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Abstract
The essential of developing an advanced driving assistance system is to learn human-
like decisions to enhance driving safety. When controlling a vehicle, joining roundabouts
smoothly and timely is a challenging task even for human drivers. In this paper, we propose
a novel imitation learning based decision making framework to provide recommendations
to join roundabouts. Our proposed approach takes observations from a monocular camera
mounted on vehicle as input and use deep policy networks to provide decisions when is the
best timing to enter a roundabout. The domain expert guided learning framework can not
only improve the decision-making but also speed up the convergence of the deep policy net-
works. We evaluate the proposed framework by comparing with state-of-the-art supervised
learning methods, including conventional supervised learning methods, such as SVM and
kNN, and deep learning based methods. The experimental results demonstrate that the imi-
tation learning-based decision making framework, which ourperforms supervised learning
methods, can be applied in driving assistance system to facilitate better decision-making
when approaching roundabouts.

Keywords Advanced driving assistance system · Intelligent roundabout-join task ·
Imitation learning

1 Introduction

Autonomous vehicle (AV) and advanced driver assistance systems (ADAS) development
is playing a key role in contemporary intelligence transportation systems. An autonomous
vehicle captures environmental data via sensor techniques to navigate the vehicle without
human interventions [2]. As highlighted in [44], AVs can not only carry out basic manipula-
tions, such as acceleration, deceleration, braking, forward and backward movement, turning
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and other conventional vehicles functions, but also accomplish high-level tasks, such as mis-
sion planning, path planning, intelligent obstacle avoidance and all human-like behaviors.
Although many AV manufacturers have made significant progress on AV development, e.g.
Google self-driving car in the U.S. [21], VisLab’s BRAiVE in Italy [9] and Jaguar Land
Rover in the U.K. [26], it is still a great challenge for AV to make decisions under complex
environments, e.g. a busy urban environment with multiple junctions [37] or with numerous
objects moving in various directions [3].

Traffic roundabout is a looping junction where road traffic is restricted to go in one
direction around a central island with priority given to the coming vehicles that have
already entered the roundabout [29]. The roundabout systems in the U.K. have resulted in
many accidents due to human drivers’ misjudgements of the speed, distance or intention
of approaching vehicles in the roundabout [14]. In addition, there are many different types
of roundabouts, e.g., mini-roundabouts, signalized roundabouts and non-signalized round-
abouts [37]. Therefore, it is challenging to provide intelligent recommendations to join a
roundabout system without making any hassles to the entire system.

In recent years, artificial intelligence and machine learning methods have been widely
applied to make decisions at complex junctions [14]. Qi et al. [40] uses convolutional neural
networks (CNN) to detect vehicles so that an AV could make decisions based on the environ-
mental contexts. In [15], behavioral rule-based model is built to take vehicle angles, speeds
and diameters of crossroads into consideration to deal with issues happening at crossroads.
In [44], an adaptive tactical behavior planner (ATBP) is proposed to simulate human-like
motion behaviours at non-signalized roundabouts by analysing individual driver’s historical
navigation patterns. In [16], Gritschneder et al. design a reinforment learning framework
to generate optimal actions via a multiple-layer perceptron neural network based on the
observations obtained from GPS system to reflect the position and motion of other nearest
vehicles. Imitation learning (IL) has become one of the most popular learning frameworks
due to its advantages of leveraging domain expert knowledge [23]. An IL model shares sim-
ilar idea of reinforcement learning but avoid the randomized control trials mechanism in
reinforcement learning framework when optimizing control actions. It is more suitable to
the tasks which cannot afford the costs incurred by the random trials. Furthermore, it can
speed up the training process of the control policy deep models comparing to conventional
supervised learning models. Thus, many IL systems, such as [19, 28, 38, 48], have been
proposed to control AVs in many on-road and off-road tasks.

In this paper, we propose an IL-based decision-making system to provide intelligent rec-
ommendations to join a roundabout timely and smartly. In specific, a deep learning based IL
system is trained to learn how human drivers to manipulate vehicles based on observations
of other vehicles in roundabouts. In addition, we investigate how different backbone archi-
tectures, such as VGG-16 and ResNet-18 make impact on the learning performance. The
novelty of our paper is highlighted as: (1) we propose an imitation learning-based decision-
making system (ILBDM) to join roundabouts timely and safely. To our best knowledge,
this is the first system to provide guidance for drivers at roundabout by exploiting imita-
tion learning method. (2) we provide a new roundabout-entering dataset for AV research.
As data is the main driving force for new deep learning-based algorithm development, our
work has paved way to solve a difficult high level control task; and (3) we evaluate the
proposed ILBDM system comprehensively to prove the superior performance of imitation
learning method over supervised learning methods for a sequence of decision-making task.

This paper is organized as follows: Section 2 describes the related work which includes
intelligent transportation system, neural computational models for autonomous vehicle
decision-making, and autonomous vehicle decision-making in roundabout applications. In
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Section 3, the proposed ILBDM system is explained in details. After presenting the overall
IL framework, we provide the technical details of extracting observations from the driv-
ing environment, including car detection, motion feature extraction and backbone network
architectures, and how we set up the reward schemes to train the system. In Section 4,
we evaluate the performance of the proposed framework under different backbone network
architectures. Furthermore, the experimental results demonstrate that the proposed method
outperforms the systems with supervised learning algorithms. In Section 5, a conclusion is
drawn and ideas for future research are discussed.

2 RelatedWork

2.1 Intelligence transportation System

Intelligent transportation system (ITS) has become the key to reduce the negative impact
from traffic congestions and pollutions that are the most serious contemporary issues caused
by the rapid urbanisation development [13, 17]. In [13], it summarises that ITS can solve
these issues by using (1) routing optimisation, (2) intelligent traffic light control, and (3)
decentralised multi-agent communications. Routing optimisation is an active research field
of ITS. Many optimisation algorithms, such as genetic algorithm [5], ant colony algorithm
[1] and particle swarm optimisation algorithm [10], have been proposed to make optimal
path planning for vehicle navigation. Intelligent traffic light control system provides another
solution to reduce traffic congestions. Chen et al. [10] proposes a real time traffic light
control algorithm that adjusts both the sequence and length of traffic lights by using several
traffic factors which include traffic volume, waiting time, and traffic density. Vallati et al.
[47] designs a PDDL+ encoding planning module to optimise the traffic light control for
solving those traffic congestions which are caused by unexpected accidental events. In [25],
two intelligent traffic light control schemes are used in fog computing to deal with resisting
malicious vehicles and single-point failure.

In addition to these ITS systems, advanced vehicle control systems have become an
emerging technology to make contributions to solve these traffic problems as well as to
enhance the driving safety.

2.2 Neural computational autonomous vehicle control

Control policy neural networks have been widely proposed in autonomous vehicle control
systems since the work of [39]. In [39], A three-layer back-propagation neural network
named ALVINN is proposed to take road images as input and produce travel directions as
output. In [8], a deep learning network called PilotNet is used to estimate steering angles
by extracting and finding salient objects from visual perceptional input data. Reinforcement
learning (RL) approaches are deployed in many AV systems in recent years, e.g., [12, 53,
54]. Wolf et al. [54] proposes a deep Q-network (DQN) policy network to steer vehicle
in a simulated driving environment. In [12], several deep reinforcement learning methods,
including DQN, Deep Deterministic Actor Critic and Deep Attention Reinforcement Learn-
ing, are trained to control a vehicle on the Open-source Racing Car Simulator (Torcs) to
demonstrate the feasibility of using RL framework for AV control tasks. In [53], An RL
model predictive control neural network is trained to control a vehicle to run on an elliptical
dirt track at the Georgia Tech Autonomoous Racing Facility. Although RL based methods
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do not need any labeled training data, most of them have to be trained in a simulated
environment to reduce the costs incurred by the exploration steps in the RL framework.

Imitation learning (IL) is an appealing deep learning framework to learn a policy network
guided by human domain expert to speed up the network convergence as well as enforce
strong constraints on the mapping space between input observations and output actions. In
[59], Zeng et al. use LIDAR data and high definition maps to find trajectories that minimize
predefined losses. [43] proposes to combine imitative model with goal-directed planning to
outperform directing IL methods. In [7], a model named ChauffeurNet is trained by taking
the advantages of both human expert’s guided data and synthesized perturbations of the
expert’s driving data. In [11], Codevilla et al. assume that both perceptual input and driver
intention are required to make optimal decisions. Therefore, a conditional imitation learning
based model is proposed to consider dirver intention in the decision-making process.

2.3 Autonomous vehicle decision-making at roundabouts

As one of the most difficult decision-making tasks, vehicle control at roundabout has raised
siginificant attentions during this decade [18, 34, 35, 37, 50, 51]. In [18], low-level texture
features and motion features are extracted from monocular video sequences to detect and
track moving vehicles in roundabouts. The method is tested on BRAiVE AV/ADAS sys-
tem and achieve a good accuracy performance with a real-time processing speed. In [35], a
panoramic stereo-vision based system is designed to detect upcoming vehicles and calculate
the time-to-contact that defines the estimated time of potential collision with the ego-
vehicle. In [37], Okumura et al. propose an action planning method for AVs to merge into a
roundabout. In this work, four learning inputs (approaching car speed, difference in heading
between the vehicle and the road, the distance from the vehicle to the merge point, and dis-
tance from the vehicle to the nearest branch point) can support AVs to make the right “enter”,
“wait” and “merge” decisions. In [49], grid-based image processing approach (GBIPA) is
proposed to characterize traffic situations that can be used for machine learning algorithms
to learn the roundabout joining criteria. Approaching car features (Position, direction and
speed) can be extracted by proposed GBIPA as learning inputs, and the trained classifiers
using the proposed GBIPA approach is evaluated on test videos captured at roundabouts,
where the SVM yields the best performance with a 90.28% classification accuracy. In [50],
Wang et al. designed a human-like decision-making system at mini-roundabouts based on
both of front view and side view cameras. In addition, [51] extends some of previous works
in [49] and proposes a multi-grid-based image processing approach using multiple cameras
(MGC), it can deal with two issues: 1) the autonomous vehicles’ can swiftly change the
position/orientation when reaching a roundabout, and 2) The driver’s views and behaviors
can also be varied. Proposed MGC include different size of grid to boost the accuracy and
to protect the autonomous vehicle when entering a roundabout.

3 Proposed ILBDM system

In this proposed work, we design an IL based decision-making algorithm to facilitate intelli-
gent decisions to enter roundabouts. Considering that the vehicle control at roundabouts can
be formulated as a sequence of decisions, IL method is more suitable to the task compar-
ing to the convention supervised learning methods. In particular, the system learns a neural
computational model by feeding human expert data to make strong constraints when search-
ing the solution space to update the deep policy network. It differs to our previous work, i.e.
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[49–51] on two folders: first, this IL based model learns to maximize the expected rewards
when taking an action at a timestamp whilst our previous work makes an IID assumption
of the control actions at individual timestamps by using supervised learning methods. Sec-
ondly, we investigate whether deep policy backbone networks outperform the conventional
decision models, such as SVM and kNN classifiers, for the roundabout decision-making
task.

The proposed ILBDM system is a fast and reliable imitation learning-based approach.
In particular, we deploy the Deep Q-Learning from Demonstrations (DQfD) method [22]
as our IL system. Although there are labelling data from domain experts as guidance which
is similar to the supervised learning framework, the IL highlights that the decisioin-making
is a continuous process as the decisions made in the past can influence the decisions made
in the future. Therefore, a well-learned function can map states to actions that could max-
imise the expected discounted rewards over the entire decision-making process. Following
the assumption in the reinforcement learning framework, a Markov decision process is for-
mulated for the task for IL learning. Here, a tuple (S, A, R, T , γ ) consists of a set of states
S, a set of actions A, a reward function R(s, a), a transition function T (s, a, s′) = P(s′|s, a),
and a discount factor γ . A policy network π is learned to provide recommendations on
actions by maximizing cumulated discounted rewards which can be expressed as a function
Qπ(s, a):

Qπ(s, a) = E[R(s, a) + γ
∑

s′
P(s′|s, a)max

a′ Qπ(s′, a′)] (1)

Here, Qπ(s, a) represents the expected cumulated discounted rewards, R(s, a) repre-
sents the immediate reward when taking an action a at state s, s′ represents the state at the
next timestamp and Qπ(s′, a′) is the expected maximium reward if taking action a′ at state s′.

The overview of the proposed framework is illustrated in Fig. 1. A monocular camera
system mounted in front of our vehicle is used to capture video sequence data from the
driving environment. The raw data are fed into a pre-processing pipeline to extract effi-
cient observed states from the environment for the decision-making at roundabouts. This
forms the state space S. At each timestamp, an action a ∈A is made by a deep policy
network to maximize the expected cumulated rewards in the driving sequence guided by

Fig. 1 Main framework of the proposed ILBDM system. A decision of whether the AV should wait (0) or go
(1) can be made at each time stamp
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the action made by an expert driver. The training data is a set of observation-action pairs
D = {〈oi, ai〉}Ni=1 generated by the expert driver in ILBDM system. The goal of ILBDM
is to learn a policy that imitates an expert policy π given demonstrations from that expert
driver πE . A demonstration is defined as a sequence of state-action pairs that result from a
policy interacting with the environment d={ s1, a1, s2, a2, ...}.

Regarding to the loss function, the proposed system learns a policy by minimizing the
Huber loss function [46]) over the set of demonstrations with respect to the policy. The
Huber loss is a loss function used in robust regression which is less sensitive to outliers in
data than the squared error loss. It is described as the following equation:

Lδ(yt , Qt ) =
{

1
2 (yt − Qt)

2 for |yt − Qt | ≤ δ

δ |yt − Qt | − 1
2δ2 otherwise

(2)

where yt is the target output defined in target network:

yt = rt + max
a

Qtarget (st+1, a). (3)

Here Qt = Q(st , at ) represent the Q value from the deep policy network and δ is the
control parameter which can be tuned in Eq. 2. The IL training network minimizes the loss
until the model converges.

3.1 Perceptional observations

Effective observed states extraction improves the reliability of an intelligent decision-
making system as it makes the system insenstitive to noise signals from the complicated
driving environment. There are two modules for the perceptional observation extraction
from driving sequences. These include a vehicle detection module which uses the Faster
R-CNN network [42] to dectect vechicles at roundabouts and a motion extraction module
to extract their movement features based on an optical flow algorithm in [32]. Examples
of extracting observations from driving sequence is illustrated in Fig. 2. Here, the detected
ROIs are used as filters so that vehicle movements based on the optical flow algorithm can
be extracted as the input of the decision-making DL policy networks.

Vehicle detection module is one of the key modules for the roundabout entering
decision-making process. In our work, the faster R-CNN method originally proposed in
[42] is adapted to detect the vehicle regions of interest. The faster R-CNN is a two-stage
CNN based detection method which includes a Region Proposal Network (RPN) for pro-
posals selection and a classifier to verify the objects from these candidates. The RPN uses

Fig. 2 Observations stage of proposed ILBDM system. Images in the first row shows Vehicle Detection
results, images in the second row visualize the optical flow results from their correpsonding frames (hue
represents optical flow direction and saturation shows optical flow magnitude followed [32]) and images in
the third row shows the masked optical flow as the observations
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the first 13 covolutional layers of VGG-16 network to generate feature maps and two
three-layer regressors to locate the anchor boxes which have high object scores as object
proposals. Following the selection stage, these proposals are further verified by a classifier
to decide whether there is a vehicle in each candidate box. In our work, a pre-trained model
downloaded from [56] is used to detect vehicles at roundabouts.

After experimental comparisons of several state-of-the-art methods, the faster R-CNN is
selected for the vehicle detection module in our system as it is the most effective method to
process our collected data in terms of both accuracy and processing speed. The comparison
with the methods including single shot detection (SSD) [31], inception [57] and mask R-
CNN [60] which are shown in Table 1. In particular, 1000 frames from different weather
conditions and various types of roundabouts extracted from random-selected 20 sequences
are tested by using the four algorithms. It shows that the precision of the Faster R-CNN
approach is 2.5% better than Mask R-CNN, 8.52% better than the Inception, and 23.55%
better than SSD. For the detection timing per image, the Faster R-CNN approach spends
0.12 s on the detection of per image, which outperforms 0.03s faster than Mask R-CNN,
1.06s faster than Inception. Although detection time of SSD is the best in all the algorithms,
the false negative (FN) rate of the detection is far from satisfation.

It is important to reduce the FN to a minimal level when considering that any missing
detection of vehicles could be more risky comparing to the cases of false detection (FP).
Therefore, we re-set parameters in the faster R-CNN method to ensure a minimal FN rate
is achieved. As presented in Table 1, we can achieve 14 FN when we accept the FP number
to 74 for designing our vehicle detection module. Because the frame rate is 30 frames per
second, the false negative number is acceptable as there is averagely about one vehicle
missed in every 100 frames. Although there are more false detection (FP) of vehicles in
the sequences as illustrated in Fig. 3 (a-c), they bring little impact on the final decision-
making as the filtered optical flow features are used as the perceptional observations and the
movements in these false detection regions are not significant (illustrated in Fig. 3 (d-f)).

Motion extraction is the second core module for the perceptional observation extrac-
tion. As is mentioned in [24], approaching vehicle velocities are the most important feature
when a decision is made to enter a roundabout. In our system, the optical flow algorithm in
[32] is deployed to extract features for representing the vehicle movements. Due to its accu-
racy and robustness, this method has been widely used in many motion-based applications,
e.g., [52, 55]. Figure 2 illustrates the estimated optical flows when our vehicle approaches
a roundabout. Here, we use a color-map scheme to visualize the optical flow based on both
its magnitude and its direction. The blue hue indicates the main direction of the optical flow
is to the left while the red hue indicates the optical flow at the correponding pixels is to the

Table 1 ILBDM Vehicle detection results (TP: True Positives. TN: True negatives, FP: False positives, FN:
False negatives, R.rate: Recall rate, P: Precision, TPI: Time per image)

Methods TP TN FP FN R.rate(%) P (%) TPI (Avg)

Inception 609 201 81 109 84.81 88.26 1.18

SSD 476 229 174 121 79.73 73.23 0.08

Mask R-CNN 633 212 39 116 84.51 94.20 0.15

Faster R-CNN 752 135 33 80 90.38 95.80 0.12

Detect. Module 763 149 74 14 98.20 91.16 0.12
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Fig. 3 (a,b,c) Raw data for vehicle detection. (d,e,f) Estimated flow field

right. It demonstrates that the movement feature can be an efficient representation for the
control task. Due to the complicated environment at roundabouts, movements from irrele-
vant objects could easily distract the decision-making to enter the roundabout. Therefore,
the ROIs from the vehicle detection module are set as masks to filter the optical flow feature
which is illustrated in the third row of Fig. 2.

3.2 Decisionmaking policy network backbones

Many DL based backbone networks have been developped for various learning tasks during
this decade, e.g., AlexNet [4], GoogleNet [6], VGG family (including VGG-16 and VGG-
19) [33], ResNet family (including ResNet-18, ResNet-34, ResNet-50 and ResNet-101)
[45], and DenseNet [58]. Considering that the deep policy network for decision-making
in our proposed system requires to output decisions with acceptable processing speed, we
select three backbone networks as the candidate policy networks. These include a sim-
ple CNN, VGG-16 and ResNet-18. The architectures of these backbones are illustrated in
Table 2

The CNN architecture is the default backbone used in DQfD. This architecture is concise
and efficient for non-linear mappings, thus deploying in many classification and controlling
tasks, e.g. [30] and [22]. As illustrated in Table 2, the network has three convolution layers
followed by average pooling and ReLU as its activation functions. The first convolution
layer contains 6 kenels with kernel size 5 × 5, the second convolution layer contains 16
kernels with kernel size 5 × 5 and the third convolution layer contains 120 kernels with
kernel size 5 × 5.

VGG-16 is a popular convolution neural network model designed by Zimmermann et al.
in [60]. As illustrated in Table 2, VGG-16 adopts a deeper network structure, which has 9
convolution layers. Max pooling is used in the network to make it easier to capture changes
in images, bring greater local information differences, and describe edge textures better. It
achieves a great trade-off between precision and process speed to perform as a backbone
architecture for a real-time system.

ResNet architecture is playing a dominant role in many recent vision classification and
control tasks [20]. The concept of residual learning can effectively reduce the impact of
disappeared gradient issue as well as focus on learning detailed patterns. In our work, the
ResNet-18 is used as one of the backbone architectures due to its suitability for the fast
decision-making task.
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3.3 Decisionmaking reward scheme

A reward scheme can be used to learn different driving strategies by setting rewards to
encourage preferred behaviors. For example, setting larger rewards for the “Go” action when
the demonstration provides “Go” guidance would learn a more aggressive driving behavior.
While setting larger rewards for the correct “Wait” action can lead to a more cautious driving
behavior. For the ILBDM system, the reward scheme works as a part of the Eq. 1, R(s, a),
The return from a state is defined as the sum of discounted future reward at time t:

Rt =
T∑

i=t

γ (i−t)r(si , ai) (4)

where T is the time-step when AV approaches a roundabout, with a discounting factor
γ ∈ [0, 1]. Note that the γ is set to 0.8 in our experiments. For the work, we adopt a bal-
anced reward scheme to train the system. A positive reward of 1 is provided at each step if
the AV/ADAS’s action is consistent with the human expert driver before entering the round-
about, i.e., true positive and true negative (currect prediction for “Go” and “Wait” ), and 0
for inconsistent decision (false “Go”, and false “Wait”).

4 Experimental results

In this section, we present the experimtal results to demonstrate the performance of the
ILBDM system. It includes the experimental settings, the reward and loss convergence
during the training iterations, the decision making results, and the comparison with the
benchmarking methods under the supervised learning framework, which include SVM,
kNN, and three deep learning based classifiers. The DL based classifiers deploy the same
backbone networks in our system.

4.1 Experimental settings

All the videos for this study are real-life driving recordings produced by a camera fixed
on the right window of an ego vehicle in order to provide the road condition on the right
side of the car. Video captured in that setting demonstrated the usual view of the drivers
in a roundabout in the UK, where priority was given to approaching vehicles from right
directions [27]. Nextbase 312GW cameras were used due to its quality reputation and its
wide application in traffic experiments [49–51]. Nearly 50 different roundabouts across
the Leicestershire, UK were filmed in 18 months, from October 2016 to April 2018. The
time frames were 9 am to 11 am and 3 pm to 6 pm. The morning time normally provides
satisfactory quality video in a natural daylight condition. The afternoon time provides busy
traffic in the peak hours that maximized the intricacy in the roundabouts.

The experiments were run on a computer with an Intel Core i7-7700 CPU operating at
2.80 GHz and GTX1060 graphics card in order to evaluate the ILBDM performance. Ten-
sorflow deep learning framework is adopted in this paper [41]. For video data collection,
Images with 1920*1080 pixels and a frame rate of 30fps is taken from 130 videos when
AV/ADAS approaches a roundabout. Video recorder is the main sensor used in this experi-
ment. Furhtermore, the data were splitted into training and test datasets. The training dataset
contains 16,380 images (10415 for a wait before entering a roundabout, 5965 for go to
roundabout) and the testing dataset contains 1800 images (1000 for a wait before entering a
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Table 3 Learning sample statistics VN: The number of videos, RN: The number of roundabouts, SN: The
number of samples, PSN: The number of positive samples, NSN: The number of negative samples

VN RN SN PSN NSN TR.P TR.N TE.P TE.N

130 50 18180 6765 11415 5965 10415 577 965

TR.P: Training positive sample, TR.N: Training negative sample, TE.P: Test positive, TE.N: Test Negative

roundabout, 800 for entering a roundabout) were built. The detailed training data statistics
are shown in Table 3.

The benchmarking algorithms include both traditional machine learning techniques and
DL based supervised learning classifiers. Support vector machine (SVM) and k-Nearest
Neighbor [36] are the two classical conventional ML methods in the comparison. Here, the
SVM classifier is an RBF SVM with γ = 0.5. Regarding to the kNN method, the k clos-
est matching examples from the training dataset are retrieved by comparing the Euclidean
distance of features in the feature space to make decisions for the test image. The k value
is set to 5 in our experiment. Furthermore, we compare with the supervised learning based
DL classifiers which deploy the same backbone networks to demonstrate the advantage of
IL based framework.

4.2 Model training

The models are trained by using different learning algorithms: 1) traditional machine-
learning based approach, i.e. RBF SVM. Here the other convention ML method, i.e. kNN,
has not training stage as it uses a retrieval way to make decisions, 2) deep learning-based
supervised classifiers (CNN, VGG-16 and Resnet-18), and 3) ILBDM learning based sys-
tem (DQfD with different CNN policy networks, i.e., CNN, VGG-16 and Resnet-18). In
supervised learning methods (machine-learning based approaches and deep learning-based
networks), one can easily track the performance of a model during training by evaluating
it on the training and validation sets. Fig. 4 shows the convengence of the accuracy on the
training set and loss from DQfD with the three backbone newtorks respectively. The inputs
of image size is 224*224, the learning rate is 0.0005, and epoch is 20. The convergence of
the rewards and losses during the training of ILBDM with different CNN policy networks
are illustrated in Fig. 4. It shows that all the backbone networks can achieve convergence
after around 200k-300k interations. The timings of the training process of the methods are
shown in Table 4. The timing for training the supervised learning DL methods with the three
backbone networks are 1.35, 3.25 and 4.35 hours respectively. For the ILBDM system, the
timing for the three backbones are 2.15, 6.45 and 7.25 hours respectively. It proved that the
convergence of the imitation learning based methods are slower comparing to the super-
vised learning methods. However, the inference timings of networks in the ILBDM system
are similar to the other classifiers.

4.3 Comparison results

We evaluate the proposed ILBDM system by comparing with conventional ML methods
first. The comparison results are shown in Table 4. We use SVM and kNN as the classifiers
to process the same observations extracted from images. The accuracy rates of SVM and
kNN are 76.23% and 81.03% respectively. In addition, we also test the same data with our
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Fig. 4 DQfD-CNN policy-based reward and loss curve, first row is from CNN, second row is from VGG-16,
Third row is from Resnet-18

previous work named GBIPA-SC-NR in [49]. The GBIPA-SC-NR is a grid-based decision-
making algorithm. After extracting measurements from grids divided evenly on an image,
three conventional classifiers, including SVM, kNN and multi-layer perceptional (MLP)
artificial neural netowork (ANN) are used to classify the data into decisions. The accuracy
rates are 87.62%, 77.62%, and 81.49% respectively. The reason that the GBIPA-SC-NR
ourperforms the same classifiers used on the observation data is because the dimension of
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Table 4 Proposed ILBDM learning result (Acc:Accuracy, TT: Training Time, IT: Inference Time)

Approach Methods Acc (%) TT (Hours) IT (Second)

Supervised learning SVM 76.23 1.25 0.9467

GBIPA-SC-NR

SVM 87.63 1.45 0.8234

kNN 77.62 N/A 1.1125

ANN 81.49 1.35 1.2908

Deep Learning

CNN 87.36 1.35 0.1279

VGG-16 92.57 3.25 0.1363

ResNet-18 83.08 4.35 0.1233

Proposed ILBDM

DQfD-CNN 96.21 2.15 0.1035

DQfD-VGG-16 93.32 6.45 0.1206

DQfD-ResNet-18 89.56 7.25 0.1136

the feature space is much lower in the GBIPA-SC-NR which reduce the impact of the curse
of dimensionality. For the proposed ILBDM system, the accuracy rates are 96.21%, 93.32%
and 89.56% respectively. The accuracy demonstrates that the overall performance of the
proposed system is significantly better comparing to the convetional ML methods.

Furthermore, we compare the results from the proposed system with the supervised
learning based methods by using the same backbone networks. The accuracy rates are
87.36%, 92.57% and 83.08% for CNN, VGG-16 and ResNet-18 respectively. Although
there are variations in the results, all of the networks in the ILBDM system outperforms
the networks under the supervised learning framework. This demonstrates that the effec-
tiveness of IL framework for the roundabout joining task. From a theoretical point of view,
supervised learning models learn non-linear mapping functions to project observations
captured by the vision sensor to decisions. However, they do not consider contextual tempo-
ral information when making decisions. In contrast, imitation learning methods implicitly
learn the temporal contextual features as their models treats the outputs as a sequence of
actions. This characteristic makes imitation learning more suitable for this decision-making
task.

In addition, Table 4 shows the AV/ADAS decision timing based on four groups of
learning approaches. It is illustrated that the decision timing for AV/ADAS to enter a
roundabout from deep learning methods and proposed ILBDM system are faster than the
traditional machine learning algorithms and GBIPA-SC-NR. The fastest decision time is
based on DQfD-CNN in proposed ILBDM class with the number of 0.1035(s) which is
1.1873 (s) faster than ANN in GBIPA-SC-NR class. Therefore, Table 4 illustrates the pro-
posed ILBDM approach provides remarkable performance by considering both the decision
accuracy and inference timing.

5 Discussion

According to the literatures, it is found that deep imitation learning based method com-
bines the advantages from both the supervised learning and reinforcement learning based
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frameworks. Therefore, in this work, we propose an imitation learning based system -
ILBDM and prove that it outperforms all the supervised learning methods to accomplish
the decision-making task when joining the roundabouts. The positive impacts from our
work can be summarized in four folders: first, high-quality data were collected for the
experiments. In particular, a significant amount of real-world data containing roughly 50
roundabouts were recorded in different time frames at different days. The data reflect the
real traffic conditions, thus increasing the possibility of applying the techniques in real-
ity. It is noticed that this is the first large real world dataset for solving this challenging
task. Although the data in [34] contain 50 different roundabouts which is comparable to our
work, they were generated by using a driving simulator; secondly, the proposed ILBDM
can effectively make decisions, thus showing the capability of applying in real-world. The
accuracy rate of the proposed system based on the DQfD-CNN achieves 96.21% which are
siginificantly better than the other state-of-the-art algorithms; thirdly, the proposed ILBDM
can work with cars moving in different speed situations. ILBDM provides vehicle detection
and optical flow modules to determine the approaching car’s speed and positions. It means
that the speed and distance of the oncoming cars can be tracked, measured and calculated
as effective observational states; fourthly, proposed ILBDM system improvs our previous
work of the grid based method, GBIPA-SC-NR. Compared with GBIPA-SC-NR, both of
the accuracy and inference timing are improved significantly.

Real-time processing is vital for an autonomous decision-making model. In our work,
the total execution time for planning from one frame is 0.43 seconds (0.2 seconds for opti-
cal flow extraction, 0.12 seconds for car detection and 0.11 seconds for the action network).
As the purpose of the work is not developing a fully autonomous decision-making model to
replace human driver but a decision augmentation tool to facilitate safe behavior of human
driver, we believe the performance is acceptable. While, in our future work, we will fur-
ther investigate to replace the optical flow estimation module by 3D-CNN and speed up
the processing to achieve real-time performance which could potentially serve as a fully
autonomous driving system. Furthermore, since the ILBDM can learn from individuals’
driving styles and behaviors, the system has potential to model different types of human-like
decisions. In the future work, we will collect more training data based on different driver
styles so that driver’s behaviors in reality can be learned and simulated.

6 Conclusion

In this paper, we present an imitation learning based decision making system named ILBDM
for an AV/ADAS to make the most suitable decisions to join roundabouts timely and safely.
The ILBDM system have an effective observation extraction pipeline which include the
vehicle detection based on the Faster R-CNN and motion feature extraction from optical
flow. It trains deep policy networks based on several popular backbone networks, inlcuding
CNN, VGG-16 and ResNet-18 to recommend actions to maximize the cumulative returns
from a sequence of decision-makings. The learned network in the proposed ILBDM system
were evaluated on 130 videos from real world. The results demonstrates that the pro-
posed ILBDM system can be applied to effectively help AV/ADAS make the most suitable
decisions when approaching a roundabout. Furthermore, it is believed that the proposed
framework has potentials to be adapted and deployed in other high-level autonomous vehicle
control tasks when collecting corresponding data.
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