VLAD vectors, in which their
initial dimensions (32,768) were reduced with PCA+whitening, maintain-
ing the 128 most significant dimensions for our experiments. We selected
randomly a subset of 1 million of images for graph construction and 10
thousand queries.

– SIFT1M:4 a broadly used dataset introduced by Jegou et al. [26], consists
in a collection of 1 million SIFT vectors for index construction and 10
thousand queries. The SIFT [33] method (from Scale-invariant Feature
Transform) is a well-known algorithm for description of local features in
images. SIFT vectors have 128 dimensions.

4.2 NN graph baselines

We considered four of the methods described in Section 2.1.1 for construc-
tion of NN graphs: KGraph [14], SW-graph [35], and FANNG [21], and HC-

2 GloVe: https://nlp.stanford.edu/projects/glove/ (As of June 2021).
3 YFCC100M: http://multimedia-commons.s3-website-us-west-2.amazonaws.com (As

of June 2021).
4 BIGANN benchmark: http://corpus-texmex.irisa.fr (As of June 2021).

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 15

NNG [51]. In the case of KGraph, we performed experiments using the im-
plementation provided at the authors’ website.5 For the SW-graph method,
we used the implementation included in the Non-Metric Space Library (NM-
SLIB).6 For FANNG, we performed experiments with our own implementation.
For HCNNG, we also implemented this technique. Finally, we also included in
our comparisons the HNSW method, however, we were not able to apply our
proposed search approach over it, since the search employed by this technique
differs significantly from the approach considered by all four methods men-
tioned above, due to their hierarchical structure of multiple graphs. We leave
the investigation of the use of our method combined with HNSW for future
work.

We decided to set the maximum vertices degree to the same value (to have
a fair comparison) for the graphs created by KGraph, FANNG, and HCNNG.
Selecting a low value for maximum degree could lead to a disconnected graph,
so we tested with many cut-off values near to the average degree and deter-
mined the value of 60 as the best cut-off point. Also, we verified that the search
performance was not affected significantly at this cut-off value (for all three
methods). We use 60 as cut-off for all methods, except for SW-graph. In the
case of SW-graph, we do not limit the maximum number of vertices degree
since the SW-graph effectiveness depends mostly on their long edges, which
probably would be deleted if applied the pruning.

4.3 GP set-up

The following GP configuration was used in our experiments. We based our
choices on related work [1, 10,30,43] and empirical results:

– Population: for all three datasets, we created an initial population of
400 individuals, using the ramped-half-and-half technique, restricting the
individuals’ tree representation to a maximum depth of 5. The ramped-
half-and-half [29] is a population initialization procedure widely used in
the implementation of genetic programming solutions. In this technique
half of the population is created using the Full method and the other half
with the Grow method. The Full method generates random full trees, this
is, trees where all leafs are at the same level. In the Grow case instead,
this last property is not mandatory. Therefore, the trees are generated
completely random.

– Functions: we employed the set of classical mathematical operators: {+,−,
×, /}. Additionally, we included the binary operators of max and min.

– Terminals: we included all the search dependent and independent prop-
erties described in Section 3: {D,L,E,N,C, J, P,A,R}. Also, to maintain
these values approximately at the same scale, we divided them by their
correspondent maximum values. We made this aiming to assign the same

5 KGraph: https://github.com/aaalgo/kgraph (As of June 2021).
6 NMSLIB: https://github.com/nmslib/nmslib (As of June 2021).

16 Javier A. Vargas Muñoz et al.

importance to all properties. Finally, we included random real values uni-
formly selected from the range [−1, 1].

– Genetic operations: in all experiments, we used the classical operators of
reproduction, mutation, and crossover, employing the tournament selection
method, with size 6, as criteria to select the individuals. In all experiments,
the reproduction, mutation, and crossover operators were applied at a rate
of 5%, 10%, and 85% of the population, respectively.

– Fitness function: we employed the fitness function given by Equation 1.
For the set T , we selected the logarithmic scaled values of {102, 102.1, 102.2,
..., 103.9, 104}, guarantying that individuals are optimized for very distinct
situations, ranging from a restricted number of distance calculations to less
limited scenarios.

– Stopping criterion: in the parameter exploration phase, we observed
that, in most of experiments, after the 100th generation, the fitness value
does not change significantly.

At fitness evaluation of individuals, a subset of 1,000 queries were selected
randomly from the original test set of 10,000 queries, for each dataset. This
subset compose the training set on the learning process. The remaining sub-
set of 9,000 queries were used to test the best individual found through the
evolution process, also known as the test set. It is worth mentioning that the
queries on the training and test set are disjoint, so all queries on the test set
were unseen on the training process.

4.4 Evaluation metric

We adopted the classical Speedup vs Recall charts to present the performance
of each method. The speedup is measured over the linear search (explore all col-
lection). To keep this comparison independent of the architecture where the ex-
periments were executed, we considered the following definition of speedup [21]:

Speedup =
Size of collection

of distance calculations
(2)

4.5 Experimental results

Results for 1-NN search (search of the one nearest point) of the proposed
approach on the GloVe, YFCC, and SIFT datasets are presented in the first
column of Fig. 8. Dashed curves (with suffix “GP”) represent the search per-
formance on the corresponding graphs using the GP-based scoring function
for selecting the next vertex that will be explored.

For the GloVe dataset, as it can be observed, search performance results
for the 1-NN case showed a significant gain obtained by using the GP-based
scoring function against the usual distance. This gain is observed for all the
four methods considered for NN graph construction. In the case of the YFCC

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 17

0 20 40 60 80 100
Recall@1

102

103

104

Sp
ee

du
p

GloVe

KGraph
KGraph-GP
SW-graph
SW-graph-GP
FANNG
FANNG-GP
HCNNG
HCNNG-GP

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee

du
p

GloVe

0 20 40 60 80 100
Recall@1

102

103

104

Sp
ee

du
p

SIFT

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee

du
p

SIFT

0 20 40 60 80 100
Recall@1

102

103

104

Sp
ee

du
p

YFCC

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee

du
p

YFCC

Fig. 8 Speedup vs recall on GloVe, SIFT, and YFCC datasets.

and SIFT datasets, note that, although, the margin between the two curves
(baselines and proposed GP-based search) seems to be small, figures are shown
in logarithmic scale. Also, we run statistical per-query paired t-test with 95%
confidence, over the 9,000 queries employed as test queries, and considering
the same values of speedup used in Fig. 8. Results of this statistical test are
shown in Table 2, where “+” symbols means the statistical superiority of
our GP-based search approach against classical search (Algorithm 1), sym-
bol “−” means the opposite, and “=” means a statistical tie. The last row
of the table presents the results of the statistical tests done over all queries
and speedup values, considering all graph construction methods and datasets.
These results demonstrate the statistical superiority of our approach against
their corresponding baselines.

Employing the same functions discovered on the 1-NN search case, we also
ran experiments for the 10-NN (search of the 10 nearest points). Results of

18 Javier A. Vargas Muñoz et al.

Table 2 Statistical paired t-test for 1-NN search, comparing our GP-based approach vs
classical search (“+”: gain, “−”: lost, “=”: tie, H: HCNNG, F: FANNG, S: SW-graph, K:
KGraph).

Speedup
GloVe SIFT YFCC

H F S K H F S K H F S K

102.0 + + + + = = + + + = + +

102.1 + + + + = − + + + = + +

102.2 + + + + = − + + + + + +

102.3 + + + + + = + + + + + +

102.4 + + + + = = + + + + + +

102.5 + + + + = = + + + + + +

102.6 + + + + = = + + + + + +

102.7 + + + + + = + + + + + +

102.8 + + + + + + + + + + + +

102.9 + + + + + + + + + + + +

103.0 + + + + + + + + + + + +

103.1 + + + + = + + + + + + +

103.2 + + + + + + + + + + + +

103.3 + + + + + + + + + + + +

103.4 + + + + + + + + + + + +

103.5 + + + + + + + + + + + =

103.6 + + + = + + + + + + + +

103.7 + + + + + + + + + + + +

103.8 + + + − + + + + + + + =

103.9 + + + = + + + + + + + +

104.0 + + + = = + + + + + + =

General + + + + + + + + + + + +

these experiments are shown in the second column of Fig 8, for the GloVe,
YFCC, and SIFT datasets. Similarly to the case of the 1-NN search, we also
performed a statistical paired t-tests for the 10-NN search. These results are
shown in Table 3. As it can be observed, the behavior of all methods did not
change significantly. The proposed approach yielded superior or equivalent re-
sults to their counterparts, in almost all points, demonstrating the effectiveness
of discovered functions in the scenario of K-NN searches, even though these
were trained to optimize the 1-NN search.

The following scoring functions were discovered by the proposed GP frame-
work and employed in the final experiments that led to the results described
above:

– GloVe:
– HCNNG:min((E+max(A,C)), (D+D))/(0.68+E)+min((((D/L)/E)×(D+min(D,
L))), ((min(D,P)/0.68) +min(0.68, D)))

– FANNG: min(L,min(D, (L+N)))/((L×min(D,E))× (L+ (−0.94×D))) + ((((D −
E)− L)/(D × L)) + ((N − 0.94× J) + (N +min(C,P))))

– SW-graph: (min(min(D, J),min(A,C)) +min(C,D))−max(min(C,D), ((D +N)×
(C+E)))+max((min(A, J)×min(D,N)),min(C, J)+(D+N))+(min(min(D,N),min
(C, J)) + (D +min(C, J)))

– KGraph: (max((N−E)−E,max(D,P)−max(D, J))×min(D, (P−max(0.96, D))))×
(max(((0.96− E)− E), 0.96− L) + (((R−D)−D)× ((R− E)−max(E,P))))

– YFCC:
– HCNNG: max((max(A,N)×(P +(D/L))), (−0.11+(L×(E×L))))+((−0.11/min(D,

(A+D))) +max((−0.11/min(D,N)),max(E,P)))
– FANNG:max(min(min(C, J),max(0.10, J)×min(L,N)), (N×min(D,P)+(min(0.61,
D)+D)))+min(min(0.61×E, (D×N)+ (N ×N)),min(min(D,min(D,N)),min(D,
(0.61×N))))

– SW-graph: ((D/(−0.45 + N)) × (L × N)) + (max(N,C × N) +max(D, 0.84 × N)) −
min(min((0.84×N)/(−0.45+J),min(C+N,D+E)), ((L×N)/(−0.45+D)−min(0.84×
N,C +N)))

– KGraph:min(((((−0.13+E)/D)−(D+(−0.52×N)))−(E+(P+0.13))/D), ((min(A,N)
+ (N − R))− (min(A,R)/E))− ((E + (P + 0.13))/D))

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 19

Table 3 Statistical paired t-test for 10-NN search, comparing our GP-based approach vs
classical search (“+”: gain, “−”: lost, “=”: tie, H: HCNNG, F: FANNG, S: SW-graph, K:
KGraph).

Speedup
GloVe SIFT YFCC

H F S K H F S K H F S K

102.0 + + + + + = + + + + + +

102.1 + + + + + = + + + + + +

102.2 + + + + + − + + + + + +

102.3 + + + + + = + + + + + +

102.4 + + + + + − + + + + + +

102.5 + + + + + = + + + + + +

102.6 + + + + + = + + + + + +

102.7 + + + + + + + + + + + +

102.8 + + + + + + + + + + + +

102.9 + + + + + + + + + + + +

103.0 + + + + + + + + + + + +

103.1 + + + + + + + + + + + +

103.2 + + + + + + + + + + + +

103.3 + + + + + + + + + + + +

103.4 + + + + + + + + + + + +

103.5 + + + + + + + + + + + +

103.6 + + + = + + + + + + + =

103.7 + + + = + + + + + + + =

103.8 + + + − + + + + + + + =

103.9 + + + = + + + + + + + =

104.0 + + + − + + + + + + + =

General + + + + + + + + + + + +

– SIFT:
– HCNNG:min(((min(0.42, P)×(A+D))×(E−(0.42/D))), (N−(0.42/D)))+(((min(0.42
, P)× (A+ E))× (min(0.42, D) + (A+D)))− (E +min(D,min(D,P))))

– FANNG: ((((C/L) +min(N,P)) − (J −max(E,N))) + (((−0.64/D) +max(C,N)) −
(min(P, P)−max(N,P))))− ((min(P, (C/D))−max(max(N,P),max(C,D)))−max(
(−0.64× (−0.64/D)), ((D/P) +max(L,N))))

– SW-graph: (N×(((D/E)×max(N,P))+((D/N)×max(D,N))))+max((max(E,N)×
(D +N)), (D +min(J, P))) + ((D +min(P,R))× (D + (N + P)))

– KGraph:min((D−(min(D,E)×min(0.41, E))), (max(min(C, J), (E−C))+min(max(
E, J),max(0.41, E))))− (min(max(min(0.41, J), (E−C)),max((R/E),min(C,D)))×
(min(J, (D/R))× (max(0.41, R) +min(0.41, E))))

In order to evaluate the influence of each property on each pair of dataset
and NN graph technique, we performed a set of experiments comparing the
1-NN search results obtained by using the GP-based functions listed previ-
ously against the results obtained by using the same functions but with each
property removed from the expression, one at a time. Each removed property
was replaced by a neutral value (either 0 or 1, depending on the math function
in which it was involved).

We also performed per-query paired t-tests with 95% confidence comparing
these two approaches. These results are shown in Table 4, where “−” means
that the exclusion of the property affected negatively the search results, “+”
the opposite, and “=” means that the exclusion of the property did not af-
fect significantly the search performance. The cases where the property was
not present in the GP-based function are shown as blank cells. As it can be
observed, the distance (D) and the edge weight (E) are the most employed
properties in the discovered functions, and the exclusion of these properties
affected negatively the search performance in almost all cases, so, they were
among the most important properties. Also, there were a few cases (e.g., vertex
degree (N) and Jaccard coefficient (J)) for which the exclusion of some prop-

20 Javier A. Vargas Muñoz et al.

Table 4 Statistical paired t-test for 1-NN search, comparing our GP-based approach using
original functions vs using the resulting function by excluding each property (“+”: gain,
“−”: lost, “=”: tie, H: HCNNG, F: FANNG, S: SW-graph, K: KGraph). The cases where
the property was not present in the GP-based function are shown as blank cells.

GLOVE YFCC SIFT

Property H F S K H F S K H F S K

D − − − − − − − − − − − −
L − − − = + =

E − − = − − − = − = − − −
N = + − − + − + − − +

C = = − = − −
J + − − = = + −
P = = − − − − = = −
A = = − = = =

R − − − − −

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee

du
p

GloVe

FLANN
OPQ
AQ
HNSW
KGraph-GP
SW-graph-GP
FANNG-GP
HCNNG-GP

0 20 40 60 80 100
Recall@10

102

103

104

Sp
ee

du
p

SIFT

Fig. 9 Comparison with the state-of-the-art techniques.

erties increased significantly the search performance, therefore, this analysis
can be used in the future for proper property selection.

4.5.1 Comparison with state of the art

Fig. 9 compares the graph-based methods investigated in this paper with oth-
ers belonging to different families (tree-based and quantization-based) for the
GloVe and SIFT datasets, considering the speedup vs Recall@10. The methods
compared are FLANN [38], OPQ [16], and AQ [6]. Also, we included in this
comparison the HNSW described above, since it presented top performances
in recent benchmarks. As we can observe, from the graph-based methods in
which we employ our search approach, FANNG and HCNNG obtained the best
search performance. On the other hand,with regard to other state-of-the-art
techniques, HNSW is the most competitive for these datasets. That suggests
that the investigation of the use of a GP formulation in a hierarchical struc-
ture is a promising research direction. We expect to investigate that in future
work.

4.5.2 Search time vs recall

Fig. 10 shows the speedup in terms of raw time considering all evaluated meth-
ods and datasets (GloVe, SIFT, and YFCC). In the chart, time refers to the

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 21

100 101 102
time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll@

1

GloVe

KGraph
KGraph-GP
SW-graph
SW-graph-GP
FANNG
FANNG-GP
HCNNG
HCNNG-GP

100 101 102

time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
10

GloVe

100 101 102

time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
1

SIFT

100 101 102

time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
10

SIFT

100 101 102

time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
1

YFCC

100 101 102

time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll@
10

YFCC

Fig. 10 Time vs recall on GloVe, SIFT, and YFCC datasets.

total time for processing 9000 queries. As we can observe, despite the use of
a complex function for guiding the selection of suitable paths in a search, the
overall gains regarding the use of the GP-based approach led to better or com-
parable results, especially for the GloVe dataset. One exception, for example,
was the performance of HCNNG with and without GP (red curves) for the
SIFT dataset. In this case, the use of GP led to an overhead. Search results
in terms of effectiveness in this dataset are high in general for all methods,
in comparison to the other datasets, leading therefore to small margins for
improvements.

5 Conclusions

We introduced in this work a genetic programming framework that explores
different topological properties in NN graphs, in order to improve the order in

22 Javier A. Vargas Muñoz et al.

which vertices are visited at search time, and, therefore, reduce the number
of vertices explored to discover the true nearest neighbors. Our experimental
results and statistical tests showed that searches on NN graphs can be im-
proved by considering other kinds of vertices’ properties besides the distance
to the query, combining them by means of the mathematical expression re-
turned by the learning stage of the proposed framework. Also, the proposed
technique led to improvements against the usual search approach, in terms of
recall, independently of the four NN graph techniques employed, and with no
significant time overhead.

In scenarios with very large collections, in the order of dozens of mil-
lions of objects, where common computers are not capable of executing NN
graph-based methods due to memory constrains, it is possible to employ a
distributed version of these algorithms by applying for example the MapRe-
duce programming model. Some distributed approaches were proposed in the
literature [18,38] for the tree-based and hash-based methods. Commonly, data
is split across various computers, where indices are created separately. Then,
search is conduced independently on each machine and results are merged.
This approach can be easily adapted for NN graph-based algorithms as for
our proposed framework. We intend, as future work, to experiment with a
distributed version of our framework.

Also, we plan to include other topological properties in the proposed frame-
work that could improve even more our results. We also plan to deepen the
investigation of the impact of using different graph measurements in the GP-
based combination discovery framework. Finally, we intend to apply the pro-
posed framework in other contexts that might benefit from NN graphs, e.g.,
image annotation problems.

Acknowledgements Authors are grateful to CNPq (grants #307560/2016-3, #400487/
2016-0, #425340/2016-3, #304380/2018-0, and #422593/2018-4), CAPES (grant
#88881.145912/2017-01), FAPESP (grants #2014/12236-1, #2015/24494-8, #2016/
50250-1, #2017/20945-0, #2015/11937-9, #2017/12646-3, and #2017/16246-0) and the
FAPESP-Microsoft Virtual Institute (grants #2013/50155-0, #2013/50169-1, and #2014/
50715-9). This study was financed in part by the Coordenação de Aperfeiçoa-mento de Pes-
soal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001. The authors are also grateful
to the NFR SmartPlan and TwinFjord projects.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Albarraćın, J.F.H., Ferreira, E., dos Santos, J.A., da S. Torres, R.: Fusion of genetic-
programming-based indices in hyperspectral image classification tasks. In: Proceeding
of the IEEE International Geoscience and Remote Sensing Symposium, pp. 554–557
(2017)

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 23

2. Albarraćın, J.F.H., Oliveira, R., Hirota, M., dos Santos, J.A., da S. Torres, R.: A soft
computing approach for selecting and combining spectral bands. Remote Sensing 12(4),
2267 (2020). DOI 10.3390/rs12142267. URL https://www.mdpi.com/769804

3. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neigh-
bor in high dimensions. Communications of the ACM 51(1), 117–122 (2008)

4. André, F., Kermarrec, A.M., Le Scouarnec, N.: Accelerated nearest neighbor search with
quick adc. In: Proceedings of the 2017 ACM on International Conference on Multimedia
Retrieval, ICMR’2017, pp. 159–166. ACM, New York, NY, USA (2017)

5. Aumüller, M., Bernhardsson, E., Faithfull, A.: Ann-benchmarks: A benchmarking tool
for approximate nearest neighbor algorithms. In: C. Beecks, F. Borutta, P. Kröger,
T. Seidl (eds.) Similarity Search and Applications, pp. 34–49. Springer International
Publishing, Cham (2017)

6. Babenko, A., Lempitsky, V.: Additive quantization for extreme vector compression.
In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp.
931–938 (2014)

7. Babenko, A., Lempitsky, V.: The inverted multi-index. IEEE Transactions on Pattern
Analysis and Machine Intelligence 37(6), 1247–1260 (2015)

8. Bawa, M., Condie, T., Ganesan, P.: LSH forest: Self-tuning indexes for similarity search.
In: Proceedings of the 14th International Conference on World Wide Web, WWW’2005,
pp. 651–660 (2005)

9. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Com-
munications of the ACM 18(9), 509–517 (1975)

10. de Carvalho, M.G., Laender, A.H.F., Gonçalves, M.A., da Silva, A.S.: A genetic pro-
gramming approach to record deduplication. IEEE Transactions on Knowledge and
Data Engineering 24(3), 399–412 (2012)

11. Chiu, C.Y., Chiu, J.S., Markchit, S., Chou, S.H.: Effective product quantization-based
indexing for nearest neighbor search. Multimedia Tools and Applications 78(3), 2877–
2895 (2019)

12. Costa, L.d.F., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of
complex networks: A survey of measurements. Advances in physics 56(1), 167–242
(2007)

13. Dasgupta, S., Freund, Y.: Random projection trees and low dimensional manifolds. In:
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC’2008,
pp. 537–546 (2008)

14. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for generic
similarity measures. In: Proceedings of the 20th International Conference on World
Wide Web, WWW’2011, pp. 577–586 (2011)

15. Efstathiades, C., Efentakis, A., Pfoser, D.: Efficient processing of relevant nearest-
neighbor queries. ACM Transactions on Spatial Algorithms and Systems 2(3) (2016)

16. Ge, T., He, K., Ke, Q., Sun, J.: Optimized product quantization for approximate nearest
neighbor search. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2946–2953 (2013)

17. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A* search meets graph
theory. In: SODA’2005 (2005)

18. Gonzalez-Lopez, J., Ventura, S., Cano, A.: Distributed nearest neighbor classification
for large-scale multi-label data on spark. Future Generation Computer Systems 87,
66–82 (2018)

19. Gubichev, A., Bedathur, S., Seufert, S., Weikum, G.: Fast and accurate estimation of
shortest paths in large graphs. In: Proceedings of the 19th ACM International Confer-
ence on Information and Knowledge Management, CIKM’2010, p. 499–508. Association
for Computing Machinery, New York, NY, USA (2010)

20. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: Proceed-
ings of the 1984 ACM SIGMOD International Conference on Management of Data,
SIGMOD’1984, pp. 47–57. ACM, New York, NY, USA (1984)

21. Harwood, B., Drummond, T.: FANNG: Fast approximate nearest neighbour graphs. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
5713–5722 (2016)

24 Javier A. Vargas Muñoz et al.

22. Houle, M.E., Ma, X., Oria, V., Sun, J.: Improving the quality of k-nn graphs for image
databases through vector sparsification. In: Proceedings of International Conference on
Multimedia Retrieval, ICMR’2014, pp. 89:89–89:96. ACM (2014)

23. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse
of dimensionality. In: Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, pp. 604–613 (1998)

24. Iwasaki, M.: Pruned bi-directed k-nearest neighbor graph for proximity search. In:
Similarity Search and Applications, pp. 20–33. Springer International Publishing, Cham
(2016)

25. Jebari, K.: Selection methods for genetic algorithms. International Journal of Emerging
Sciences 3, 333–344 (2013)

26. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search.
IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1), 117–128 (2011)

27. Ji, T., Liu, X., Deng, C., Huang, L., Lang, B.: Query-adaptive hash code ranking for
fast nearest neighbor search. In: Proceedings of the 22nd ACM International Conference
on Multimedia, MM’2014, pp. 1005–1008. ACM, New York, NY, USA (2014)

28. Kalantidis, Y., Avrithis, Y.: Locally optimized product quantization for approximate
nearest neighbor search. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2329–2336 (2014)

29. Koza, J.R.: Genetic Programming: on the programming of computers by means of nat-
ural selection, vol. 1. MIT press (1992)

30. Lacerda, A., Cristo, M., Gonçalves, M.A., Fan, W., Ziviani, N., Ribeiro-Neto, B.: Learn-
ing to advertise. In: Proceedings of the 29th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR’2006, pp. 549–556.
ACM, New York, NY, USA (2006)

31. Li, J., Lan, X., Wang, J., Yang, M., Zheng, N.: Fast additive quantization for vector
compression in nearest neighbor search. Multimedia Tools and Applications 76(22),
23273–23289 (2017)

32. Liu, J., Li, M., Liu, Q., Lu, H., Ma, S.: Image annotation via graph learning. Pattern
Recognition 42(2), 218–228 (2009)

33. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of
the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157
vol.2 (1999). DOI 10.1109/ICCV.1999.790410

34. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li, K.: Multi-probe LSH: Efficient
indexing for high-dimensional similarity search. In: Proceedings of the 33rd International
Conference on Very Large Data Bases, VLDB’2007, pp. 950–961 (2007)

35. Malkov, Y.A., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest neigh-
bor algorithm based on navigable small world graphs. Information Systems 45, 61–68
(2014)

36. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs. arXiv preprint arXiv:1603.09320 (2016)

37. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm
configuration. In: Proceedings of the International Conference on Computer Vision
Theory and Application, pp. 331–340 (2009)

38. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data.
IEEE Transactions on Pattern Analysis and Machine Intelligence 36(11), 2227–2240
(2014)

39. Papadias, D.: Hill climbing algorithms for content-based retrieval of similar configura-
tions. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR’2000, pp. 240–247. ACM,
New York, NY, USA (2000)

40. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation.
In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, pp. 1532–1543 (2014)

41. Popescu, A., Spyromitros-Xioufis, E., Papadopoulos, S., Le Borgne, H., Kompatsiaris,
I.: Toward an automatic evaluation of retrieval performance with large scale image
collections. In: Proceedings of the 2015 Workshop on Community-Organized Multimodal
Mining: Opportunities for Novel Solutions, MMCommons’2015, pp. 7–12. ACM, New
York, NY, USA (2015)

A Genetic Programming Approach for Searching on Nearest Neighbors Graphs 25

42. Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation
in large networks. In: Proceedings of the 18th ACM conference on Information and
knowledge management, CIKM’2009, pp. 867–876 (2009)

43. da S. Torres, R., Falcão, A.X., Gonçalves, M.A., Papa, J.P., Zhang, B., Fan, W., Fox,
E.A.: A genetic programming framework for content-based image retrieval. Pattern
Recognition 42(2), 283–292 (2009)

44. Silpa-Anan, C., Hartley, R.: Optimised kd-trees for fast image descriptor matching. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
1–8 (2008)

45. Sproull, R.F.: Refinements to nearest-neighbor searching in k-dimensional trees. Algo-
rithmica 6(1-6), 579–589 (1991)

46. Su, F., Xue, L.: Graph learning on k nearest neighbours for automatic image annotation.
In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval,
ICMR’2015, pp. 403–410. ACM, New York, NY, USA (2015)

47. Tang, J., Hong, R., Yan, S., Chua, T.S., Qi, G.J., Jain, R.: Image annotation by knn-
sparse graph-based label propagation over noisily tagged web images. ACM Transactions
on Intelligent Systems and Technology 2(2), 14:1–14:15 (2011)

48. Tretyakov, K., Armas-Cervantes, A., Garćıa-Bañuelos, L., Vilo, J., Dumas, M.: Fast fully
dynamic landmark-based estimation of shortest path distances in very large graphs. In:
Proceedings of the 20th ACM International Conference on Information and Knowledge
Management, CIKM’2011, p. 1785–1794. Association for Computing Machinery, New
York, NY, USA (2011)

49. Vargas, J.A.: Large-scale indexing of high dimensional data via nearest neighbors graphs.
Ph.D. thesis, University of Campinas, São Paulo, Brazil (2020)

50. Vargas, J.A., Dias, Z., da S. Torres, R.: A genetic programming approach for searching
on nearest neighbors graphs. In: Proceedings of the 2019 on International Conference
on Multimedia Retrieval, ICMR ’19, pp. 43–47. ACM, New York, NY, USA (2019)

51. Vargas, J.A., Gonçalves, M.A., Dias, Z., da S. Torres, R.: Hierarchical clustering-based
graphs for large scale approximate nearest neighbor search. Pattern Recognition 96,
106970 (2019)

52. Wang, M., Zhou, W., Tian, Q., Pu, J., Li, H.: Deep supervised quantization by self-
organizing map. In: Proceedings of the 25th ACM International Conference on Multi-
media, MM’2017, pp. 1707–1715. ACM, New York, NY, USA (2017)

53. Xiaokang, F., Jiangtao, C., Hui, L., Yingfan, L.: An efficient lsh indexing on discrimi-
native short codes for high-dimensional nearest neighbors. Multimedia Tools and Ap-
plications 78(17), 24407–24429 (2019)

54. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general
metric spaces. In: Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 311–321 (1993)

