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Abstract
Classifying a weapon based on its muzzle blast is a challenging task that has significant
applications in various security and military fields. Most of the existing works rely on ad-
hoc deployment of spatially diverse microphone sensors to capture multiple replicas of the
same gunshot, which enables accurate detection and identification of the acoustic source.
However, carefully controlled setups are difficult to obtain in scenarios such as crime scene
forensics, making the aforementioned techniques inapplicable and impractical. We intro-
duce a novel technique that requires zero knowledge about the recording setup and is
completely agnostic to the relative positions of both the microphone and shooter. Our solu-
tion can identify the category, caliber, and model of the gun, reaching over 90% accuracy
on a dataset composed of 3655 samples that are extracted from YouTube videos. Our results
demonstrate the effectiveness and efficiency of applying Convolutional Neural Network
(CNN) in gunshot classification eliminating the need for an ad-hoc setup while significantly
improving the classification performance.

Keywords Multimedia Forensics · AI-driven Forensics · Gun Audio Sample
Classification · Convolutional Neural Network

1 Introduction

Gunshot analysis have received significant attention from both the military and scientific
communities. Acoustic analysis of gunshots can provide useful information, such as the
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position of the shooter, the projectile trajectory, the caliber of the gun, and the gun model.
Although acoustical evidence may significantly contribute to audio forensic reconstruction
and analysis, the forensic analysis of gunshots is characterized by many challenges due to
the broadcast and noisy nature of the acoustic channel.

Consider a scenario where a microphone is deployed in a close neighborhood to the
shooter. The recorded audio sample can be significantly affected by the environmental
surroundings, such as trees, foliage, and buildings, which attenuate and reflect the main
component of the shock wave. The resulting audio sample may feature different echoes of
the gunshot that are characterized by different attenuation factors as a function of their paths.
This naive approach is impractical, which motivated the development of more complex
ad-hoc acoustic data acquisition strategies over the last decade.

To mitigate echoes and overcome the intrinsic lack of information, that the aforemen-
tioned scenario suffers from, additional microphones are deployed. The comparison of
multiple replicas of the same gunshot enables shooter localization and weapon identifi-
cation. The physical characteristics of acoustic propagation can be exploited to infer the
position of the shooter and the category of the gun. Multiple spatially diverse acoustic
sources enable the estimation of Time of Arrival (ToA), Time of Arrival (ToA), and Time
Difference of Arrival (TDoA). The obtained recordings can be modeled by geometrical
acoustics that enable the localization of the shooter. Furthermore, multiple replicas of the
same acoustic source allow to filter out echoes and background noise affecting a subset
of the deployed microphones, thus enabling a deep characterization for both the time and
frequency domains.

Acoustic acquisition via Wireless Sensor Network (WSN) requires a specialized infras-
tructure overlay to enable sensor communication, data processing, and computation distri-
bution. Solutions that rely on the spatial diversity provided by the WSN introduce several
types of burdens. Firstly, each soldier has to carry a wearable device equipped with a micro-
phone and other sensors, such as a compass, to collect meaningful information about Angle
of Arrival (AoA), Time of Arrival (ToA), and Time Difference of Arrival (TDoA). Secondly,
in a military scenario, the WSN should feature a jamming-resistant communication proto-
col and non-interfering radio channels. Both assumptions are difficult to achieve given the
resource constraints of WSNs in terms of CPU, battery, and memory. In most cases, WSNs
cannot afford the computational burden of multimedia processing. Therefore, the captured
data should be first off-loaded to a remote server, then downloaded and distributed again.
This represents a challenge from the connectivity perspective since, in many cases, military
WSNs are unattended or provided with a discontinued link to the control center.

In this work, we do not rely on ad-hoc acquisition setups, but we exploit publicly avail-
able audio recordings of gunshots, considering their temporal and spectral representations.
Spectral analysis of sound has been adopted in many contexts to detect and identify recurrent
patterns. In particular, the combination of time-frequency decomposition of audio samples
with Convolutional Neural Network (CNN) provides promising performance in detecting
recurrent patterns [21]. The CNN is trained over several “images” constituted by a three-
dimensional representation of time, frequency, and amplitude. The result is a robust solution
that can “recognize” the same sound by cross-matching similar images.

Contribution We propose an inexpensive solution that is able to detect and identify gun-
shots without resorting to any ad-hoc infrastructure. Contrary to other studies, our solution
requires only an audio sample of a gunshot that can be easily obtained by any commer-
cially available microphone. Our approach is agnostic to the microphone position with
respect to the shooter, and it does not require multiple spatially different replicas of the
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gunshot; we consider recordings from mono-channel setups with different sample rates. We
proved the effectiveness of our solution by considering 3655 samples of gunshots consti-
tuted by 30 pistols, 18 rifles, and 11 shotguns for a total of 7 different calibers. The proposed
approach guarantees an accuracy higher than 90% for all of the considered cases, namely,
the category, model and caliber of the gun.

Paper organization The remainder of this paper is organized as follows. Section 2 sum-
marizes recent contributions in the field of weapon classification. Section 3 introduces the
background concepts related to frequency domain analysis, CNNs, and acoustic character-
istics of gunshots. Section 4 describes our dataset and Section 5 discusses the the dataset
generation process. The neural network architecture is presented in Section 6. Section 7
shows the performance of our solution. Finally, Section 8 draws some concluding remarks.

2 Related work

Firearm classification based on the acoustic evidence generated by its discharge has long
been investigated, but not extensively studied in the literature. Proposed solutions vary in
many aspects, including the source of acoustic data, the type of analysis applied, the type of
features extracted, and the application area. Table 1 summarizes prior studies, that provide
gunshot classification and firearm identification, according to these aspects.

The source of the data is characterized by the type, the quality, and the environmental
conditions of the deployed audio recording setup, which defines the amount of information
that can be leveraged for classification. Most of the gunshot recordings used in the literature
are either obtained under carefully controlled conditions, where a distributed set of micro-
phone sensors are deployed [15, 22, 25], or extracted from a conventional recording device
in less controlled environments [3, 8–10, 16].

In the former case, where a WASN is deployed, spatial information can be obtained by
performing array processing and triangulation techniques. Direction of Arrival (DoA) and
ToA estimation methods are applied to the obtained audio signals to determine the projec-
tile speed and trajectory, as well as to infer the position of the shooter. Such information
may also provide discriminant features, such as the bullet speed [22], that can be used to
identify the firearm category. Furthermore, the distributed nature of the recording setup pro-
vides spatial diversity, where multiple acoustic observations from different locations of the
same gunshot are obtained, which can be leveraged to increase the classification accuracy.
Sánchez-Hevia et al. [25] exploited this feature and proposed a multi-observation weapon
classification system that leverages various classifier ensembles to enhance classic decision
fusion techniques. Each node in the sensor network produces a classification decision using
Least Squares Linear Discriminant Analysis (LS-LDA). The decisions are later fused using
a Maximum Likelihood-based fusion rule that weights the decision of each node based on
its location.

The main constraint induced by this type of analysis is the requirement of spatial infor-
mation, which can only be obtained by deploying a distributed sensor network. Therefore,
limiting the applicability of gunshot detection and firearm classification to a carefully con-
trolled recording setup only. Consequently, various pattern recognition approaches were
proposed that identify the firearm category in the absence of spatial information. The most
used classifiers for firearm identification are Gaussian Mixtures Model (GMM) [3, 8, 9] and
Hidden Markov Model (HMM) [10, 16].
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Most of these approaches can be described as frame-based feature classification approaches
[3, 8–10], where the time-domain acoustic signal is subdivided into a sequence of short-time
windowed frames. From each frame, a set of predetermined features is extracted and used
for gunshot classification. The most common extracted features are statistical measures
of the spectrum and intensity of the signal, in addition to perceptual features such as
Mel-Frequency Cepstrum Coefficient (MFCC) or Perceptual Linear Prediction Coefficients
(PLP). Temporal features, such as energy and Zero Crossing Rate (ZCR), are also used, but
only in conjunction with spectral or perceptual features.

Morton et al. [16] proposed an alternative classification approach that does not rely on
frame-based features aiming to eliminate the dependency on performance-driven param-
eters, which are often optimized over a finite training set. They proposed modeling each
firearm category as an HMM with AutoRegressive (AR) source densities using non-
parametric Bayesian priors to allow automated model order selection. The AR defines a set
of energy and spectral characteristics of the captured gunshot, while the HMM identifies
the transitions of these states.

The aforementioned techniques may perform adequately in matched experimental condi-
tions, however, their effectiveness could reduce significantly when capture conditions vary
in challenging unstructured environments, where noise and distortion are present. Although
Khan et al. [9] addressed this problem by using an exemplary embedding approach to
bridge between varying recording conditions, the achieved classification accuracy is rela-
tively low (i.e., 60-72%). The authors used a dataset of 100 gunshot samples obtained from
20 different firearm models, where each model is represented by 5 to 15 gunshot samples.
The different conditions included in their experiments were simulated, namely, “Room
Reverb”, “Concert Reverb”, and “Doppler Effect”, which may not match real-life environ-
mental conditions and do not include directional variations. Furthermore, their approach
assumes prior knowledge of the recording conditions which is not always possible, espe-
cially in audio forensic reconstruction analysis.

Our solution, being the only one considering varying environment conditions and not
requiring an ad-hoc setup, outperforms the state of the art studies in terms of dataset rich-
ness, including the number of gunshots samples and range of weapon models, reaching 90%
accuracy.

3 Background

3.1 Spectrogram

A spectrogram is one of the most widely adopted visual representations of the frequencies
spectrum of a signal over time. Being defined as an intensity plot of the Short-Time Fourier
Transform (STFT) magnitude, a spectrogram is usually portrayed as a bi-dimensional graph,
where one axis (usually the x-axis) represents time and the other axis (usually the y-axis)
represents frequencies. An example of spectrogram is depicted in Fig. 1. Each intersection
between time and frequency is assigned a color that refers to the Power Spectral Density
(PSD) of that specific frequency at that particular time, which is considered a third dimen-
sion of the graph. To compute the spectrogram of a signal y, the signal is divided into
shorter fixed-length segments y1, . . . , yn, and the Fourier transform is applied separately to
each segment. The spectrogram describes the changes of the signal frequencies spectrum
as a function of time. This implies that, if the time is discrete, the data to be transformed
may be partitioned into overlapping frames. The STFT is applied to each of the frames and
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Fig. 1 Example of a gunshot spectrogram. The x-axis represents the time expressed in seconds, while the
y-axis represents the frequencies expressed in kHz. The color represents the PSD at the given time-frequency

the result, consisting of both phase and magnitude for each intersection between time and
frequency, is stored in a matrix, as showed in (2).

ST FT {yn}(m, ω) =
∞∑

n=−∞
ynw[n − m]e−jωn (1)

spectrogram{yn}(m, ω) = |ST FT {yn}(m, ω)|2 (2)

where yn represents the signal, w(◦) is the window function, while m and ω represent the
time and the frequency in the discrete domain, respectively.

The result, i.e., the squared magnitude of the STFT, consists of a bi-dimensional matrix
that maps the audio frequencies to the time-localized points [20], i.e., the spectrogram
representation of the power spectral density of the function.

The visual representation of audio traces through spectrograms have been extensively
leveraged in the literature in the context of audio classification [6], sound event classifica-
tion [2], emotion recognition [26], human activity recognition [20], cross-modality feature
learning [19], and gunshot classification [18].

3.2 Convolutional neural network

A CNN belongs to the class of deep neural networks that have one or more convolutional
layers (i.e., layers that perform convolution operations) [13]. A convolution is a linear opera-
tion that consists of a slide of a parametric-sized filter over the input representation (usually
a visual image). The application of the same filter to different overlapping filter-sized por-
tions of the input generates a feature map. There are several types of filters, also known
as operators. Each filter tries to identify a specific feature within the input representation.
For example, the Sobel, the Prewitt, and the Canny operators highlight edges, the Harris
and the Shi and Tomasi operators highlight corners, etc. One of the most powerful features

30392 Multimedia Tools and Applications (2022) 81:30387–30412



of CNNs, that is also the reason behind their wide adoption, is the ability to automatically
apply an extensive number of filters to the input representation in parallel, thus highlighting
specific features in every part of the input image simultaneously.

CNNs can be seen as regularized versions, that discourage learning complex models, of
multilayer perceptrons. While in multilayer perceptrons several fully connected layers are
used—a layer is fully connected if all the neurons it is composed of are connected to all
the neurons of the next layer, CNNs exploit a hierarchical structure that allows building
complex patterns by using small and simple patterns.

Figure 2 depicts a typical architecture of a CNN. The dimension of the input image (in
this case representing a handwritten digit), keeps decreasing while going deeper in the
neural network, while the number of filters, thus the features the architecture desires to
highlight, increases. A CNN usually has three types of layers: (i) convolutional layers, to
perform the convolution operations to the input, (ii) pooling layers, to discretize the input
and reduce the number of learnable parameters; and (iii) fully connected layers, that are
essentially feed-forward neural networks, usually placed at the end of the architecture. The
goal of the fully connected layers is to hold the high-level features found during the con-
volutions and try to learn non-linear combinations of these features before assigning the
input image a label. Details about these layers contextualized in our model are provided in
Section 6.1.

One of the fundamental decisions to be taken when designing a CNN, or generically a
neural network, concerns the representation of the input data. Several input representations
are available in the literature, each bringing its advantages and drawbacks. Although for
visual images the choice is straightforward, for audio samples numerous alternatives are
possible, including MFCC, raw digitized sample stream, machine discovered features, and
hand-crafted features. Even if the best input representation to adopt is strongly dependant on
the problem to solve, several studies in the literature show that feeding CNN with spectro-
grams is effective in many fields, including musical onset detection [27], human detection
and activity classification [11], music classification [1], and other interesting activities [32].

3.3 Guns and gunshots

Gunshots are the result of multiple acoustic events, namely, the muzzle blast created by the
explosion inside the barrel and the ballistic shockwave that is generated by the supersonic
projectile. These phenomena are the results of many characteristics and variables that even-
tually sum up and generate the acoustic blast, which include the firearm type, model, barrel
length, ammunition type, powder quantity, weight and shape of the projectile, and possibly

Fig. 2 Example of a CNN. LeNet-5 [14] is able to identify handwritten digits for zip code recognition in the
postal service
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others. The aim of this work is to estimate at what extent it is possible to use a gunshot
as a unique fingerprint that uniquely identifies one or more of the aforementioned vari-
ables. Figure 3 summarizes the most important characteristics affecting the acoustic blast
generated by a gun.

Our observation is that different configurations of the aforementioned parameters may
lead to unique gunshot patterns that can be detected by analyzing the frequency-time decom-
position of the gunshot blast. In the next sections, we demonstrate how Convolutional
Neural Networks (CNNs) can be effectively used to detect these patterns, thus uniquely
identifying the category of gun, the caliber, and finally, the model of the gun.

4 Dataset description

Table 2 shows the dataset considered in this work. We collected the samples from several
YouTube videos, such as C4Defense, hickok45, EmanuelRJSniper, mixup98, OneGear, and
ReloaderJoe. Our choice of guns takes into account two main aspects: the Category of Guns
and the Caliber.

Category of guns We considered 30 different pistols, 18 rifles, and 11 shotguns. As for
pistols, we considered 22 revolvers and 10 semiautomatic.

Caliber We took into account the most popular calibers in U.S. and world-wide [29, 31],
such as 9mm and .45acp for automatic pistols, .44M and .357M for revolvers, 7.62x39 and
5.56NATO for rifles, and 12 gauge caliber for shotguns.

4.1 Muzzle blast: preliminary considerations

When a gun is fired, there are two distinct acoustic phenomena, the muzzle blast and the
ballistic shockwave [23]. The latter is generated by the bullet that compresses the air in front
of itself creating a sonic boom that propagates with a shape of a cone where the vertex is the
bullet itself. Conversely, the muzzle blast is a high energy acoustic signal originated by the
gun’s muzzle with a spherical wavefront, propagating at the speed of sound, and with center
the muzzle of the gun. The ballistic shockwave is a very important source of information to

Caliber

Gun powder

Bullet massPistol

Shotgun

Rifle

Fig. 3 Variables taken into account in our analysis: category of firearm, caliber, and gun model
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Table 2 Dataset: Gun Model, Caliber, and number of extracted samples

Gun model Caliber Category N. Samples ID

Glock 45 9mm Pistol 154 24

Beretta 98 FS 9mm Pistol 29 2

Beretta 92 FS 9mm Pistol 361 11

Beretta PX4 Storm 9mm Pistol 164 12

Glock 21 .45acp Pistol 145 22

M&P Shield .45acp Pistol 77 27

Colt 1911 .45acp Pistol 81 34

Walther PPQ .45acp Pistol 115 57

Glock 30S .45acp Pistol 103 23

S&W 629 4-inch .44M Pistol 97 5

S&W 629 TrailBoss .44M Pistol 62 6

S&W 629 Performance Center .44M Pistol 42 7

S&W 629-8 .44M Pistol 48 47

S&W 69 .44M Pistol 35 49

S&W 69 2.75-inch .44M Pistol 35 50

Charter Arms .44 Special Bulldog .44M Pistol 40 15

S&W Model 29 Dirty Harry .44M Pistol 42 21

S&W Model 29 4-inch .44M Pistol 51 32

Ruger Redhawk Big Game Hunt .44M Pistol 23 42

Ruger Super Black Hawk .44M Pistol 25 44

Ruger Red Hawk 8-shots .357M Pistol 48 41

S&W 357Magnum .357M Pistol 73 4

Chiappa Rhino .357M Pistol 47 16

Coonan 1911 .357M Pistol 56 17

Ruger GP100 Match Champion .357M Pistol 36 38

Ruger SP101 .357M Pistol 45 43

S&W Model 19 3-inch .357M Pistol 42 45

S&W Model 27 .357M Pistol 42 46

S&W Model 66 .357M Pistol 54 48

Dan Wesson Revolver .357M Pistol 30 19

CZ Bren 2 MS 7.62x39 Rifle 49 1

PWS MK107 7.62x39 Rifle 73 3

CZ 527 7.62x39 Rifle 38 13

Century Arms C39 AK-47 7.62x39 Rifle 37 14

Maadi AK47 7.62x39 Rifle 60 28

Micro Draco AK47 Pistol 7.62x39 Rifle 44 29

N-PAP AK 7.62x39 Rifle 46 33

Ruger American Ranch Rifle 7.62x39 Rifle 38 37

Ruger Mini 30 7.62x39 Rifle 51 40

SKS 7.62x39 Rifle 26 59

Daniel Defense M4 A1 SOCOM 5.56 NATO Rifle 68 20

Ruger AR 5.56 NATO Rifle 78 36

Ruger Mini-14 5.56 NATO Rifle 60 39
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Table 2 (continued)

Gun model Caliber Category N. Samples ID

Ruger AR556 MPR 5.56 NATO Rifle 30 35

SIG 556 Classic SWAT Model 5.56 NATO Rifle 72 51

Springfield Armory Saint 5.56 NATO Rifle 68 54

Tactical Edge Warfighter 5.56 NATO Rifle 49 56

M&P 15 Sport II 5.56 NATO Rifle 84 26

Benelli M2 SBS 12 Shotgun 44 8

Benelli M4 12 Shotgun 45 9

Benelli Nova 12 Shotgun 36 10

DP-12 12 Shotgun 74 18

Kel-Tec SG12 12 Shotgun 52 25

Winchester Model 12 12 Shotgun 46 31

SRM 1216 12 Shotgun 34 52

Serbu Super Shorty 12 Shotgun 33 53

Standard Manufacturing SKO Shorty 12 Shotgun 47 55

Winchester SXP Defender 12 Shotgun 36 58

Winchester Model 12 SlugFest 12 Shotgun 35 30

locate a sniper in an open field [24, 30]. However, to achieve that, the ballistic shockwave
has to be sampled from different locations requiring an array of microphones. The ballistic
shockwave cannot be observed for subsonic projectiles such as those used in shotguns and
pistols.

Given the aforementioned considerations, we focus on the muzzle blast and the echoes
associated with it. In the following, we discuss and highlight three critical parameters that
have to be carefully set in order to maximize the detection performance of a neural network:
(i) muzzle blast duration, (ii) number of frequency bins, and (iii) the number of time slots.

Figure 4 shows the acoustic signal amplitude recorded from a Beretta PX4 Storm, 9mm.
The muzzle blast lasts for a few milliseconds (up to 5ms in the figure), depending on the
model of gun and caliber. We also observe some echo effects (Echo 1, Echo 2, and Echo 3)
at 10ms, 22ms, and 63ms due to reflections of the sound from obstacles around the shooter.
We highlight that this is consistent with previous findings from other studies [23], while the
muzzle blast duration will be a critical parameter from the analysis carried out in this work.

Figure 5 shows the PSD as a function of time and frequency (spectrogram) associated
with the muzzle blast in Fig. 4. We consider both the bi-dimensional and the three-
dimensional representation of the spectrogram. We observe that the muzzle blast (time less
than 5ms) takes all the frequency components between 0 and 24KHz with a significant
power spanning between -30dB (lower frequencies) and -80dB (higher frequencies). As
soon as the blast finishes, the echoes take the frequencies less than 18KHz with a decreasing
power between -40dB and -60dB. The aforementioned spectrogram components constitute
the input for the training process of our neural network.

We identify two more critical parameters affecting our algorithm performance: the num-
ber of frequency bins and the number of time slots. For our analysis, we adopted the
spectrogram function of MATLAB-R2019b considering as input the acoustic sample (0.1
seconds from the beginning of the blast), a window of size w = 44 to divide the signal into
segments and performing windowing according to the Hann function, no = �w/2� as the
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Fig. 4 Acoustic signal amplitude of a muzzle blast for a Beretta PX4 Storm, 9mm

number of overlapping samples between adjacent segments, f l = 65 as the FFT length, and
f s = 48000 as the number of samples per seconds acquired by the microphone. Assuming
the previous parameters, the spectrogram function returns the PSD of (f l+1)/2 frequencies
and � length(x)−no

w−no
� time bins, where x is the vector of the acoustic samples being equal to

0.21·f s = 10080 sample—we considered the first 0.21 seconds after the first abrupt change
as per Fig. 4. For instance, in the previous example, the frequency range (0 to 24KHz) has
been divided into 33 bins, while the time has been divided into 46 slots.

4.2 Quality of the audio samples

In the following, we provide a quantitative analysis of the quality of the collected audio
samples. As a quality metric, we consider the Signal-to-Noise Ratio (SNR) computed on
each muzzle blast from the actual starting of the blast for a period of 400ms. For each audio

Fig. 5 Spectrogram of a muzzle blast: bi-dimensional and three-dimensional PSD of a muzzle blast (Beretta
PX4 Storm, 9mm) as a function of time and frequency
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sample, we consider a pre-defined reference noise pattern constituted by random samples
of amplitude 0.1, i.e., one-tenth of the maximum signal amplitude taken by the micro-
phone. The previous sound pressure is equivalent to a classical background noise that can
be sampled from an outdoor environment characterized by a gentle wind. Figure 6 shows
the probability distribution function associated with the SNR computed as described before.
The overall audio quality is very high since the muzzle blast is +20dB higher than the refer-
ence noise pattern. We observe that even the echoes can be easily identified from the noise
reference.

5 Dataset generation

We generated a dataset of 3655 samples extracted from videos found on YouTube. Each of
the collected audio samples has a sample rate of either 48000 or 44100 samples per second.
Generating a dataset of gunshots extracted from YouTube videos involves the following steps:

• Audio extraction. We performed the audio extraction (MP3 format) from the selected
videos using the youtube-dl [33] and ffmpeg [4] tools.

• Abrupt change detection. A preliminary filtering is performed by identifying abrupt
changes in the audio signal.

• Gunshot detection. Gunshots are detected among blasts by relying on a SVM learning
algorithm.

In the following, we describe the procedure of automatically extracting gunshots from
an audio trace focusing on Blast detection and Gunshot detection.

5.1 Identification of abrupt changes in an audio trace

To detect abrupt changes in an audio trace, we computed the variance over a sliding window
of 5ms, equivalent to either 220 or 240 samples depending on the quality of the audio

0 5 10 15 20 25 30
Signal-to-Noise Ratio (dB)

0

0.02

0.04

0.06

Fr
eq

ue
nc

y

Main
blastEchos

Fig. 6 Sound quality analysis: SNR of a main blast and its associated echos assuming a reference random
noise of amplitude one tenth of the microphone saturation threshold
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trace, i.e., 44100 or 48000 samples per second, respectively. Subsequently, we searched for
the peaks adopting windows of size 0.3 seconds and a minimum peak prominence of 0.3.
Figure 7 shows the three computation stages from the sound pressure to the blast sequences
that are passing by the moving window averaging. This figure refers to two sound chunks
extracted from an audio trace, where the first part (i.e., 0 ≤ t ≤ 5.5 seconds) is a sequence
of gunshots, while the second part (i.e., t > 5 seconds) is mainly constituted by voice. We
stress that the main aim of this part is to detect abrupt changes in the sound pressure, while
subsequently we will show how gunshots are identified.

5.2 Gunshot detection

Gunshot detection is performed via a human-assisted supervised learning approach. The
intention is to have a growing training set of actual gunshots that is supervised by the
user. The user checks for both false positives and false negatives by listening to the newly
generated samples in the training set. Figure 8 shows the training, validation, and testing
procedures. We assume that the training set is populated with an initial dataset of actual
gunshots that have been manually selected. In our case, we started from an initial dataset of
10 gunshot samples only. At each cycle, a new model is trained with the current training set
(Step 1 in Fig. 8). Subsequently (Step 2 in Fig. 8), new samples are selected from the list
that is generated by the procedure presented in Section 5.1. Finally, the generated samples
are tested with the current training set. The output is assessed by the supervisor (Step 3 in
Fig. 8), and the verified samples are added to the training set (Step 4 in Fig. 8).

Classification performance To assess the quality of the classification procedure, we con-
sidered 6 additional videos (V1, . . . , V6) downloaded from YouTube, which are not included
in the training set. For each video, we detected the abrupt changes according to the proce-
dure presented in Section 5.1, and we executed the gunshot detection procedure presented in
Fig. 8. As for the Training Set, we considered the one we generated from the samples found
in Table 2. Figure 9 shows the frequency of the similarity indexes provided by the SVM
classifier for the Shot and No-Shot audio samples with red crosses and green circles, respec-
tively. The similarity indexes were categorized into bin width of 10, where each cross/circle

Fig. 7 Detection of abrupt changes in audio traces: from sound pressure to abrupt change detection by
computing moving variance and peak detection
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Fig. 8 Gunshot detection via human-assisted supervised learning. The SVM classifier is trained by verified
samples of gunshots. When new gunshot samples are tested, the output of the classifier is verified (by the
user) and added to the Training Set

aggregates adjacent similarity indexes. Figure 9 represents the decision after one iteration
of the procedure presented in Fig. 8. The decision Shot vs No-Shot is taken as a function
of the threshold T hr , which has been empirically set to zero. We observed that 96% of the
No-Shot samples feature a similarity index of -189.5, while the remaining 4% are spread
between -178.9 and -0.55. There are no samples from the No-Shot class with a similarity
index that is greater than 0. As for the Shot class, the samples are distributed between 0.41
and 275, with frequencies between 1% and 11%. Even in this case, we highlight that there
are no samples from the Shot class with a similarity index that is less than 0.

To precisely assess the effectiveness of our solution, we manually checked all of the
classified samples, namely, Shot vs No-Shot. Table 3 shows the result of our analysis. For
each video, we report the number of detected abrupt changes (N ), the threshold used by the
SVM classifier (T hr = 0), True Positive (T P ), False Positive (FP ), True Negative (T N ),
False Negative (FN ), the actual number of gunshots (Actual), and the overall accuracy of
the detection algorithm. As previously stated, during our evaluation, we considered only
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Fig. 9 Gunshot detection performance: frequency distribution of Shot and No-Shot samples as a function of
their similarity index
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Table 3 Shot detection performance considering 6 videos

N Thr TP FP TN FN Actual Accuracy

V1 643 0 24 2 617 0 24 0.99

V2 385 0 4 0 365 16 20 0.96

V3 79 0 5 0 74 0 5 1

V4 32 0 5 0 27 0 5 1

V5 1860 0 88 0 1772 0 88 1

V6 1932 0 31 0 1897 4 35 0.99

one iteration as depicted in Fig. 8. We would like to highlight that the proposed algorithm
achieves the main purpose of generating a dataset of gunshot samples (i) in a fast and effi-
cient way and (ii) with the minimum amount of false positives. The output of this phase will
be the training set to be used by the CNN.

At this stage, we aim at minimizing the number of FP , which might bias the subsequent
training process. We also aim at maximizing the process efficiency of creating a large dataset
of gunshot samples. Therefore, the task of the supervisor resorts mainly to listening to a
very few samples (T P + FP ) despite the dataset N , in order to remove the FP , which are
overall very few: only 2 out of 4931 samples. Conversely, we observe that our approach
might lose some good samples (FN = 16 + 4). However, these samples do not affect the
performance of our solution hence we consider them not important.

The above procedure has been applied to each audio sample found in Table 2 to generate
a dataset of actual gunshot samples, that is, one dataset for each gun model.

6 Overall architecture

Figure 10 depicts the overall architecture of our CNN consisting of five layers with weights:
the first four are convolutional layers, while the last one is a fully connected layer. The
output of the fully connected layer is fed to a 7-way softmax, that outputs the probability
distribution over the 7 class labels. The details of our architecture, including information
about the layers and their learnable parameters, are reported in Appendix A.

Considering the dimension of the starting image and the need to give importance also to
peripheral pixels, every convolution of our architecture makes use of padding to avoid losing
information. By adding additional pixels to the border, every convolution layer outputs an
image with the same number of pixels as the one fed into that layer. Furthermore, in our
CNN architecture, we make use of a stride of 1 during convolutions, and a stride of 2 during
the Max Pooling application. The stride is a critical hyperparameter in the context of CNN,
as it allows us to specify the number of cells by which filters (e.g., convolution filters,
pooling filters) slides over the image. If the stride is equal to 2, the filter starts from the top
left corner and moves over the image with jumps of 2 units at a time. By considering square
filters (i.e., fxf ) and square initial images (i.e., nxn), after having specified the dimension
of the filters f, whether they are convolutional filters or pooling filters, the stride parameter
s, the dimensions of the initial images n, and the padding p, it is possible to calculate the
dimension of the square output image of a layer as:

⌊
n + 2p − f

s
+ 1

⌋
(3)
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Fig. 10 Structure and details of our Convolutional Neural Network

Our choice to keep a unit stride during the convolutions and a stride equals to 2 during
the pooling is guided by the intention of not losing information during convolution phases,
while exploiting the pooling technique to summarize the features, thus reducing the input
dimensionality.

The first convolutional layer filters the 36 x 99 x 1 spectrogram image with 40 kernels of
size 3 x 3 x 1, without any stride and with ‘same’ padding. Setting the padding to “same”
allows the classifier to calculate and add the padding so that the output has the same size as
the input. The second convolutional layer takes as input the normalized (40 channels) and
pooled (3x3 max pooling, stride = 2) output of the first convolutional layer and filters it with
80 kernels of size 3 x 3 x 40. The third convolutional layer takes as input the normalized (80
channels) and pooled (3x3 max pooling, stride = 2) output of the second convolutional layer
and filters it with 160 kernels of size 3 x 3 x 80. The fourth convolutional layer takes as
input the normalized (160 channels) and pooled (3x3 max pooling, stride = 2) output of the
third convolutional layer and filters it with additional 160 kernels of size 3 x 3 x 160. The
normalized (160 channels) and pooled (1x13 max pooling, stride = 2) output of the fourth
convolutional layer is fed to a 7-neuron fully connected layer that, in turn, outputs the result
to a 7-way softmax, that produces a distribution over the 7 class labels.

6.1 CNN details

Activation Function Our neural network relies on the ReLU activation function [17] after
each convolution. The ReLU activation function, whose operation is simplified in (4),
outputs the maximum value between zero and the input value.

f (x) =
{

x if x ≥ 0,

0 otherwise
(4)
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Although the literature uses other variants (e.g., Tanh, SoftSign, Sigmoid), several studies
show that ReLU outperforms the competitors in terms of performance [5, 13].

Regularization Our neural network relies on Dropout [28] regularization to reduce the like-
lihood of overfitting. The Dropout regularization technique allows the neural network to
randomly cut out units (together with their connections) during the training phase with a
given probability. This discourages neurons to rely on the presence of particular other neu-
rons and forces them to find more robust features with different ones [13], thus reducing the
probability of learning the training set by heart.

Normalization Training neural network without normalization leads to the internal covari-
ate shift phenomena, where the distribution of each layer’s input change during training, thus
requiring a more sophisticated tuning of the parameters. To mitigate this issue we add Batch
Normalization layers after each convolution. The Batch Normalization technique [7] per-
forms the normalization for each training mini-batch, allowing the usage of higher learning
rates and reducing the need for a cherry-picking tuning of the parameters. As summarized
in the (7), Batch Normalization normalizes the output of an activation layer by subtracting
the mean and dividing by the standard deviation of the batch.

Given a mini-batch β = x1, ..., xm:

μβ ← 1

m

m∑

i=1

xi (5)

σ 2
β ← 1

m

m∑

i=1

(xi − μβ)2 (6)

x̂ ← xi − μβ√
σ 2

β + ε
(7)

where ε is defined as a constant to add to the mini-batch variances, specified as a scalar ≥
10−5.

Although the Batch Normalization technique brings a slight regularization effect to
the neural network, in some cases eliminating the need for Dropout [7], we find that the
combined use of the Batch Normalization and Dropout aids generalization [13].

Discretization The application of discretization techniques to an input representation con-
sists of reducing its dimensionality to evaluate the features within the obtained, summarized
sub-regions. This process allows us to mitigate the overfitting of the training set and to
reduce the number of parameters to be learned for the training, thus reducing the over-
all computational cost. To attain these benefits, in our architecture we use a Max Pooling
sample-based discretization process layer after each activation layer. Max Pooling applies
a max filter to non-overlapping sub-regions of the input feature map, whose dimension is
dictated by the dimension of the filter. When Max Pooling is applied, the passage of the
moving filter onto a sub-region produces, as output, a value, consisting of the maximum
value of that sub-region.

Output As for the output layer, our neural network architecture relies on the commonly
used softmax function. The softmax function, taking as input a vector of real numbers,
produces a probability distribution proportional to the exponential of the input numbers.
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In detail, the input real numbers are mapped in a (0,1) interval that sums up to one, thus
allowing to treat the output provided by the softmax function as probabilities.

In general, given a vector of real numbers v = (v1, . . . , vK) ∈ IRK, the standard unit
softmax function σ : IRK → IRK is defined by:

σ(v)i = evi

∑K
j=1 evj

(8)

6.2 Learning details

Table 4 summarizes the training options of our network, that are detailed in the following.

Optimizer An optimizer is defined as an algorithm (or a method) used to tune the parame-
ters of a neural network with the goal of reducing the loss function. In our architecture, we
rely on the Adam optimizer [12], an extensively adopted optimizer that inherits the advan-
tages of both RMSProp and SGD with momentum (i.e., SGD where each gradient update is
a linear combination of the previous gradient updates) optimizers. From RMSProp it inherits
the squared gradients to scale the learning rate, while from SGD with momentum it inherits
the concept of the moving average of the gradients. An empirical analysis conducted in [12]
shows that Adam outperforms the other optimizers, thus working better in practice. As rec-
ommended in the original paper (whose algorithm is reported below with our parameters), in
our implementation we set to 0.9 the gradient decay factor β1, to 0.999 the squared gradient
decay factor β2, and to 10−8 the denominator offset (to avoid divisions by zero), respec-
tively. However, although the original paper recommends using an initial learning rate of
10−3, we empirically found (relying on the grid search hyperparameter tuning technique)
that setting this value to x ∗ 10−4, x ∈ [1, 3] provides better results.
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Table 4 Training options of our
network Option Value

Optimizer Adam

InitialLearnRate x ∗ 10−4, x ∈ [1, 3]
MaxEpochs 50

MiniBatchSize 8

Shuffle Every Epoch

Plots Training Progress

Validation Data Random 20% of the data

Validation Frequency �|training set| / miniBatchSize�

Number of Epochs An epoch is defined as a single pass through the training set, i.e., 1
forward pass and 1 backward pass for all the training samples. A forward pass is defined as
the calculation process to obtain the output values from inputs data, from the first layer to
the last layers, while a backward pass is defined as the process of changing the weights (i.e.,
learning) by relying on an optimization algorithm (e.g., the gradient descent algorithm) from
the last layer backward to the first layer. We empirically set as 50 the max number of epochs,
since each of the subsequent epochs does not bring any benefit to our model learning.

Mini-Batch Size Using mini-batch that consists of processing small subsets of training sam-
ples in every iteration, instead of processing them all together. The choice of mini-batch
size (e.g., the number of training samples to process) does not affect the performance of the
model in terms of accuracy, but affects the resource required during the training process. A
larger mini-batch size requires more memory and takes more time per epoch, but allows the
classifier to better optimize the vectorization (i.e., the linear transformation of a matrix into
a column vector), while a smaller mini-batch size requires less memory but loses the speed-
up given by vectorization. In our model, we set the mini-batch size to 8, to better optimize
the resources of our server.

Shuffle The “shuffle” option allows shuffling the order of which training samples are fed
to the model, with the goal of reducing variance, thus reducing overfitting. Shuffling the
training samples becomes crucial in case mini-batches are used, due to the need to avoid
having batches containing highly correlated samples that would slow down (or, in many
cases, compromise) the performance of the model. In our model, we shuffle the training
data before each training epoch, as well as the validation data before each validation.

Plot The “plot” option in Matlab provides several pieces of information to be taken into
account during the training process. Information include, but are not limited to, the mini-
batch training loss and accuracy, the smoothed training loss and accuracy (i.e., the result of
the application of a smoothing algorithm to the training accuracy), the validation loss and
accuracy, hardware resources, etc.

ValidationData The validation data, also known as validation set, refers to a subset of sam-
ples separated from the training set, that the model will rely on to evaluate the effectiveness
of its training. In our case, by following the 80/20 rule, the validation set is represented by
20% of the whole dataset.
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Validation Frequency The validation frequency represents the number of iterations between
evaluations of validation metrics. We empirically set this value to � |training set |

miniBatchSize
�.

7 Performance

7.1 Category of gun identification

In this section, we consider the neural network previously introduced to infer the Category
of gun. We reconsider Table 2 and we divide the dataset into three classes, namely, Pis-
tols, Rifles, and Shotguns, according to the gun models in the dataset. Figure 11 shows the
confusion matrix computed as the average of 50 training and validation runs.

The accuracy acc can be computed according to (9).

acc = 1

N

NC∑

i=1

xii (9)

where N = 720 is the total number of samples, NC = 3 is the number of classes, and xii

is the ith diagonal element of the confusion matrix, yielding to acc ≈ 0.92. The confusion
matrix in Fig. 11 also reports summaries of columns and rows, predicted and true classes,
respectively.

We observe that the classification error spans between 4.4% and 12.9% for Pistol and
Rifle classes, respectively. The class Rifle (an actual gunshot from a rifle) is incorrectly
classified as either Pistol (4 times) or Shotgun (21 times) in the 12.9% of the cases. The same
type of analysis can be performed column-wise, where the prediction error spans between
1.2% and 24.1%. As an example, we observe that a prediction on class Shotgun is wrong in
the 24.1% of the cases (6 times for Pistol and 21 times for Rifle).

Finally, we observe that while the Pistol class is likely to be correctly classified all the
times, the vast majority of errors are happening between the Rifle and Shotgun classes.
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Fig. 11 Confusion matrix associated with the classification of the Category of Guns
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7.2 Caliber identification

In this section, we report the performance of our classification algorithm when considering
7 different calibers from Table 2. We group the video chunks based on gun caliber, obtaining
7 different classes, namely, 12, 357M, 44M, 45acp, 556NATO, 762x39, and 9mm. Figure 12
shows the confusion matrix computed as the average of 50 training and validation runs. The
overall accuracy computed according to (9) sums up to acc ≈ 0.9. Best and worst perfor-
mance are achieved by 9mm and 762x39, respectively. In particular, class 762x39 is wrongly
predicted 8 times as class 556NATO. Classes 556NATO and 762x39 are intrinsically simi-
lar, since both are from class Rifle. Therefore, they are prone to be confused. Nevertheless,
we observe that this phenomenon is very limited since we have 3 cases of 556NATO classi-
fied as 762x39, and 8 cases for the opposite configuration. We also observe that 556NATO
and 762x39 classes experience a significant amount of misclassifications with classes 12
and 357M. Conversely, class 44M and 9mm are the most likely to be correctly classified
with 94.8% and 93.6%, respectively.

Highlights By combining Figs. 11 and 12 we can draw some interesting observations. Rifle
class is misclassified for class Shotgun 21 times (the opposite is happening 9 times) in
Fig. 11, while 7+4=11 times (4+5=9 times) in Fig. 12. We think that the error is not due to
a specific caliber, either the 556NATO or the 762x39, but to the feature similarities between
the two classes: Shotgun and Rifle classes.

The pistol class is also misclassified as Rifle class 15 times. By looking into the details
of Fig. 12, we observe that the major source of misclassifications is coming from the 357M
class, classified 4 times as 556NATO and 1 time as 762x39. We observe that the 357M is
the most powerful among the pistol calibers hence it is the closest to Rifle class in terms of
bullet size, pressure, and barrel diameter.

Finally, we observe that our solution is particularly robust in detecting pistols. In partic-
ular, one of the most adopted worldwide caliber (9mm) is characterized by a very limited
number of misclassifications (9 out of 167 total). The same considerations apply to classes
44M and 45acp.
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Fig. 12 Confusion matrix associated with the classification of the Calibers of Guns
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7.3 Model identification

In this section, we consider all of the gun models previously introduced in Table 2 with the
aim of classifying each of them. The total number of classes sums up to 59, which is the
number of gun models considered throughout this paper. We report the confusion matrix
associated with the aforementioned classification in Appendix B. The accuracy sums up
to acc ≈ 0.90 and the maximum number of misclassifications (per model) never exceeds
2. We observe that class 38 (Ruger GP100 Match Champion) is never correctly classified.
Finally, we highlight that the number of samples for the validation process is small (20% of
each gun model in Table 2). Nevertheless, the diagonal of the matrix in Appendix B collects
the vast majority of the samples confirming the effectiveness of our model. We are confident
that a larger data sample can increase the accuracy performance and effectiveness of gun
model detection from gunshot sounds.

7.4 Testing

To validate our methodology, we tested the model against a new set of audio samples taken
from videos different than the ones considered before with varying conditions, including
the background noise and relative positions between the microphone and the shooter. We
consider a total of 115 audio samples constituted by 13 Pistols (Beretta 92 FS), 59 Rifles
(Ruger AR, Daniel Defense M4 A1 SOCOM, Maadi AK-47) and 44 Shotguns (Maverick
88, Winchester Model 300 Defender). We observe that Pistol and Rifle classification is
characterized by high performance, where only 4 Rifles samples are misclassified for Pistol.
As for the Shotgun class, we highlight that the two shotguns considered are not in the
training set (Table 2) because we did not find any valid samples from additional videos.
Although the audio samples are coming from different shotgun models, our algorithm can
still detect the caliber with high probability (only 8 audio samples are misclassified), which
verifies the effectiveness and correctness of our algorithm. Finally, we observe that the
overall accuracy is consistent with the validation process and sums up to about 0.9.

8 Conclusion

Although scenarios requiring in-depth digital forensic of gunshots are countless, includ-
ing military operations, mass-shooting, and possibly others, current solutions are far from
reaching an adequate accuracy under real conditions.

In this paper, we have proposed an effective and efficient methodology to uniquely fin-
gerprint gunshots enabling the identification of the category, caliber, and the model of the
gun with an accuracy higher than 90% regardless of the capture conditions. Unlike exist-
ing solutions, our technique requires neither ad-hoc deployment of microphone networks,
nor specific sample quality, and is agnostic to the microphone position with respect to the
shooter. We have demonstrated that forensic analysis in the time-frequency domain of a
single gunshot audio sample recorded by a commercial microphone (44100 samples per sec-
onds) can be effectively used to infer the gun model (and other related characteristics). The
proposed solution may lead to new insights and further developments in the area of weapon
classification considering more samples, different noise levels, and a much larger weapon
database.
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Appendix A: Making up layers of our architecture
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Appendix B: Confusionmatrix associated with gunmodel classification
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