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Abstract
Deep-learning techniques have led to technological progress in the area of medical
imaging segmentation especially in the ultrasound domain. In this paper, the main goal
of this study is to optimize a deep-learning-based neural network architecture for auto-
matic segmentation in Ultrasonic Computed Tomography (USCT) bone images in a short
time process. The proposed method is based on an end to end neural network architecture.
First, the novelty is shown by the improvement of Variable Structure Model of Neuron
(VSMN), which is trained for both USCT noise removal and dataset augmentation.
Second, a VGG-SegNet neural network architecture is trained and tested on new USCT
images not seen before for automatic bone segmentation. Therefore, we offer a free
USCT dataset. In addition, the proposed model is implemented on both the CPU and the
GPU, hence overcoming previous works by a value of 97.38% and 96% for training and
validation and achieving high segmentation accuracy for testing with a small error of
0.006, in a short time process. The suggested method demonstrates its ability to augment
USCT data and then to automatically segment USCT bone structures achieving excellent
accuracy outperforming the state of the art.
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1 Introduction

For a long time, deep-learning-based neural network systems have been inspired by biological
observations [3]. These systems have been developed for the resolution of control and
recognition problems of certain characteristics in an image. Recently, deep learning has
revolutionized the biomedical field. Accordingly, it has managed to become very popular in
the field of image processing, more specifically in the field of medical imaging [8], involving
MRI, X-Rays, CT and ultrasonic images [7, 23]. Accordingly, it can extract extraction of
different anatomical structures, to ensure the automatic segmentation of the regions of interest
[24]. Nowadays, the Ultrasonic Computed Tomography (USCT) device, an existing new
technique, has revolutionized X-rays and ultrasonic imaging [28]. It is a non-invasive and
non-ionizing technique. However, USCT images are noisy and difficult to analyze, given the
inhomogeneity of pixels and the high frequency of transmitted ultrasound waves [9, 24].
Indeed, the idea of USCT medical image analysis using deep-learning-based neural network
techniques has remained a hot topic of interest in the field of USCT medical imaging [30]. In
this context, we put forward a deep learning model to ensure the automatic segmentation of
bone USCT images. To overcome this issue, processing analysis based on deep learning
techniques for USCT images is proposed. Such processing comprises segmentation to detect
the bone boundaries and extract the characteristics of each bone region. Each ultrasonic
tomographic image has three layers of bone structures to automatically segment USCT bone
images, such as the cortical bone, the cancellous bone and the medullary cavity. The detection
of these three structures from a noisy USCT image is very difficult and remains a problem to
overcome. Above all, it is necessary to eliminate the background which presents a big noise, to
assist clinicians in determining the diagnosis in USCT images of bones such as fractures,
osteoporosis and tumors.

Our work aims to carry out Convolutional Neural Network (CNN) learning with VGG-
SegNet and VGG-Unet models applied on a USCT image dataset, in order to achieve an
automatic segmentation of the region. Thus, we improve a Variable Structure Model of
neurons (VSMN) [3] and apply it on medical images to get a significant increase in data,
given the problem of unavailability of USCT images [28].

The rest of the paper is partitioned as follows. Section 2 introduces the state of the art.
Section 3 presents the experiments and the methodology. Section 4 provides the achieved
results. The discussions and the conclusion are respectively given in section 5 and section 6.

The contribution of this paper is presented as follows: We have provided original USCT
data set available for free on (https://www.kaggle.com/fradimarwa/usct-dataset-of-bones), for
USCT researchers. Then we have made the design of a new neural network system for USCT
images segmentation. First, we design a new variable structure of neural network called
VSMN for USCT image processing. Then, we optimize the VGG-SegNet network, to
automatically segment USCT images. Thus, our work presents the first study, using an end
to end (VSMN-VGG-SegNet) neural network application based on deep learning to automat-
ically segment USCT images of bones. Indeed, the segmentation of USCT images of bones
has not been explored in the literature using deep learning, given the difficulty of obtaining a
large amount of USCT data [28]. Finally, our proposed system can be applied to any database,
such as a real scene image database and implemented on GPU. Finally, we have achieved
promising accuracies and a short time process compared to the state of the art.
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2 State of the art

Classical approaches for ultarasonic medical image segmentation have employed machine
learning techniques [26, 32]. These techniques include the Atlas model and the dictionary
learning. The Atlas model has been developed for the segmentation of medical images, but the
limits have remained noisy. It was applied on MRI tomographic images to detect lung tumors
in [15] and simultaneously improve the quality of MRI images. In [9], the wavelet transforms
yielded excellent results in USCT image analysis. Furthermore, a propounded method using
the K-means, and the Ostu method yielded the best performance in USCT image segmentation
and led to automatic diagnosis detection in [10]. In [12, 31], machine learning for ultrasound
image segmentation proved its excellence with promising accuracy results. However, the
machine learning technique applied to USCT breast images demonstrated its ability to achieve
excellent segmentation results, as presented by the authors in [12]. This method was based on
semi-automated 3D segmentation through the detection of the breast boundary in coronal slice
images. In [6], the active contour method was massively used in the segmentation of ultrasonic
image processing. It was used to avoid the noise in USCT image. This method was applied by
Lasaygues on a tomographic image made with the USCT of a paired bone, but the results were
not satisfactory and the detection of the distances between the two bone forms (tibia and
fibula) were not possible considering the noise present in the image [14].

These machine learning segmentation techniques commonly used in the past have been less
effective than deep learning counter parts because they have used rigid algorithms and required
human intervention and expertise.

However, modern ultrasound image analysis techniques rely on deep-learning technologies
[34] where the segmentation of ultrasound medical images is a topic of interest in the field of
medical imaging. Indeed, deep learning is known as a process that allows computational
models composed of multiple processing layers to learn representations of data with multiple
levels of abstraction [21], for the automatic segmentation of different anatomical structures. It
involves automatic segmentation methods previously classified as supervised or unsupervised
[35]. For the supervised methods, segmentation requires the operator interaction throughout
the segmentation process, while the unsupervised methods generally require the operator
intervention only after the end of the segmentation process. The unsupervised methods are
preferable to ensure a reproducible result [35]. However, the operator interaction is still
necessary for error correction in the event of failure at the result level. The application of
deep-learning-based neural networks, such as the Convolutional Neural Network (CNN),
SegNet, Unet and X-Net, has improved the USCT image segmentation. Indeed, the segmen-
tation of medical images based on the CNN, known as multilayer neural networks specializing
in shape recognition tasks [18], relies on several deep neuron networks alternating between the
application layers of convolutions and max pooling. It has been adapted to the hand and brain
segmentation [35]. In [30], authors implemented the CNN and the Convolutional Long Short-
Term Memory (ConvLSTM)-based deep learning models for Covid-19 class detection,
achieved results demonstrated excellent accuracies. In [4], XNet was proposed for X-ray
image segmentation while having producing accuracy of 92% and AUC of 98%.These results
surpassed the conventional treatment of medical images. However, SegNet was used for image
labelling. It only depended on the fully learned function to get the label prediction. Further-
more, Unet achieved 93% accuracy by detecting different human bones and skeletons [18]. In
addition, deep learning was applied to tomographic MRI images for the detection of lung
tumors in [15] while improving the MRI image quality. In [19], deep learning was used to
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combine a neural GNN network and Unet to perform the automatic segmentation of the
airways in the rib cage. Deep-learning-based Unet for bone structure segmentation in CT X-
ray tomographic images presented very promising results. It showed its efficiency in automat-
ically segmenting the bone structures of the femur in MRI images [2]. It also helped clinicians
to determine the diagnosis [11] by ensuring the automatic segmentation of the intervertebral
disc, while achieving segmentation precision with a value of 83%.

3 Methods

3.1 Experimental method

Our experiments are done using a new prototype, called USCT, providing a new technique for
bone imaging, which has revolutionized X-rays, MRI and ultrasound techniques [28]. The
used device is an ultrasonic scanner, consisting of a 2D-circular antenna with 8 transducters
distributed over 360° every 45°. Accordingly, the eight transducters are piezo-composite
elements whose frequencies are 1–3 MHz as depicted in Fig. 1 and detailed in [9]. In addition,
the imaging process gives us 50 USCT bone images which will be increased in the following
section due to our proposed method.

3.2 Synoptic flow of proposed method

The suggested structure remains a hybrid model involving an optimized VSMN [3] and a
neural VGG-SegNet network. Our proposed neural network architecture is presented, as
depicted in Fig. 2. Our approach aims to optimize the VSMN, by modifying the activation
function and then making it accessible for a medical image processing application, performing
an optimal number of filtered USCT images. These images obtained by the VSMN, serve as an

Fig. 1 Ultrasonic Computed Tomography device

13540 Multimedia Tools and Applications (2022) 81:13537–13562



input to a second neuron network, called the neural VGG-SegNet network, which ensures the
automatic segmentation with background removal.

3.2.1 VSMN model

Mathematical theorems A neural network model was developed by [3], called the VSMN.
This model is introduced by the following equations. The VSMN structure needs four
variables (n, p, q, k) where n and q are related to the model behavior, p is related to the
threshold position of the model, k represents the neuron’s polarity, τ represents the constant of
time, p and q are real numbers and α;B and λ are positive real numbers.

˙u ¼ − uþ pð Þ
τ

þ uþ pð Þv f Bvð Þ f λ uþ pð Þð Þ ð1Þ

˙υ ¼ −αvþ k uþ qð Þ2 þ α f 2 λ uþ pð Þð Þ ð2Þ

g uð Þ ¼ υþ αv ¼ k uþ qð Þn þ αf 2 λ uþ pð Þð Þ ð3Þ
Compared to the model studied by [3], a modification in the activation function is made in our
VSMN neural network, as shown in Eq. (4). It is satisfactory to focus on function g (x)
described by Eq. (5).

Fig. 2 Synoptic flow of proposed method
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f tð Þ ¼ expt where t ¼ −xþ p ð4Þ

g xð Þ ¼ k −xþ qð Þ½
n�e −xþpð Þ 2Our approach is to optimize the VSMN, by modifying the activation function and then making
it accessible for a medical image processing application performing optimal filtering of USCT
images, hence the automatic increase in images. From Eq. (5), we get the following equations:

Z ¼ −xþ qð Þn; Y ¼ exp −xþ pð Þ2; g0
xð Þ ¼ Z*Yð Þ0 ð6Þ

h xð Þ ¼ g’ xð Þ ð7Þ

h xð Þ ¼ −n −xþ qð Þn−1
h �i

e −xþpð Þ2
ii

þ −xþ qð Þn −2 −xþ pð Þ½ �e −xþpð Þ2
h i

ð8Þ

¼ −e −xþpð Þ2 −xþ qð Þn−1
h i

nþ 2 −xþ pð Þ −xþ qð Þ½ �

Function h (x) has three solutions:

e −xþpð Þ2 −xþ qð Þn−1
h i

¼ 0; x1 ¼ q ð9Þ

nþ 2 x−pð Þ −xþ qð Þ½ � ¼ 0; x2 ¼ −bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−4ac

p

2a
¼

pþ qð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p−qð Þ2 þ 2n

q
2

ð10Þ

nþ 2 x−pð Þ −xþ qð Þ½ � ¼ 0; x3 ¼ −b−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−4ac

p

2a
¼

pþ qð Þ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−p−qð Þ2 þ 2n

q
2

ð11Þ

VSMN architecture The VSMN model is produced as a cascade architecture. The output of
the first neuron is considered the input of the second neuron for each layer. Indeed, k
represents the polarity of neurons. It can be with positive or negative polarity. Actually, n
represents the number of layers and p and q the parameters for each neuron. The model of the
neuron architecture is shown in Fig. 3 with positive polarization. Indeed, the use of a negative
polarity k = −1, gives USCT images with poor quality. For this reason, the choice of positive
polarity is done. The internal architecture of our VSMN model is described by Fig. 4 and its
mathematical analysis is more detailed in Tables 1 and 2.
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3.3 VSMN implementation on USCT images

1rstCase:
Starting by the first layer, for n = 0 and from Eq. (5), we get g(x) as described by Eq. (12).

For n ¼ 0; p ¼ q ¼ 1; k ¼ 1
g xð Þ ¼ exp: −xþ pð Þ2 ð12Þ

The g(x) curve as depicted in Fig. 5 describes the VSMN behavior in the first layer where n =
0.

Fig. 3 Neuron Model

Fig. 4 VSMN architecture (seven Layers L)
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The g(x) curve as depicted in Fig. 5 provide a deceasing behavior and then an increasing
behavior. The SVMN behavior is explained by the following mathematical analysis equations:

For g(x) = exp. (−x + p) 2, g(x) is a symetric function and x = 1 represent the axe of
symetry.

lim
x→−∞

g xð Þ ¼ lim
x→þ∞

g xð Þ ¼ þ∞ ð13Þ

lim
x→−2

g xð Þ ¼ expð Þ9 ð14Þ

lim
x→1

g xð Þ ¼ expð Þ0 ¼ 1 ð15Þ

Equations (13), (14) and (15) shows that the VSMN curve has a decreasing behavior then an
increasing behavior, where x = 1 represent the axe of symetry. The VSMN behavior has a
great impact on the image quality as depicted in Fig. 6 and more explained by the following
Eq. (16), (17),(18) and (19).

The implementation of our optimized VSMN proves its ability to remove noise from USCT
images in a first step, and then to augment the number of USCT images, which is a hard task to
achieve. Figure 6 shows USCT images in the first layer when n = 0. To conclude, the deeper
we go, the better the quality of USCT images.

a1ð Þ : Y0 ¼ exp −xþ pð Þ2; n ¼ 0; q ¼ 1; p ¼ 1 ð16Þ

Table 1 Mathmetical analysis of SVMN architecture in Fig. 4

Layers Parameters: n, p, q, k
g xð Þ ¼ k −xþ qð Þn½ �e −xþpð Þ2 (5)

L1 n=0, p=q, k=1 g(x)=exp(−x+p)2
L2 n=1, p=q, k=1 g(x)=(−x+q)1exp(−x+p)2
L3 n=2, p=q, k=1 g(x)=(−x+q)2exp(−x+p)2
L4 n=3, p=q, k=1 g(x)=(−x+q)3exp(−x+p)2
L5 n=4, p=q, k=1 g(x)=(−x+q)4exp(−x+p)2
L6 n=5, p=q, k=1 g(x)=(−x+q)5exp(−x+p)2
L7 n=6, p=q, k=1 g(x)=(−x+q)6exp(−x+p)2

Table 2 Mathematical analysis via internal architecture of layer

Layers Parameters: n, p, q, k
g xð Þ ¼ k −xþ qð Þn½ �e −xþpð Þ2

Y=Output

L1 n=0, p=q, k=1 g(x)=exp(−x+p)2 Y0=exp(−x+p)2
Y1=exp(−Y0+1)2

Y2=exp(−Y1+1)2
Y3=exp(−Y2+1)2
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b1ð Þ : Y1 ¼ exp −Y0þ 1ð Þ2; n ¼ 0; q ¼ 1; p ¼ 1 ð17Þ

c1ð Þ : Y2 ¼ exp −Y1þ 1ð Þ2; n ¼ 0; q ¼ 1; p ¼ 1 ð18Þ

d1ð Þ : Y3 ¼ exp −Y2þ 1ð Þ2; n ¼ 0; q ¼ 1; p ¼ 1 ð19Þ
2nd case:

For the second layer, n = 1, g(x) is illustrated by the Eq. (20) and the VSMN behavior is
depicted in Fig. 7(a). Moreover its robustness is shown to be implemented in USCT images as
provided in Fig. 7(b).

The g(x) curve provided in Fig. 7 shows a deceasing behavior which is explained by the
following mathematical analysis equations:

g xð Þ ¼ k −xþ qð Þnexp −xþ pð Þ2
For n ¼ 1; p ¼ q ¼ 1; k ¼ 1; g xð Þ ¼ −xþ 1ð Þ1exp −xþ 1ð Þ2 ð20Þ

Fig. 5 VSMN with stable behavior for n = 0 and k = 1

Medullary cavity

Cancellous bone
Cortical bone

Fig. 6 USCT output through layer 0 VSMN with stable behavior for n = 0 and k = 1, (a): Patella adult bone
used to be imaged by USCT (b): USCT Results via layer 0
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For g xð Þ ¼ −xþ 1ð Þ1 exp −xþ 1ð Þ2
Lim
x→−∞

exp −xþ 1ð Þ2 ¼ þ∞ ð21Þ

Lim
x→−∞

−xþ 1ð Þ1 ¼ þ∞ ð22Þ

From Eqs. (21) and (22) we get the Eq. (23) as follows:

lim
x→−∞

g xð Þ ¼ þ∞ ð23Þ

The g(x) function is illustrated by Eq. (24) when x → 1

lim
x→1

g xð Þ ¼ 0 ð24Þ

lim
x→þ∞

g xð Þ ¼ −∞ ð25Þ

lim
x→þ∞

g xð Þ
x

� �
¼ −∞ ð26Þ

Equations (23), (24), (25) and (26) have proved the g(x) behavior as depicted in Fig. 7, where
the g(x) function converge to 0 through the second layer and the amplitude of the signal
increases compared to which is in the first layer. This SVMN behavior has a great impact on
the USCT image quality, as shown in Fig. 7(b) more parameter n increases, more the quality of
image is going better. Thus, deeper we go in the SVMN, more higher the quality of images.

3rdCase:
For the third layer, for n = 2 and from Eq. (5), we get g(x) as described by Eq. (27).

Fig. 7 VSMN behavior, n = 1, (a) VSMN curve, (b) output USCT image
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g xð Þ ¼ k −xþ qð Þnexp −xþ pð Þ2
For n ¼ 2; p ¼ q ¼ k ¼ 1; g xð Þ ¼ −xþ 1ð Þ2exp −xþ 1ð Þ2 ð27Þ

The g(x) curve as depicted in Fig. 8 present a deceasing behavior then an increasing behavior.
This phenomena is explained by the following mathematical analysis equations:

For g(x) = (−x + 1)2 exp(−x + 1)2

Lim
x→−∞

g xð Þ ¼ Lim
x→þ∞

g xð Þ ¼ þ∞ ð28Þ

Lim
x→1

g xð Þ ¼ 1 ð29Þ

Equations (28) and (29) shows the symetric behavior of g(x) where the curve has a minimum
at the point A(1, 1).

Indeed, VSMN has a deceasing behavior from] − ∞ , 1 [, then an increasing behavior from]
1,+ ∞ [.

Function g(x) is illustrated by the following equation, and the VSMN behavior is depicted
in Fig. 8.

Y5 ¼ −Y4þ 0:5ð Þ2exp −Y4þ 0:5ð Þ2; p ¼ q ¼ 0:5; n ¼ 2 ð30Þ
4th Case:

For the fourth layer, n = 3, g(x) is given by the following equations, and the SVMN
behavior is provided in Fig. 9. Indeed, the output of each neuron will be the input of the next
neuron for each layer, thus the cascade architecture of our model.

The VSMN curve has strictly a decreasing behavior, as depicted in Fig. 9(a) and (b). This
behavior is explained by the following equations:

Fig. 8 VSMN behavior, n = 2: (a) VSMN curve, (b) Output USCT image
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g xð Þ ¼ k −xþ qð Þnexp −xþ pð Þ2
For n ¼ 3; p ¼ q ¼ 1; k ¼ 1; g xð Þ ¼ −xþ 1ð Þ3exp −xþ 1ð Þ2 ð31Þ

For g xð Þ ¼ −xþ 1ð Þ3 exp −xþ 1ð Þ2
Lim
x→−∞

exp −xþ 1ð Þ2 ¼ þ∞ ð32Þ

Lim
x→−∞

−xþ 1ð Þ3 ¼ þ∞ ð33Þ

From Eqs. (32) and (33) we get the Eq. (34) as follows:

lim
x→−∞

g xð Þ ¼ þ∞ ð34Þ

The g(x) function is illustrated by Eq. (35) when x → 1

lim
x→1

g xð Þ ¼ 0 ð35Þ

lim
x→þ∞

g xð Þ ¼ −∞ ð36Þ

Through the fourth layer, g(x) is illustrated by the following equation for various conditions as
follows: n = p = 0.5 and n = p = 0.75.

Y6 ¼ −Y5þ 0:5ð Þ3exp −Y5þ 0:5ð Þ2; p ¼ q ¼ 0:5; n ¼ 3 ð37Þ

Y7 ¼ −Y6þ 0:75ð Þ3exp −Y6þ 0:75ð Þ2; p ¼ q ¼ 0:75; n ¼ 3 ð38Þ

Fig. 9 VSMN behavior: (a) n = 3, p = q = 0.5, (b) n = 3, p = q = 0.75
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Y8 ¼ −Y7þ 0:5ð Þ3exp −Y7þ 0:5ð Þ2; p ¼ q ¼ 0:5; n ¼ 3 ð39Þ
As shown in the curves in, Figs. 5, 7, 8 and 9, the optimized VSMN presents a symetric
behavior decreasing and then increasing for case 1 and case 3. Moreover, it shows a strictly
decreasing behavior in case 2 and case 4, providing its efficiency to be applied on the USCT
images. Consequently, the SVMN achieves its success to be applied in medical imaging area.
To conclude, the deeper the neural SVMN, the higher the quality and the resolution of USCT
images. Indeed parameter n has a great impact on the USCT image quality. When the number
of n increases, the quality of images becomes better.’

3.3.1 VGG –SegNet model

& Principle of proposed VGG-SegNet

VGG-SegNet is classified as a neural network for semantic segmentation. It is optimized in
this work to segment the USCT images of bones. It was performed with 10 labels in [1]. In our
work, we use four labels to segment different anatomical structures: the first for the back-
ground, the second for the cortical bone, the third for the cancellous bone and the fourth for the
medullary cavity. It consists of two blocks: One plays the role of a coder and the other of a
decoder. Each coder is made up of several layers. Its principle is illustrated by the application
of the convolution accompanied by batch normalization followed with Relu activation layers.
Then, passing through a pixel wise classifier layer and subsequently a soft-max layer. For the
decoder block, it also consists of four resampling layers, a soft-max layer and 13 convolution
layers with batch normalization and Relu, as depicted in Fig. 10 and detailed in Table 3.
Accordingly, the sizes of convolutional kernels are set to 3*3 for each five layers constituting
the encoder and decoder blocks. These kernels perform a convolutional operation resulting in
the output representing the map shape structure to detect in an input image. After each
convolutional layer, an activation layer is added to perform a non-linear propriety, increasing
the robustness of our VGG-SegNet model architecture. At the end, it will introduce max-
pooling, which will detect the presence of characteristic cards in a region, hence the storage of
each index containing the value extracted by each window. During the max-pooling phase the
indices will be stored. It is a pre-learning phase. The encoder reduces the spatial dimensions
thanks to the pooling layers, while the decoder reproduces the details of the image and the
spatial dimensions. For the decoder block, it uses resampling, convolutions and the soft-max
classifier. Resampling is performed on the inputs based on the indices stored during the
encoding phase. Its principle is shown in Fig. 10. The result obtained at the decoder output
will be transmitted to a soft-max classifier, which gives the final prediction, that will be an n-
channel image.

3.3.2 VGG-U-net model

As compared to SegNet, the proposed U-Net does not reuse pooling indices but it rather
transfers the entire feature map to the corresponding decoders and concatenates them to up
sample via the decoder the feature maps via the decoder. There is no conv5 and max-pool 5
block in the U-Net.
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4 Results

4.1 VSMN implementation results

The VSMN implementation yields noise removal from USCT images, as shown in Fig. 11. As
a consequence, it enhances the Signal to Noise Ratio (SNR) values, as provided in Table. 4.

Fig. 10 Internal architecture of VGG-SegNet

Table 3 VGG-SegNet architecture

Encoder Decoder

Block Image Size Filter Block Image Size Filter

Block 1 Block 1
Conv1+Relu
Conv2+Relu
Maxpooling

Input (256*256)
Output (224*224)

(64, (3,3)) (64,(3,3))
2D (2,2)

Up sampling
Zero Padding
B.N

Input (14*14)
Output14*14

512,((3,3))

Block 2 Block 2
Conv1+Relu
Conv2+Relu
Maxpooling

Input (224*224)
Output 112*112

(128, (3,3))
(128, (3,3))
2D (2,2)

Up sampling
Zero Padding
B.N

Input (28*28)
Output (28*28)

512,((3,3))

Block 3 Block 3
Conv1+Relu
Conv2+Relu
Conv3+Relu
Maxpooling

Input 112*112
Output 56*56

256,((3,3))
256,((3,3))
256,((3,3))
2D (2,2)

Up sampling
Zero Padding
Conv2DLayer
B.N

Input (56*56)
Output (56*56

256,((3,3))

Block 4 Block 4
Conv1+Relu
Conv2+Relu
Conv3+Relu
Maxpooling

Input 56*56
Output 28*28

512,((3,3))
512,((3,3))
512,((3,3))
2D (2,2)

Up sampling
Zero Padding
Con2D Layer
B.N

Input (112*112)
Output(112*112)

128,((3,3))

Block 5 Block 5
Conv1+Relu
Conv2+Relu
Conv3+Relu
Maxpooling

Input 28*28
Output 14*14

512,((3,3))
512,((3,3))
512,((3,3))
2D (2,2)

Up sampling
Zero Padding
Con2D Layer
B.N

Input (224*224
Output(224*224)

64,((3,3))
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Furthermore, the VSMN increases the USCT image database, passing from 50 original USCT
images to 400 augmented USCT images. As presented in Fig. 12, our approach allows us to
present a free database for USCT researchers given the unavailability of these images and the
difficulty to obtain them [28].

As depicted in Table 4, we present the mean SNR values of our USCT dataset used for the
training, validation and testing processes. The yielded mean SNR values are illustrated as
depicted in Table 4. The testing images shows SNR scores less than which are used for
training and validation phases.

4.2 VGG-SegNet implementation results

4.2.1 Dataset labeling

To automatically segment USCT data images, we have to annotate them using the Labelme
tool for USCT image labeling with the Linux Operating System (OS). We label 400 USCT
images. These annotations will represent the ground truth. Then 50% of images will be used
for training, 25% for validation and 25% for testing. In fact, each image is segmented manually
by a specialist radiologist into four regions. The first presents the background, the second
shows us the cortical bone, the third presents the cancellous bone, and the fourth represents the
medullary cavity. Figure 13 demonstrates an example of a manually labeled image.

4.2.2 Accuracy and loss results during the training and validation processes

Using the framework with the Linux OS, Python language, Keras and TensorFlow libraries
with an Nvidia Titan X GPU, we train 200 USCT images with a size of (256*256) with 10
epochs and 512 iterations for each epoch, from our USCT dataset on both the CPU and the
GPU. The accuracy training results achieve 97.38% on the GPU and 89% on the CPU, but the
validation results achieve 96% of accuracy, as shown in the screenshot of Appendix 1 and

Fig. 11 Results of VSMN implementation: (a): Layer 4 (b): Layer 5(c): Layer 6 (d): Layer 7 (For g(x) = (−x +
1)3 exp(−x + 1)2): Output

Table 4 SNR results of subsamples of USCT images

Images Number of images Mean SNR

USCT images used for training
USCT images used for validation
USCT images used for testing

200
100
100

15.87
15.42
14.36
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Appendix 2. Therefore, our code implementation on the GPU improves the accuracy results
with a value of 8.38% compared to that implemented on the CPU as depicted in Table 5.

4.2.3 Models accuracy and loss curves during the training and the validation process

The loss and accuracy curves are important to determine the model behavior through training
epochs, as it gives the direction in which the networks learn. The two curves as presented in

Fig. 12 USCT dataset augmentation
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Fig. 14, using Adam optimizer network, show an excellent accuracy for both training and
validation phases through 10 epochs and 512 iterations per epoch.

The two curves as depicted in Fig. 15, using Adam optimizer network, for both validation
and training processes demonstrate a good fit as they represent a small gap between the two
final loss values. The excellent achieved fitting is explained by the huge role that play the
Adam optimizer network in decreasing the loss function and the process of USCT dataset
augmentation, that show to be efficient to ovoid the over fitting to the training dataset.
Moreover, The training loss curve decreases to a stability point. Furthermore, it shows to be
lower on the training than on the validation, but the gap is too small. The validation loss curve
has a small gap with the training.

4.2.4 Segmentation results

After having trained the USCT bone images, we have to automatically test the USCT images
not seen before by the system. We use 100 images for validation and 100 USCT bone images
for testing. The used dataset for the validation process is depicted in Fig. 16. The segmentation
results of the USCT images used for validation achieve 96% of accuracy on the GPU and a
high resolution of segmented images, as presented in Fig. 17. In fact, each USCT image
represents three regions of interest showing the internal structure of bones, such as the
cancellous bone and the medullary cavity, and the external bone structure, like the cortical
bone, which represents the brown colour in Fig. 17. The comparison of the segmented images

Fig. 13 USCT image labeling, (a): USCT bone image, (b): Annotated USCT, (c): USCT image mask

Table 5 Accuracy results during training and validation processes

Epochs Train accuracy Train loss Validation accuracy Validation loss

1 82.64% 0.519 82.66% 0.4764
2 83.43% 0.4488 83.56% 0.4603
3 84.10% 0.4181 79.86% 0.506
4 84.95% 0.3927 83.91% 0.393
5 87.28% 0.3203 86.11% 0.2008
6 92.67% 0.1919 89.95% 0.1474
7 95.33% 0.1288 94.17% 0.1274
8 96.43% 0.1014 95.12% 0.1215
9 96.99% 0.0888 94.53% 0.1450
10 97.38% 0.079 95.82% 0.1115
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used for validation with the ground truth keeps a high similarity between both types of images,
as depicted in Fig. 18. For the USCT images used for testing, as illustrated in Fig. 19 and for
Fig. 20, three regions are represented and the noisy background is removed. These tested
segmented images show their efficiency by presenting a small error of 0.0061 compared with
the ground truth and a high value of PSNR as detailed in Table 6, where the mean PSNR score
is 10.44. Moreover, the segmented images are validated by a specialist who has ensured these
results. The proposed method is validated by the following section in the discussion.

These results are yielded thanks to our proposed model architecture, which combines the
neural VSMN network and the neural VGG-SegNet network. Indeed, the deep-learning-based
neural network for automatic segmentation needs big data for images to achieve high accuracy
of segmented images not seen before. Accordingly, the VSMN with its high architecture
consisting of seven layers and four neurons for each layer automatically removes noise from
USCT images.

4.2.5 MSE, PSNR and IOU results
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Fig. 14 Model accuracy during the Training and validation processes
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Fig. 15 Model loss during the training and validation processes
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The PSNR shows its significance in determining the image quality reconstructed pixel by
pixel. It is determined by the following equation.

PSNR ¼ 10log
MAXI i2

MSE
ð40Þ

where MAXI i presents the maximum value in USCT images.

& MSE

Fig. 16 Dataset of USCT bone images for validation

Fig. 17 Segmented validation results
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The Mean Square Error (MSE) makes it possible to determine the error existing between an
original image and a reconstructed or segmented image [13, 36]. As depicted in Table 6, we
obtain promising results.

& IOU

Fig. 18 Comparison of Segmented validation results with the ground truth, (a): Input USCT images, (b): Ground
Truth, (c): Segmented USCT images

Fig. 19 USCT bone images used for testing
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The IOU score is a standard performance measure for the segmentation problem. Thus, the
IOU measures the similarity between the predicted segmented region and the ground-truth
region for a set of images. It is defined by the following equation.

IOU ¼ area of overlop

area of union
ð41Þ

The process to segment USCT images of bones, using an end-to-end neural-network archi-
tecture, shows its efficiency in automatically determining the different anatomic bone struc-
tures with a high resolution. This contribution aims to facilitate the diagnosis process for
clinicians, given the issue of analyzing the original noisy USCT images.

4.3 Implementation results of proposed model on GPU

Our framework is based on the Python language of the Keras package and on a Nvidia Titan X
GPU using the Linux operating system. Graphics cards (GPU) are characterized by the large
number of cores allowed by processors and the very large memory integrated with these
processors. They are very useful for several computer tasks, precisely for software
implementations like deep learning algorithms. Despite their energy consumption, GPUs show
their efficiency given the success achieved in recent years for the implementation of deep

Fig. 20 Segmented USCT bone images used for testing

Table 6 PSNR, MSE and IOU for subsamples of USCT bone images used for test

Parameters USCT used for the prediction process

Mean PSNR 10.44
Mean MSE 0.0061
IOU 0.96
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learning algorithms. As depicted in Table 7, VGG-SegNet requires weak memory for training
and testing. The implementation of deep learning algorithms on GPUs is three times faster than
their implementation on CPUs. The short time process implementation on GPUs is explained
by the GPU architecture, designed for parallel graphics operations. Accordingly, the CPU and
GPU architectures differ from each other. The CPU consists of multiple arithmetic and logic
units, cache memory and dynamic random access memory. While the GPU consists of
hundreds of ALUs, numerous control units, varied cache memory and DRAM memory [16,
33].

VGG-SegNet and VGG-Unet have the same memory inference and temporal process given
the architecture used for both.

4.4 Proposed model evaluation

Our proposed Model is implemented on real scene images on both the CPU and the GPU, and
the achieved results prove the robustness of our model which can be implemented on any
dataset. Our suggested method keeps its efficiency to be applied to any database of images
implemented on the basis of data from a real image scene and it shows good precision with
very high robustness. The basis of the test images is presented in Fig. 21, which will be
increased and segmented by our proposed neural network method. The obtained results
demonstrate the robustness of our method, which can be implemented on any database
(Figs. 21 and 22).

5 Discussions

The results show that physicians without a coding experience can use automated deep learning
to develop algorithms that can perform clinical classification tasks at a level comparable to
traditional deep learning models that have been applied in the existing literature. To validate
the performance of our results, we determine the PSNR, MSE ratios and IOU score, as given in
Table 6. The results of the MSE in the validation images show very small error values.
Furthermore, for the PSNR, the values are encouraging due to the original image quality, so we
can say that the PSNR is very improved for segmented ultrasonic tomographic test images.
When comparing our segmented image results with the state of the art [14, 20], we succeed in
solving the segmentation problem of ultrasound tomographic images with deep-learning,
which offer us a free database. As depicted in Table 8, a comparative study with the state of
the art is done with different neural networks applied on MRI, CT, and X-ray images of bones,
given the unavailability of deep-learning work applied on USCT bones images. Moreover, the

Table 7 Implementation results on GPU and CPU

Network GPU
training
memory

GPU inference
memory

GPU runtime in
training

GPU runtime in
testing

CPU
runtime

Energy
consummation

VGG-SegNet 10 MB 12,194 MB 1 s/step 0.15 s/step
(Appendix3)

3 s/step 17 W/200 W

VGG-Unet 10 MB 12,194 MB + 0.15 s/step
(Appendix3)

– –
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USCT dataset presents a big challenge [28], which prohibits the comparison of deep learning
work applied on USCT images with ours. Our proposed model, by combining the optimized
VSMN with VGG-SegNet, achieves 97.38% accuracy for the training phase and 96% for the
validation phase and an error of 0.006 for the segmented test images. In fact, these results
surpass those of the state of the art in [11], where the error exceeds 14% for the training phase

Fig. 21 Real scene images

Fig. 22 Segmentation results of real scene images during the testing process on GPU
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and 20% for the validation phase during the segmentation process of MRI vertebral disc
images. Accordingly, our proposed neural network overcomes the CNN [25] and SegNet [17]
by a value of 6% due to our optimized architecture, as detailed in section 3. Moreover, our
validation results are very promising compared to that was found by the state of the art in [29].
In addition, our VGG-Segnet proves to be excellent compared to which is implemented in [5]
on gastric cancer images. Furthermore, our suggested method has reasonable accuracy with a
small medical dataset.

6 Conclusion

This work presents an end-to-end neural network architecture called VSMN-VGG-SegNet, for
the automatic segmentation of bones in USCT images for a short time process by a software
GPU code implementation. The VSMN has proven its efficiency with an improvement of
image resolution, a PSNR enhancment and noise removal. Moreover, it has performed free
data for USCT researchers. Furthermore, the VGG-SegNet has provided excellent segmenta-
tion with an error of 0.006 applied on USCT images not seen before by the system. The
robustness of our suggested model has demonstrated its robustness by achieving promoting
segmentation results. Finally, the evaluation of our results has shown the efficiency of the
proposed method in comparison with previous work. The next step will be dedicated for to the
structure detection of USCT bone images for an automatic diagnosis using a deep-learning
application on the GPU.
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Table 8 Accuracy comparative study with state of the art

Neural network model Train
accuracy

Validation
accuracy

Dataset

SVMN-VGG-SegNet 97.38% 96% Bone USCT images
SVMN-VGG-Unet 97.38% 96% Bone USCT images
SegNet [25] 91.47% – MRI brain images
CNN [26] 92% – CT bone images
CNN-UNet 92% – CT scans bone images
CNN [11] 85% – MRI vertebral bone
Fully-Automated deep learning based CNN

[22]
94%(1 year)
90%(1 year)

– Human bones

SegNet [29] – 95% CT lung images
UNet [29] – 91% CT lung images
VGG-SegNet [27] 95.86% – Lung CT Parenchyma

images
SegNet [5] 63.89% – Gastric cancer images
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