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Abstract
In such a brief period, the recent coronavirus (COVID-19) already infected large popu-
lations worldwide. Diagnosing an infected individual requires a Real-Time Polymerase
Chain Reaction (RT-PCR) test, which can become expensive and limited in most
developing countries, making them rely on alternatives like Chest X-Rays (CXR) or
Computerized Tomography (CT) scans. However, results from these imaging approaches
radiated confusion for medical experts due to their similarities with other diseases like
pneumonia. Other solutions based on Deep Convolutional Neural Network (DCNN)
recently improved and automated the diagnosis of COVID-19 from CXRs and CT scans.
However, upon examination, most proposed studies focused primarily on accuracy rather
than deployment and reproduction, which may cause them to become difficult to
reproduce and implement in locations with inadequate computing resources. Therefore,
instead of focusing only on accuracy, this work investigated the effects of parameter
reduction through a proposed truncation method and analyzed its effects. Various
DCNNs had their architectures truncated, which retained only their initial core block,
reducing their parameter sizes to <1 M. Once trained and validated, findings have shown
that a DCNN with robust layer aggregations like the InceptionResNetV2 had less
vulnerability to the adverse effects of the proposed truncation. The results also showed
that from its full-length size of 55 M with 98.67% accuracy, the proposed truncation
reduced its parameters to only 441 K and still attained an accuracy of 97.41%,
outperforming other studies based on its size to performance ratio.
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Abbreviations
AUPR Area Under the Precision-Recall
AUROC Area Under the Receiver Operating Characteristic
BFS Base Features Size
BLL Base Layer Length
BN Batch Normalization
BPS Base Parameter Size
BS Batch Size
CCEloss Categorical Cross-entropy loss
CXR Chest X-Rays
CAP Community-Acquired Pneumonia
CT Computerized Tomography
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Networks
GAP Global Average Pooling
Grad-CAM Gradient-weighted Class Activation Maps
LR Learning Rate
MSLE Mean Square Log Error
RT-PCR Real-Time Polymerase Chain Reaction
ReLU Rectified Linear Unit
RLRoP Reduce LR on Plateau
SGD Stochastic Gradient Descent
TFS Truncated Feature Size
TLL Truncated Layer Length
TPS Truncated Parameter Size

1 Introduction

With the unceasing infection rates induced by the recent coronavirus SARS-CoV-2, the globe had
brought itself to an unanticipated transformation. The virus, also known as COVID-19, targets the
human respiratory system causing mild to severe impairment to its linings and air sacs, emanating
various symptoms that confuse non-experts and experts with other related respiratory ailments
[55].With this dilemma, various testing procedures must commence to rule out the cause, whether
the person has COVID-19, a Community-Acquired Pneumonia (CAP), or other respiratory
diseases. One of the commonly used methods to justify the presence of the COVID-19 pathogens
from a person involves using a Real-Time Polymerase Chain Reaction (RT-PCR) test, which is
prone to false diagnoses. This approach involves collecting specimens from various body parts
performed by swabbing a 6-in. Q-tip through a potentially infected individual [9, 61]. However,
the process tends to cause fear for most people and medical collectors due to its unpleasant
procedure and potential hazards. Not only that, the cost of testing for the COVID-19 comes a bit
more expensive due to the lack of experts that can perform the task correctly and the inadequate
availability of testing kits, mostly in developing countries [17, 48].

In specific instances, Chest X-Rays (CXR) and Computerized Tomography (CT) scans
have become an alternative to aid the said limitation and uncomfortable process. Both methods
can visualize the respiratory section where the virus usually thrives [3]. However, the lack of
knowledge in interpreting COVID-19 from the said images radiates puzzlement even for
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medical experts due to its resemblance with other diseases like CAP, leading to false diagnoses
[4].

Recently, the role of Deep Learning (DL) in medical diagnosis became one of the
revolutionary steps for improving healthcare. DL took medical image diagnosis to a whole
new level to help medical experts attain a faster and accurate diagnosis for COVID-19 infected
individuals. The combined approach of computer vision and DL produced solutions that
automated the assessment of COVID-19 infected CXRs and CT scans without the need for
long hours and exhausting diagnosis, showing the possibility of yielding immediate and more
accurate results [5, 41].

As presented in the study of Wang et al. [62], they began their initiative to diagnose CXRs
by collecting data from various reliable sources. Their study had designed a specialized
Convolutional Neural Network (CNN) [36] that recognizes the CXR images by using various
interconnected layers that performed the extraction of learnable features from their dataset
passed to a set of Fully Connected (FC) neural networks. Their proposed model consisted of 1
× 1 convolutions (Conv) that strode over the image and produced smaller portions of the
original image. The network then re-expanded the resized image with another 1 × 1 Conv, this
time, based on its depth. In addition, they also included a 3 × 3 Depth-wise (DW) layer [8].
The projection then had another 1 × 1 Conv, immediately followed by an extension with a
similar-sized Conv layer. Their machine-driven approach led to successful results that diag-
nosed the three cases of CXRs as their proposed model, named COVID-Net, attained a
parameter size of only 11.75 million and overall accuracy of 93.3%. Compared with other
state-of-the-art Deep CNNs (DCNN) like VGG-19 [53] and ResNet50 [19], they only had
83% and 90.6% accuracy but required 20.37 M and 24.97 M parameters, respectively.

The pursuit for an ideal solution that can perform remarkably with less need for computing
resources arose. Another study by Das et al. [11] proposed to further reduce the needed cost for
the task without a significant reduction in performance to diagnose the three cases of CXRs
sorted as COVID-19, CAP, and tuberculosis (TB) from China and the United States of
America (USA). In their study, a well-known state-of-the-art DCNN model, the InceptionNet,
had undergone the process of layer truncation that mostly eliminated its deeper layers and
maintained its effectiveness towards feature extraction. The truncated architecture of their
proposed InceptionNet model kept three of its core blocks intact and had its grid sizes reduced.
The inception blocks are composed of Conv filters with 1 × 1, 3 × 3, and 5 × 5 assembled in
a DW fashion that produces a rich spectrum of features. However, using a pre-trained
InceptionNetV3 [56] in their study required them to replace the final layers, as the original
structure’s design focused on classifying one thousand classes that had no relevance to their
task. Therefore, they fine-tuned their model’s ending layers to focus only on the three
identified CXR cases. Once trained, they evaluated the results of the truncated model, which
attained an accuracy of 99.92%. In addition, their work had about 2.1 M parameters, making it
smaller than the previous COVID-Net model with better performance.

With the minimal adverse effects of truncation towards the performance of a DCNNmodel.
Montalbo, F.J.P [42] employed another approach that dealt with layer truncation as a continu-
ing study. However, this time, the study induced partial layer freezing and feature fusion. The
selected DenseNet121 model [24] had its layers truncated, leaving nine dense blocks and a
single transition block, making it 93% smaller than its original structure. A dense block
contains a Batch Normalization (BN) [27], a Rectified Linear Unit (ReLU) [64], and 1 × 1
Conv, where it then concatenates to another up to a downsizing transition block. Such a
concept paved the success of DenseNets to achieve state-of-the-art with lesser parameters than
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ResNets and InceptionNets. According to the study, the truncated DenseNet model had a
mirrored version fused and trained through transfer learning, partial layer freezing, and fine-
tuning to diagnose respiratory diseases, including COVID-19 [43]. Once trained and validated,
the Fused-Densenet-Tiny produced an overall accuracy of 97.99% and a significantly low
parameter requirement of only 1.2 M.

The studies mentioned had focused only on CXRs, which did not cover the diagnosis of
lung CT scans infected by COVID-19. In another study by Gunraj et al. [18], they produced a
variant of the COVID-Net called the COVIDNet-CT, designed primarily for diagnosing CT
scans rather than CXRs infected by COVID-19. Based on their article, their CT-based model
had an architecture that resembled the original COVID-Net that had a Pointwise (PW) Conv
for dimensionality reduction, replication for an efficient dimensionality expansion, spatial
feature representations through a DW Conv, and another expansion channel dimensionality
with a PW Conv. The reliance of their model in Projection-Replication-Projection-Expansion
(PRPE) (without strides) and PRPE-S (with strides) achieved a remarkable performance
towards the task. Their COVIDNet-CT achieved an accuracy of 99.1% with only 1.4 M
parameters that diagnosed uninfected, pneumonia-infected, and COVID-19 infected CT scans
rather than CXRs.

Polsinelli et al. [47] also proposed a lightweight CNN model for CT scans with a similar
goal. Their study diagnosed CT scans with and without COVID-19 using a model that
resembles the SqueezeNet model [25], which has fifty times lesser parameters than the well-
known AlexNet [34]. The SqueezeNet achieved such a feat through its “Fire Modules”
consisting of 1 × 1 and 3 × 3 Conv layers and a ReLU concatenated towards a succeeding
block. The original SqueezeNet had 8 Fire Modules with skip connections referred to as a
“bypass.” However, upon modifying the SqueezeNet model with expanded Fire Modules and
additional Exponential Linear Units (ELU), they found that their model could perform better
and more efficiently even without a BN layer. Also, they added a Transpose Conv layer at the
final Fire Module to expand their features four times and have its weights summed through a 1
× 1 Conv with 128 depths of filters. As a result, their proposed model attained an accuracy of
85.03% with only 1.26 M parameters, making it a lighter yet competitive model against the
studies of Wang et al. [63], Xu et al. [65], and Li et al. [38].

Due to the separated task of diagnosing the CXR and CT scans, Ibrahim et al. [26] decided
to combine both into a single pipeline. One of their proposed models that attained the best
performance had a composition of a VGG19 subsequently connected to a standard CNN
model. Their proposed models trained with 500 and 800 epochs to achieve the best possible
scores. Upon evaluation, they identified that their combined VGG19 and standard CNN model
with 22.3 M parameters produced the best accuracy rate of 98.05%.

For an overview, Table 1 presents the proposed model, dataset specifications, performance
results, and parameter sizes of the discussed recent related studies.

The studies presented regarding various models have shown remarkable performances but
mostly towards diagnosing only either CXRs [11, 42, 62] or CT scans [18, 38, 47, 63, 65]
using separate pipelines and had less focus on cost-efficiency. On the other hand, though the
study of Ibrahim et al. [26] had both types of images combined into a single pipeline, their
model still consisted of 22.3 M parameters, required long training epochs, and a lengthy
architecture, making it less practical for most low and mid-end devices. After reviewing all the
given studies, this work observed that most resolved the problem by either proposing new
architectures or compounding multiple models and layers that eventually bloated the param-
eters without inducing much performance improvements. For that reason, specific devices may
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experience problems in adapting their solutions or may become difficult to reproduce and
deploy in developing countries that lack adequate resources [59]. As a solution, Das et al. and
Montalbo, F. J. P. proposed layer truncation methods, where they have shown that even if
DCNN models only used less of their layers and parameters, results can still become sufficient
with the help of transfer learning and fine-tuning [11, 42, 43]. However, both of their work still
had multiple blocks of layers activated, and that the fused solution required random weight
generation from another mirrored pipeline that consumed additional training costs. The said
findings from these existing studies showed that their current solutions still require a bit of a
cost, as their models still had parameters >1 M.

Hence, this work proposed to further lessen the parameter size of state-of-the-art DCNNs
into <1M parameters and diagnose CXRs, and CT scans with COVID-19 infections in a single
pipeline while achieving competitive performance. Furthermore, the said studies inspired the
design of this work to become flexible enough to recognize both medical images without the
need for complex procedures.

Through this work, the effects of a more robust truncation approach can produce new
insights in training DCNN models regarding COVID-19. Like most studies, this work
employed fine-tuning and pre-training of various DCNNs. However, this work had a better
focus on regularization to retain a competitive performance even with fewer parameters. In
addition, it is also worth mentioning that this work did not consider the use of lengthy training
epochs, costly optimization algorithms, or heavy preprocessing to achieve such performance.
Therefore, highlighting the value of the proposed method compared to most studies and
providing leeway for better reproduction and deployment in the future. Based on recent
literature, only a handful of researchers have dwelled upon this topic, which also became
one of the inspirations to pursue this work as it can yield new insights and a broader
perspective for other researchers working in a similar domain.

In summary, this work had achieved the following contributions:

& This work produced findings on the effects of a robust truncation method in various recent
DCNN models that trained and diagnosed three cases of CXRs, and three cases of CT
scans involving COVID-19.

Table 1 Summary of recent related studies

Model Dataset Performance Params

COVNet (ResNet50 backbone) [38] CT Scans (COVID-19, CAP,
Non-Pneumonia)

Sensitivity: 90%
Specificity: 96%

25.6 M

Modified-Inception [63] CT Scans (COVID-19, non-COVID-19) Accuracy: 89.5% ≈23 M
VGG19 with Standard-CNN [26] CT Scans and X-Ray (Normal,

Pneumonia, COVID-19, Lung Cancer)
Accuracy: 98.05% 22.3 M

COVID-Net [62] CXRs (Normal, CAP, COVID-19 Accuracy: 93.3% 11.75 M
Location-attention oriented Model

(based on ResNet18) [65]
CT Scans (COVID-19, Influenza-A, Viral

Pneumonia)
Accuracy: 86.7% 11.7 M

Truncated InceptionNet (3 blocks)
[11]

CXRs (COVID-19, CAP, TB (China), TB
(USA)

Accuracy: 99.92% 2.1 M

COVIDNet-CT [18] CT Scans (COVID-19, non-COVID-19) Accuracy: 99.1% 1.4 M
Lightweight CNN (based on

SqueezeNet) [47]
CT Scans (COVID-19, non-COVID-19) Accuracy: 85.03% 1.26 M

Fused-DenseNet-Tiny [42] CXRs (Normal, COVID-19, CAP) Accuracy: 97.99% 1.2 M

*Arranged according to parameter size
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& This work proposed a straightforward method that reduced the parameter size of the
various DCNNs to <1 M by eliminating massive layers and retaining only their core
conceptual block without sacrificing a significant fraction of their performance in diag-
nosing CXRs and CT scans in a single pipeline.

& Through stringent evaluations of the proposed method, this work attained competitive
results. Concluding that pre-trained, truncated, and fine-tuned DCNNs can achieve better
cost-efficiency, better reproducibility, a competitive performance, and a higher possibility
of deployment than conventionally trained full-length DCNNs in low-end devices.

2 Materials and methods

2.1 Dataset acquisition and preparation

Collecting CXRs and CT scans, specifically those infected by COVID-19, can become
cumbersome due to the limited data available in most healthcare facilities. Therefore, rather
than collecting the desired samples and building a dataset from scratch, this work used readily
curated datasets from existing reliable sources.

In this study, the curated dataset for the CT scans came from seven recently conducted
studies involving COVID-19 [1, 10, 30, 44, 46, 49, 66], added with another set of CXR images
from Sait et al. [51]. Upon investigation, the curated datasets already received preprocessing
beforehand from their respective authors, alleviating the need to perform the task, as adding
further changes may only lead to pre-determined outcomes, added bias, and even degrade the
quality of the images. In addition, this study also focused on training the models based on
realistic images rather than synthetically modified images to yield genuine findings. Figure 1
illustrates randomly selected image samples from the curated dataset.

As specified in Table 2, the CT scan dataset contains 6893 uninfected samples, 7593
COVID-19 samples, and 2618 pneumonia-infected samples, producing a total of 17,104 CT
scan images. On the other hand, the CXR dataset has 3270 uninfected, 1281 COVID-19, and
4657 pneumonia image samples, having a total of 9208 CXR images. However, the given
samples still required an appropriate distribution for training and validating the models.
Therefore, this work had 80% of the total images or 21,052 images with six classes serving
as train images, while the rest of the 20% or 5260 images with six classes as validation images.

Image Type Normal (a) COVID-19 (b) Pneumonia (c)

CT Scan

CXR

Fig. 1 Samples of chest x-rays and computed tomography scans from the curated dataset
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Having all six classes separated reduces the confusion between CXRs and CT scans when
mixed up together in a single pipeline.

It is also worth mentioning that every individual’s CT scan and CXR samples only entered
either the train or validation dataset. Therefore, no identical images from the same individual
existed on both datasets, preventing data leakage.

2.2 Selection and truncation of models

Due to the sizeable number of parameters found in most DCNNs, reproduction and deploy-
ment can become an issue for most low-end devices or infrastructures that lack adequate
computing resources [7]. However, relying only on simpler models can become inefficient due
to their lack of feature generation and regularization [22]. Hence, this work investigated the
effects of the proposed truncation method in DCNNs to produce a lightweight model with a
highly accurate classification capability.

Unfortunately, truncating complex DCNN models based solely on specific layers can
become gruesome and impractical due to the vast possibilities. As observed from recent
studies, they did not identify truncation points according to specific layers. Instead, they first
focused on identifying truncation points based on the core block of a specific DCNN that
composes it. Once identified, they removed multiple iterations of those core blocks to reduce
their model’s size [11, 42]. Unlike other studies, for further production of new findings, instead
of leaving two, three, or only reducing a couple of core blocks from the original structure, this
work had all DCNNs truncated into their simplest form, leaving them with a single core block
that had parameters <500 K. This approach provides a whole new perspective to see if DCNNs
can still perform the given task competitively, even after removing massive amounts of their
layers. Based on the proposed truncation approach, this work managed to locate the first core
block of each DCNN based on their respective articles. Eventually, the last layer from their
first core block became their truncation point, having all successive layers after it eliminated.
With that said, the parameter size of each DCNN reduced significantly but with their core
design and identity intact. It is worth mentioning that no existing studies performed this
approach to such a degree.

Beforehand, this work selected recently released and profound DCNN models based on
either or both lengthy end-to-end network architecture and large parameter size. The candi-
dates chosen for the experiments included the recent architectures like Xception [8],

Table 2 Dataset specification and distribution

Computed Tomography Scans

Data Train (80%) Validation (20%) Total

CT-Normal 5515 1378 6893
CT-COVID-19 6075 1518 7593
CT-Pneumonia 2095 523 2618
Total 13,685 3419 17,104
Chest X-Rays
CXR-Normal 2616 654 3270
CXR-COVID-19 1025 256 1281
CXR-Pneumonia 3726 931 4657
Total 7367 1841 9208
Overall 21,052 5260 26,312
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InceptionV3 [56], DenseNet121 [24], ResNet50V2 [20], InceptionResNetV2 [57], and
EfficientNetB0 [58]. These models had trained in their full-length and truncated forms to
unravel a wide range of findings.

2.2.1 InceptionV3

One of the candidates for this work, the InceptionV3, belongs to a group of a DCNN family
that reconstructed the conventional size of Conv filters, from the usual 5 × 5 and 7 × 7 into a
1 × 7 and 1 × 5, InceptionV3 added a 1 × 1 bottleneck right before a succeeding larger Conv
filter. InceptionV3 achieved a cross-channel correlation through this approach, leading to a
massive reduction of parameters than its predecessors. However, the InceptionV3, with its
profound approach, still had a lengthy network structure that consisted of about 23 M
parameters [56].

2.2.2 Xception

On the other hand, in an inverted version of the InceptionV3, the Xception model reduced its
parameter size by utilizing DW and PW Conv layers. The given approach had the Inception’s
block structure reversed. It also became more expansive with a 1 × 1 PW Conv directed into a
stack of concatenated linear DW Conv layers added with residual connections, resulting in
fewer and simpler computations that improved its overall performance. Furthermore, the
concept provided by Xception managed to reduce the original parameters of the InceptionV3
from 23 M to 22 M [8].

2.2.3 ResNet

The idea of providing more layers became a popular method since the release of AlexNet and
VGGNets. However, the simple idea of adding more layers suddenly became a problem as the
performance of deeper models began to saturate due to the vanishing gradient problem. As a
solution, ResNet had the idea of utilizing skip connections, allowing the model to learn from
residuals. Such a concept paved the way for succeeding models to improve their learning
capability even after adding more layers. ResNet consists of residual blocks that contain a
series of Conv ➔ BN ➔ ReLU and a skip connection that summates the feature sets, which
added robustness. However, in a later study, ResNetV2 surpassed the previous performance of
the original ResNet by interchanging its layer sequence into a BN ➔ ReLU ➔ Conv, the
revised version also came with identity mappings that can now propagate signals through the
skip connections back and forth. Due to its reliance on depth, like Xception, the ResNet50V2
variant also had a sizeable parameter size of 25 M [20].

2.2.4 InceptionResNetV2

With the concept of Inception and the emergence of ResNet, a model called the
InceptionResNetV2 sprung. This model aggregated concepts into multiple Inception blocks
with a corresponding ResNet block connected to a concatenating block. The core concept of
the InceptionResNetV2 still follows the design of InceptionV3 but with added residual links.
Thus, InceptionResNetV2 eventually became broader and deeper than InceptionV3, Xception,
and even ResNetV2, which produced a massive parameter size of 55 M [57].
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2.2.5 DenseNet

Unlike ResNets that used the summation of features, the concept of DenseNets relied on
densely concatenated layers coupled in a block-wise manner. Each dense block consists of a
sequential BN ➔ ReLU ➔ 1 × 1 Conv and another with a 3 × 3 Conv added with a
downsizing transition layer that has a BN➔ ReLU➔ 1 × 1 Conv➔ 2 × 2 Average Pooling
(AP) that relieves the model from the massive surge of features, providing better computa-
tional efficiency.

The DenseNet121, one of the smallest family members in the DenseNet family, only
needed 8 M parameters to operate through its profound design [24].

2.2.6 EfficientNet

Due to the demand and interest for better efficiency and scalability, EfficientNet had the
concept of providing a scalable model that adapts a concept of balancing the width, depth, and
resolution of images upon expansion while maintaining a low computational overhead. The
model primarily consists of mobile-inverted bottlenecks or MBConv with a Squeeze-and-
Excitation, BN, and the recent Swish activation function [50]. The selected base
EfficientNetB0 consists of 16 MBConv blocks with varying sizes of receptive fields in this
work. The model produces about 5.3 M parameters in its entirety, making it significantly
smaller than DenseNet121 [58].

2.2.7 The specification of the truncated models

Even with the improved performance, and reinvented structures of various recent state-of-art
DCNNs, this work still had the initiative to investigate whether these models require their
entire layers to achieve adequate performance towards the identified task.

In Table 3, the following presents how the proposed truncation method affected each
DCNN’s feature size. As mentioned, this work identified each model’s core block to determine
their respective truncation points. From there, the selected DCNNs only had their first core
blocks left due to the removal of succeeding layers after their identified truncation points.

Based on the given numbers, the models’ Base Layer Length (BLL) with their original head
intact significantly reduced after the truncation process, leading to their new Truncated Layer
Length (TLL) without the head. This approach, however, also affected the Base Features Size
(BFS) that they produce. With these changes, the performance of each DCNN can alter from
their full-length version, as a new Truncated Feature Size (TFS) can potentially deteriorate
their overall accuracy, which this work investigated.

Table 3 Specifications of the base and truncated models

Model BLL TLL BFS TFS Last layer name

InceptionV3 313 41 2048 256 “mixed0”
Xception 134 16 2048 128 “add_1”
ResNet50V2 192 17 2048 256 “conv2_block1_out”
InceptionResNetV2 782 41 1536 320 “mixed_5b”
DenseNet121 429 14 1024 96 “conv2_block1_concat”
EfficientNetB0 240 46 1280 24 “block2b_add”
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Table 4 shows the difference in parameter size of each model before and after the truncation
process. After truncation, the Base Parameter Size (BPS) of each DCNN had a massive
decrease, leaving each with a new Truncated Parameter Size (TPS) of <500 M. Such a
significant reduction already guarantees that this work produced lighter models compared to
the previously discussed studies. Noticeably, the InceptionResNetV2 and InceptionV3 pre-
served the most extensive parameters of around 400 K even with their shorter TLL of 41 than
EfficietNetB0 with 46. The reason lies in their layer composition, as inception-based models
rely on robust aggregation of multiple Conv blocks that made their structure broader than most
models.

For a better visual understanding of the proposed truncation method, this work provides the
schematics of the given models before and after truncation. The full-length version presents the
original architecture of each DCNN model before the proposed truncation, while the truncated
version presents what happened to each DCNN model after the proposed truncation.

& Full-Length https://github.com/francismontalbo/covid19_diagnosis_and_analysis_of_
truncated_dcnns/tree/main/full_length_architectures

& Truncated https://github.com/francismontalbo/covid19_diagnosis_and_analysis_of_
truncated_dcnns/tree/main/truncated_architectures

2.3 Transfer learning and fine-tuning

Before any of the models became usable for the task, proper training and tuning commenced.
Illustrated in Fig. 2, to alleviate the problem of having inadequate data, each model obtained
pre-trained features from ImageNet through transfer learning, attaining leverage for better
image recognition, and decreased costly generation of features from scratch. However, due to
the unnecessary weights inherited from ImageNet, the models required fine-tuning. That way,
the set of proposed fine-tuning layers can tailor-fit the DCNNs only to recognize the defined
CXRs and CT scans. Once fine-tuned, the models re-trained all their layers with the prepared
dataset, producing a new set of weights specifically for the task [31].

As shown in Fig. 3, because of the needed fine-tuning technique, this work replaced the
ending layers of all the selected models to recognize the given classes, provide better
regularization, and prevent overfitting [21]. The proposed sequential layers are composed of
a Global Average Pooling (GAP) [39], dropout layer [54], and a 6-unit dense layer that
represented the given classes activated by a softmax function [45] working as a classifier
linked directly to each model’s final layers, specified previously in Table 3.

Table 4 Comparison of parameter size before and after truncation

Model BPS TPS

InceptionV3 23,851,784 429,440
Xception 22,910,480 55,712
ResNet50V2 25,613,800 84,480
InceptionResNetV2 55,873,736 441,920
DenseNet121 8,062,504 55,488
EfficientNetB0 5,330,571 24,345
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The incorporated GAP layer served as a substitute for the conventional flattening layer used
in most CNN models. The advantage contributed by GAP lies in its operation of managing the
features for each corresponding case in the final dense layer, where it averaged the feature’s
pixel values globally and flattened it in a single vector for each class, fed directly to the
following dense layer with a softmax activation. Hence, it provided each model with a more
native image recognition approach, as the added GAP layer enforced the correspondence of
feature sets towards the specified classes. Also, unlike the conventional flattened FC neural
network, the GAP layer did not require parameters to operate, thus reducing the need for
additional computational cost and providing summed-out spatial information that generated
robust spatial translations for each input.

Empirically, a dropout layer can provide the random elimination of dense units and prevent
a model from co-adapting too much to a given set of data, which drastically reduces
overfitting. Therefore, this work also considered adding a dropout layer to operate between

Prepared
dataset Fine-tuned truncated 

models

ImageNet pre-trained 
features

Truncated models Proposed fine-tuning 

Trained models for 
COVID-19 diagnosis

Transfer learning

Model training

Fine-tuning

Fig. 2 The proposed transfer learning and fine-tuning method

Final layer of the 
truncated models

Global Average 
Pooling

Dropout

6-unit dense layer 
with so�max

Output layer

CT-scan CXR

Pneumonia COVID-19

Normal

Proposed fine-tuning layers
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the previously connected GAP layer and the last prediction layer, as it can stochastically lessen
the propagated feature weights per unit, which stimulates the model to perform better. After
accomplishing each model’s pre-training and fine-tuning, the compiled DCNN models had a
specified set of hyper-parameter values, loss function, and a callback function intact.

2.4 Selected hyper-parameters

In a DL model, hyper-parameters operate as tweakable components that can intervene with the
model’s overall performance towards a specific task [69]. In this work, the configured hyper-
parameters in Table 5 did not come from a rigorous selection process or received help from an
optimization algorithm. Instead, the presented hyper-parameter values relied on an empirical
tuning approach, proper guidance from other studies, and suitability based on the machine’s
current specification during the time of experiments. Furthermore, such an approach entails that
training the proposed truncated models should become straightforward [12]. Therefore, the
configured hyper-parameters only included constant values for the Batch Size (BS), Learning
Rate (LR), and epoch, set to reduce the training length while achieving a rapid convergence.

For the BS, the value of 16 gave a decent transfer rate of data through the pipelines and did
not prompt memory exhaustion during experiments. In addition, with the need for faster
convergence, this work relied on the Adam optimizer, as it can achieve convergence faster
than the commonly used Stochastic Gradient Descent (SGD) and RMSprop [32]. As specified,
Adam works with an adaptive momentum that made it a popular go-to optimization algorithm
in various medical imaging studies that produced substantial results [33]. The said optimizer
also consumes less memory than most existing optimizers as it selects subsets stochastically
rather than the entire dataset simultaneously, making it efficient for DL models with tiny to
large datasets. Furthermore, due to the given characteristics of Adam achieving faster conver-
gence, this work necessitated a smaller LR to prevent each model from learning too fast and
cause their performance to saturate during training. Further, setting a dropout rate of 0.5
provided a substantial regularization of the passing features through the fully connected layers,
decreasing the possibilities of overfitting.

It is also worth mentioning that the configured values may vary from machine to machine
and may involve re-tuning when replicating this work. Nonetheless, the configured BS of 16,
employed Adam optimizer with a 0.0001 LR, training length of 25 epochs, and a dropout rate
of 0.5, yielded the best results within a short period for this work.

2.5 Callback function

Once the training begins, the model and its hyper-parameters can no longer change. With that
said, training each DCNN may become tedious and repetitive when producing the best

Table 5 Hyper-parameter configuration

Hyper-Parameter Value

Batch Size 16
Optimizer Adam
Learning Rate 0.0001
Epochs 25
Dropout Rate 0.5
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possible results. However, relying on optimization algorithms for hyper-parameter tuning can
become expensive and time-consuming, defeating the purpose of this work. Hence, to provide
a better grasp and adaptability for the models during training without applying a heavy strain
on computing resources, this work employed a callback function called, Reduce LR on Plateau
(RLRoP) [15].

Presented in Table 6, the RLRoP configured in this work provides better control during
training, in case that after two successive epochs that the model’s validation accuracy had no
improvements, the base LR will decrease by a factor of 0.5, which will then replace its base
value (LR * 0.5) with a limit of up 0.000001. Through this method, each model will have the
ability to automatically adjust their LR even during training each time their validation accuracy
stagnates at a particular epoch, increasing the possibilities of achieving further improvements
with less expense [14].

2.6 Loss function

In line with the desire to achieve high accuracy rates, DL models also require evaluating their
errors to identify how well they fit the given data. Error rates also differ from accuracy based
on measurement, as loss or errors require lower values to signify better performance, unlike
accuracy that compels higher values to imply that the model performed well [16].

Apart from hyper-parameters, selecting an appropriate loss function plays a vital role in
assessing and improving the overall performance of DCNNs. Due to the three cases of CXRs
and three cases of CT scans, the Categorical Cross-entropy loss (CCEloss) for the softmax
classifier became an ideal choice compared to a binary cross-entropy [40]. In Eq. (1), C
indicates the six cases, including Normal, COVID-19, and Pneumonia for CXR (3) and CT
scan (3). Every C diagnosed had its loss computed accordingly from each observation o based
on their ground truth values y. For every diagnosis d performed in each instance m of C, the
model calculates the number of mistakes on every o using a natural log function.

CCEloss ¼ ∑
C

m¼1
yo;i � log do;m

� � ð1Þ

2.7 Evaluation tools and metrics

This work selected and employed the standard evaluation metrics used in most DL tasks that
initialized comparable results with other studies. In addition, other visualization tools also
played a vital role in this work that differentiated the performance between the selected
model’s truncated and full-length forms.

Table 6 Learning rate reduction on plateau callback configuration

Parameter Value

Monitor “Validation accuracy”
Factor 0.5
Patience 2
Minimum LR 0.000001

16423Multimedia Tools and Applications (2022) 81:16411–16439



The trained models had performed their validation based on the 5260 samples with six
classes. For every sample diagnosed, this work identified each diagnosis as either True
Positive (tp), True Negative (tn), False Positive (fp), or False Negative (fn). In widespread
practice, a diagnosed sample tagged as a tp indicates that the model had a correct diagnosis of a
specific infection, whether Pneumonia or COVID-19, while tn indicates a correct diagnosis of a
non-infected case. On the other hand, indicators like fp and fn determined that the model
committed incorrect diagnoses, confusing a non-infected case with the other infections and
vice-versa [60]. Due to the combined cases of CXRs and CT scans in a single pipeline, the tn
and tp became indirectly unnecessary in this work as a multi-class approach does not directly
justify each as a tp or tn. It is worth mentioning that such occurrence also happened in other
studies as well [35]. After the models diagnosed all the validation samples, using the
calculations below, this work identified each model’s overall accuracy (accuracy), precision
(pr), recall (r), and f1-score (f1). [23].

accuracy ¼ tp þ tn
tp þ tn þ f p þ f n

ð2Þ

pr ¼ tp
tp þ tn

ð3Þ

r ¼ se ¼ tp
tp þ f n

ð4Þ

f 1 ¼ 2� pr � r
pr þ r

¼ 2tp
2tp þ f p þ f n

ð5Þ

Further, each validated DCNN had its performance analyzed through various data visualiza-
tion techniques using learning curves, a confusion matrix, Area Under the Receiver Operating
Characteristic (AUROC), Area Under the Precision-Recall (AUPR), Mean Square Log Error
(MSLE), and the Gradient-weighted Class Activation Maps (Grad-CAM).

3 Experimental results and discussion

3.1 Model convergence

With the help of learning curves, all models had their performance monitored that determined
how well they learned from the given datasets. It is worth noting that the accuracy graph with
an upward line indicates an improving model. In contrast, the loss graph measured by the
CCEloss illustrates a plummeting line, implying that the model also kept improving over time.
Furthermore, models with a gradual yet progressive converging train and validation lines
indicate an ideal fit and that the model did not experience over or underfitting. Otherwise, the
presence of diverging lines can indicate poor generalization from future foreign test data [68].

Figure 4 illustrates the learning curves produced by the full-length version of the
selected DCNNs. As observed, the models achieved high accuracies and low error

16424 Multimedia Tools and Applications (2022) 81:16411–16439



rates. However, their accuracy rates converged too early, which entailed a stagnant
performance. Also, based on their loss graphs, a noticeable divergence of results
transpired at the early epochs that radiated until the end, concluding that the full-
length DCNNs experienced fitting issues.

However, in Fig. 5, the truncated versions had lesser performance than their base models
but with better progress and convergence. As presented, the accuracy and loss graphs of (c) to
(f) attained full convergence. Although (a) and (b) both had an observable divergence in their
losses, compared to the results of their full-length counterparts, the truncated versions still
achieved fewer errors and better control against overfitting, indicating a significant improve-
ment from the proposed truncation method applied.

3.2 Confusion matrix

The proposed truncation method showed relevant improvements in how the models fitted with
the train and validation data. However, the previously presented graphs still inhibited questions
about how well the models performed with their diagnoses on each validation sample.
Therefore, this section visualized the diagnoses of each model in a more straightforward
fashion using a confusion matrix. A confusion matrix is a standard tool used in most
classification tasks to present the number of tp, tn, fp, and fn that can serve as a basis for each
model’s overall performance [60].

Figure 6 presents the diagnostic results from each model using a confusion matrix. On this
point, the labels presented start from 0 to 5 that corresponds to the given classes: 0-Normal

(a) DenseNet121 (b) EfficientNetB0 (c) InceptionResNetV2

(d) InceptionV3 (e) ResNet50V2 (f) Xception

Fig. 4 Results of learning curves from the full-length models. a DenseNet121. b EfficientNetB0. c
InceptionResNetV2. d InceptionV3. e ResNet50V2. f Xception
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(a) DenseNet121-Tr (b) EfficientNetB0-Tr (c) InceptionResNetV2-Tr

(d) InceptionV3-Tr (e) ResNet50V2-Tr (f) Xception-Tr

Fig. 5 Accuracy and loss curves after the employment of the proposed truncation method. a DenseNet121-Tr. b
EfficientNetB0-Tr. c InceptionResNetV2-Tr. d InceptionV3-Tr. e ResNet50V2-Tr. f Xception-Tr

Fig. 6 Classification results of the truncated models based on a confusion matrix
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CXR, 1-COVID-19 CXR, 2-Pneumonia CXR, 3-Normal CT scan, 4-COVID-19 CT scan, and
5-Pneumonia CT scan. As evaluated, based on the number of correctly diagnosed samples
within the vertical trajectory, other truncated models managed to achieve adequate perfor-
mance. Unfortunately, other models did not respond quite well with the truncation method,
like the DenseNet121-Tr and Xception-Tr, as seen on their darker panels beyond the identified
trajectory. Though the EfficientNetB0-Tr and ResNetV2-Tr models still had a better perfor-
mance than them, unlike the rest, the InceptionResNetV2-Tr and InceptionV3-Tr kept a
significant amount of their diagnostic prowess even after truncation, as both received the least
misdiagnosed samples.

3.3 Sensitivity versus specificity

For a more in-depth evaluation, this work graphically identified the trade-offs between the
sensitivity and specificity of the models using the AUROC. For example, a DCNNmodel with
a higher AUROC entails better performance, while an AUROC of <0.5 means that a DCNN
cannot genuinely discriminate or identify a specific case [2].

Presented in Fig. 7, all truncated DCNNs had remarkable results across all their given
classes despite having lesser parameters. Notably, the InceptionResNetV2-Tr and
InceptionV3-Tr both attained similar AUROCs of 1.00 across all areas, showing dominant
performance among the rest of the truncated models. On the other hand, the DenseNet121-Tr
had the lowest macro-average AUROC of 0.96 and had shown to have noisy fluctuations on its
graph. As observed, the perpetrator roots from its lowest AUROC of 0.91 from CT scans with
COVID-19 infections at the lower thresholds. The adverse effects of the truncation also had
perceptible oscillations in the graphs of the EfficientNetB0-Tr, ResNet50V2-Tr, and Xception-
Tr.

Fig. 7 Receiver operating characteristic of the truncated models
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Though it appears that the InceptionResNetV2-Tr and InceptionV3-Tr had a highly similar
performance, further observations and analysis can still induce a better conclusion to identify
which between the two suffered the least.

3.4 Precision versus recall

Another commonly used graphical metric, the AUPR curve, entails a more accurate perception
of each model’s performance due to the unbalanced distribution of data in this work [29].
Compared to the AUROC, the AUPR focuses more on the number of incorrect diagnoses. On
the other hand, like AUROC, the AUPR measurement also pertains to the region covered
underneath the curve.

From the results illustrated in Fig. 8, both InceptionResNetV2-Tr and InceptionV3-Tr had a
similar micro-average AUPR of 0.996. However, upon observation, the InceptionResNetV2-
Tr had no values <0.99, whereas InceptionV3-Tr had an AUPR of 0.988 from the Normal
CXR or class 0. Therefore, indicating a slight advantage for InceptionResNetV2-Tr. In
addition, other truncated models had also shown significantly lesser performance, where
DenseNet121-Tr once again had the lowest performance with an 0.808 AUPR from
COVID-19 CT scans or class 4, showing its difficulty in performing the diagnoses. Moreover,
even though the InceptionResNetV2-Tr had shown a minimal advantage over the
InceptionV3-Tr, they still had a similar micro-average AUPR score, requiring further
investigations.

Fig. 8 Precision-recall curves of the truncated models
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3.5 Error rates

In this section, an additional metric further analyzed the effects of the proposed truncation
method. Using the MSLE, this work identified which model had fewer errors during their
validation phase. The following also included the comparison of each model’s MSLE from
their original full-length and truncated versions. Though not commonly used in this type of
task, the MSLE still provides additional knowledge to the current experiment as the results can
still dynamically change upon reproduction and inclusion of more data in the future.

The calculation of the MSLE lies on (6), where ŷi serves as the predicted value of the i
sample to a corresponding ground truth yi estimated over a set of nsamples from the validation set
with a loge(x) that functions as the natural log of x [13, 28].

MSLE y;by� �
¼ 1

nsamples
∑
i¼0

nsamples−1

loge 1þ yið Þ−loge 1þ byi
� �� �2

ð6Þ

The calculated MSLE of each model illustrated in Fig. 9 shows that the full-length
DenseNet121 had the lowest MSLE, landing only at 0.76%, followed by InceptionResNetV2
with 0.84%. Surprisingly, after the truncation process, DenseNet121-Tr suddenly skyrocketed
with a 5.26% MSLE and became the least performing model, while InceptionResNetV2-Tr
still retained a convincing diagnostic capability with only a 1.47% MSLE. Upon analysis, the
employment of the proposed truncation method affected the DenseNet121-Tr the most.
Though all models experienced similar effects of performance reduction, the
InceptionResNetV2-Tr had shown to deteriorate the least from its adverse effects.

3.6 Summary of overall performance

To summarize the overall performance, Table 7 presents the evaluated results of the truncated
models based on accuracy, pr, r, and f1.

Upon evaluation, InceptionResNetV2-Tr achieved the highest overall performance across
all metrics with 97.41% accuracy, 97.59% pr, 97.52% r, and 97.55% f1, followed by
InceptionV3-Tr with 97.36% accuracy. As analyzed, unlike other models, the performance of
both InceptionResNetV2-Tr and InceptionV3-Tr did not deteriorate much from the truncation
process, granting them a valuable trade-off and significant benefits in solving the given task.

Incep�onResNetV2 Incep�onV3 EfficientNetB0 ResNet50V2 Xcep�on DenseNet121

MSLE Full-Length 0.84 1.01 1.04 1.01 1.08 0.76

MSLE Truncated 1.47 1.71 3.22 3.39 4.47 5.26
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MSLE Full-Length MSLE Truncated

Fig. 9 Results comparison between the full-length and truncated models based on the mean squared log error
(lower the better)
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3.7 Class activation maps and saliency

For better interpretability, this section investigated the class activations of all DCNNs before
and after the proposed truncation method to better understand how they diagnosed a specific
sample. Using gradient-based activation map algorithms provided fascinating outcomes of
how each model interpreted various arbitrarily selected samples.

As illustrated in Figs. 10 and 11, a comparison of interpretations generated by the
Grad-CAM [52] and the Grad-CAM++ [6] algorithms presented the distinct

Table 7 Overall performance of the truncated models

Model accuracy pr r f1

DenseNet121-Tr 77.98% 80.86% 76.72% 78.25%
EfficientNetB0-Tr 86.03% 88.44% 86.45% 87.34%
InceptionResNetV2-Tr 97.41% 97.59% 97.52% 97.55%
InceptionV3-Tr 97.36% 97.46% 97.40% 97.43%
ResNet50V2-Tr 86.12% 87.77% 86.78% 87.25%
Xception-Tr 78.82% 81.11% 80.43% 80.25%

Chest X-Ray Chest X-RayCT Scan CT Scan

Grad-CAM Grad-CAMGrad-CAM++ Grad-CAM++

COVID-19 Pneumonia

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10 Gradient-weighted class activation maps of the full-length baseline models: DenseNet121 (a),
EfficientNetB0 (b), InceptionResNetV2 (c), InceptionV3 (d), ResNet50V2 (e), Xception (f)
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elucidations of each full-length and truncated DCNN. Upon examination, compared to
their original full-length counterparts, truncated DCNNs had more dispersed attention,
portraying the aftereffects of truncation on their interpretation capability. However,
among the rest, the truncated InceptionResNetV2-Tr and InceptionV3-Tr still yielded
better interpretability and finer localizations, instilling that these models still preserved
a massive portion of their image recognition capability. Therefore, supporting that the
proposed truncation applied on both DCNNs only brought minimal vision impairment
in their diagnostic performance towards the task, showing the effectiveness of their
robustly concatenated architecture reflected based on their overall performance in
Table 7.

It is worth mentioning that Grad-CAMs cannot entirely provide perfect localizations due to
their drawbacks compared to an actual segmentation algorithm, as they work for different
purposes [37]. Nonetheless, the Grad-CAM algorithms somehow provided adequate visuali-
zations to understand how the proposed truncation process affected the DCNN’s interpretation
of the given cases.

Chest X-Ray Chest X-RayCT Scan CT Scan

(a)

(b)

(c)

(d)

(e)

(f)

Grad-CAM Grad-CAMGrad-CAM++ Grad-CAM++

COVID-19 Pneumonia

Fig. 11 Gradient weighted class activation maps of the truncated models: DenseNet121-Tr (a), EfficientNetB0-
Tr (b), InceptionResNetV2-Tr (c), InceptionV3-Tr (d), ResNet50V2-Tr (e), Xception-Tr (f)
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3.8 Practicality and ease of deployment

To further justify the potential of truncated DCNN models over conventionally trained full-
length DCNN models, this work presents a bubble chart that compares their differences in
terms of overall accuracy, parameter size (bubble size), and FLOPS [67], added with a table
showing their practicality in terms of storage consumption.

3.8.1 Cost over performance

As illustrated in Fig. 12, the truncated models became tiny dots compared to full-length models
due to their significantly smaller parameter sizes. In addition, looking at the best performing
model’s FLOPS, the truncated InceptionResNetV2-Tr only required 3.35 GFLOPS with its
440 K parameters yet attained a 97.41% accuracy, making it the most accurate and cost-
efficient truncated model that competes highly against full-length models. On the other hand,
though the full-length EfficientNetB0 had a 1.32% higher accuracy of 98.73% and 2.56 lesser
GFLOPS of 0.79, this work identified that it still required 4.06 M parameters, making it
3.63 M more parameters than the InceptionResNetV2-Tr. Thus, giving the notion that
InceptionResNetV2-Tr has significant potential in terms of deployment, reproducibility, and
viability even across low to mid-end devices compared to most full-length DCNN models.

3.8.2 Storage consumption

In Table 8, though the full-length EfficientNetB0 initially had a low disk consumption of
48,072 KB and 98.73% accuracy, the truncated InceptionResNetV2-Tr only consumed
5338 KB, yet performed with a 97.41% accuracy with only a minimal performance difference
of 1.32%. Furthermore, compared with the full-length DenseNet121 that had an accuracy of

75

80

85

90

95

100

105

0 5 10 15 20 25 30 35

Ac
cu

ra
cy

 (%
)

FLOPS (G)

DenseNet121 EfficientNetB0 Incep�onV3
ResNet50V2 Xcep�on Incep�onResNetV2
DenseNet121-Tr EfficientNetB0-Tr Incep�onV3-Tr
ResNet50V2-Tr Xcep�on-Tr Incep�onResNetV2-Tr

Incep�onV3-Tr Incep�onResNetV2-Tr
97.41% accuracy
3.35 GFLOPS
441 K parameters

ResNet50V2-Tr

EfficientNetB0-Tr
Xcep�on-Tr

DenseNet121-Tr

Fig. 12 Overall comparison of cost-efficiency to performance ratio
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98.94% and disk consumption of 83,446 KB, the truncated InceptionResNetV2-Tr landed with
1.53% lesser accuracy but with far lower storage requirements. Therefore, emphasizing
InceptionResNetV2-Tr’s viability and practicality over full-length DCNN models for future
deployment with its lighter storage consumption and significantly accurate performance.

3.9 Discussion

As presented, the InceptionResNetV2-Tr achieved the best overall performance among the rest of
the truncated DCNN models. Through a comprehensive investigation, InceptionResNetV2-Tr
preserved the highest TFS of 320 and secondmost TLL of 41 next to the full-length EfficientNetB0
with 46. Even with its massive full-length structure, the proposed truncation process reduced its
parameter size from 55 M to only 441 K, producing an overall accuracy of 97.41%. In addition,
before identifying the proposed hyper-parameter settings to produce the presented results, this work
also considered other hyper-parameter configurations to train the truncated models.

To yield broader findings, Table 9 presents the prior settings of hyper-parameters evaluated
during the experiments. As shown, the following had different combinations of optimizers,
dropout rates, and LRs, which in theory have the most significant effects on the learning
process of a DL model. In addition, the following had different dropout rates of 1.0, 0.3, and
0.5. Finally, to further identify the best possibilities without entirely relying on costly
optimization algorithms, the empirical search for hyper-parameters also had the truncated
models trained without a dropout or, in its least tuned form, and different optimizers like SGD,

Table 8 Comparison of storage consumption to performance ratio between full-length and truncated models

Model Full-length Truncated

Size in KB acc Size in KB acc

DenseNet121 83,446 98.94% 714 77.98%
EfficientNetB0 48,072 98.73% 405 86.03%
InceptionResNetV2 638,982 98.67% 5338 97.41%
InceptionV3 256,430 98.40% 5188 97.36%
ResNet50V2 276,649 98.48% 1081 86.12%
Xception 244,766 98.57% 739 78.82%

Table 9 Hyper-parameter settings across various combinations

Description Optimizer LR Dropout rate

Setting-1 (a) SGD 0.01 0.1
Setting-1 (b) 0.3
Setting-1 (c) 0.5
Setting-1 (d) No dropout (Untuned)
Setting-2 (a) RMSprop 0.001 0.1
Setting-2 (b) 0.3
Setting-2 (c) 0.5
Setting-2 (d) No dropout (Untuned)
Setting-3 (a) Adam 0.0001 0.1
Setting-3 (b) 0.3
Setting-3 (c) 0.5
Setting-3 (d) No dropout (Untuned)
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RMSprop, and Adam with their respective LRs. This study did not cover other LR besides the
given, as an RLRoP is already at play, reducing time and cost to produce the desired results.

In Table 10, the InceptionResNetV2-Tr trained with Setting-1 (c) yielded the best perfor-
mance of 94.14% accuracy. The second-best performing model, the InceptionV3-Tr, had a
93.94% on the same setting, showing that truncated inception-based networks, even with the
classic SGD algorithm combined with a dropout rate of 0.5, can still perform better than the
other truncated models.

In Table 11, the best results landed with Setting-2 (a), which again became the
InceptionResNetV2-Tr with a 97.36% accuracy. Surprisingly, the EfficientNetB0-Tr had a
93.44% accuracy on (b), outperforming the previous InceptionV3-Tr that only reached a top
performance of 92.36% accuracy on (d). Nonetheless, unlike the rest, the InceptionResNetV2-
Tr still showed a dominant performance as it lands with accuracies >93% across (a) to (d).

In Table 12, the highest overall accuracy of 97.41% came from Setting-3 (c)
InceptionResNetV2-Tr, which had an Adam optimizer, 0.0001 LR, and 0.5 dropout rate.
Therefore, proving the effectiveness of the proposed hyper-parameter configurations compared
to the rest of the given settings in this work.

Aside from the InceptionResNetV2-Tr, the InceptionV3-Tr also had a remarkable response,
as it attained an accuracy of 97.36% from the same Setting-3 (c), making it only 0.05% less
accurate and about 150 KB less costly than the InceptionResNetV2-Tr. For further compar-
ison, the InceptionV3-Tr had an exact TPS of 429,440 while the InceptionResNetV2-Tr had
441,920, showing a parameter size difference of 12,480 due to InceptionV3-Tr’s lesser TFS of
256. Though the other truncated DCNN models had fewer parameters than the
InceptionResNetV2-Tr, most had lesser performances. The DenseNet121-Tr,
EfficientNetB0-Tr, ResNet50V2-Tr, and Xception-Tr all experienced substantial

Table 10 Setting-1 results

Model Overall accuracy (%)

(a) (b) (c) (d)

DenseNet121-Tr 65.8 64.33 55.78 70.78
EfficientNetB0-Tr 89.03 78.44 86.75 87.19
InceptionV3-Tr 92.36 91.52 93.94 89.39
ResNet50V2-Tr 77.83 65.27 51.81 39.81
Xception-Tr 72.22 77.03 59.41 79.87
InceptionResNetV2-Tr 90.78 93.16 94.14 91.05

Table 11 Setting-2 results

Model Overall accuracy (%)

(a) (b) (c) (d)

DenseNet121-Tr 77.15 80.99 77.62 82.53
EfficientNetB0-Tr 85.34 93.44 82.68 89.01
InceptionV3-Tr 86.84 65.36 91.71 92.36
ResNet50V2-Tr 70.87 85.89 46.44 74.92
Xception-Tr 81.37 74.37 77.41 86.14
InceptionResNetV2-Tr 97.36 96.88 93.4 95.57
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deteriorations. Upon investigation, the DenseNet121-Tr had the least TLL of 14, followed by
Xception-Tr with 16, ResNet50V2-Tr with 17, and EfficientNetB0-Tr with 46. Thus, even
with the advantage of having the most TLL, EfficientNetB0-Tr still had an inferior perfor-
mance than InceptionResNetV2-Tr, InceptionV3-Tr, and even ResNet50V2-Tr. However,
based on TPS, the EfficientNetB0-Tr only had 24 K parameters that generated an accuracy
of 86.03%, while ResNet50V2-Tr still had about 84 K parameters with 86.12% accuracy.
Therefore, instigating that TLL and parameter size did not entirely affect their overall
performance. Based on another perspective, the EfficientNetB0-Tr had the least TFS of only
24, while the DenseNet121-Tr had 96, Xception-Tr had 128, and ResNet50V2-Tr had 256,
showing that TFS also had no direct effect on the performance. The most dominant factor
observed in how the InceptionResNetV2-Tr and InceptionV3-Tr gained better performances
than the rest trace back to their architectural design, as they both had the most aggregated
layers and parameters in a consolidated block connected into the proposed added ending
layers. Unlike EfficientNetB0-Tr, which had the largest TLL of 46, it still failed to surpass
both InceptionV3-Tr and InceptionResNetV2-Tr, as it draws performance based on a lengthier
architecture rather than a broader architecture. The said finding also reflected with the other
models like DenseNet121-Tr, ResNet50V2-Tr, and Xception-Tr.

From a broader standpoint, Table 13 compared this work with the previously discussed
studies. The proposed InceptionResNetV2-Tr yielded a competitive 97.41% accuracy even

Table 12 Setting-3 results

Model Overall accuracy (%)

(a) (b) (c) (d)

DenseNet121-Tr 79.07 80.06 77.98 76.5
EfficientNetB0-Tr 88.40 88.31 86.03 90.74
InceptionV3-Tr 94.54 96.58 97.36 93.99
ResNet50V2-Tr 89.01 85.10 86.12 80.10
Xception-Tr 77.30 82.36 78.82 82.38
InceptionResNetV2-Tr 95.99 96.73 97.41 95.29

Table 13 Comparison of the top-scoring truncated model against other existing studies

Model Dataset Performance Params

InceptionResNetV2-Tr CXRs and CT scans (Normal,
COVID-19, Pneumonia)

Accuracy: 97.41% 441 K

COVNet (ResNet50 backbone) [38] CT Scans (COVID-19, CAP,
Non-Pneumonia)

Sensitivity: 90%
Specificity: 96%

25.6 M

Modified-Inception [63] CT Scans (COVID-19, non-COVID-19) Accuracy: 89.5% ≈23 M
VGG19 with Standard-CNN [26] CT Scans and X-Ray (Normal,

Pneumonia, COVID-19, Lung Cancer)
Accuracy: 98.05% 22.3 M

COVID-Net [62] CXRs (Normal, CAP, COVID-19 Accuracy: 93.3% 11.75 M
Location-attention oriented Model

(based on ResNet18) [65]
CT Scans (COVID-19, Influenza-A, Viral

Pneumonia)
Accuracy: 86.7% 11.7 M

Truncated InceptionNet (3 blocks)
[11]

CXRs (COVID-19, CAP, TB (China), TB
(USA)

Accuracy: 99.92% 2.1 M

COVIDNet-CT [18] CT Scans (COVID-19, non-COVID-19) Accuracy: 99.1% 1.4 M
Lightweight CNN (based on

SqueezeNet) [47]
CT Scans (COVID-19, non-COVID-19) Accuracy: 85.03% 1.26 M

Fused-DenseNet-Tiny [42] CXRs (Normal, COVID-19, CAP) Accuracy: 97.99% 1.2 M
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with its far smaller parameter size of 441 K. However, it is worth mentioning that there is no
direct comparison as InceptionResNetV2-Tr trained with six cases of both CXRs and CT scans
in its pipeline, while the others only had two to three that either diagnosed a CXR or CT scan.
Therefore, even with a more complex task, the fine-tuned InceptionResNetV2-Tr with the
proposed truncation method can become more effective, convenient to train, and use than the
other studies presented in most situations.

4 Conclusions

In this work, the results and analysis had shown that with the proposed truncation method of
broad DCNNs like the InceptionResNetV2 and InceptionV3, DCNNs could become highly
valuable and practical in terms of reproduction and deployment for low-end devices or medical
facilities that lack high-end computing resources, giving them significant viability for future
implementations. Though complex, massive, and scalable models have provided promising
results in the field of medical imaging, this work still emphasized that decreasing the
parameters and layer depth of pre-trained and fine-tuned DCNNs through the proposed
truncation method can still emanate competitive results, adding that they are more practical
and lighter based on a comparative analysis. Despite such a promising result, a significant
drawback showed that the proposed method could decrease the overall performance and lessen
their interpretability based on the Grad-CAM evaluation. Nonetheless, the easily reproducible
and trainable truncated DCNNs can still improve and scale upon the addition of data without
consuming copious amounts of computing resources than models with higher parameters and
lengthier architectures.

Based on the results and analysis from the conducted investigations, this work concludes
that DCNNs with broader architectures and a more robust layer aggregation have less
susceptibility to performance reduction when truncated than DCNNs that rely on depth.
Furthermore, this work also concludes that DCNN’s, when appropriately fine-tuned, even
with massively deduced parameters, specifically InceptionResNetV2-Tr and InceptionV3-Tr,
can achieve a competitive performance towards the diagnosis of COVID-19 from both CXRs
and CT scans simultaneously through a single pipeline.

Based on the given conclusions, future studies can consider adopting the proposed work in
segmentation and object detection models, adding more data to produce better and more
realistic results, or employing attention mechanisms to improve or maintain their overall
interpretability without re-bloating their parameter size.
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