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Abstract
The latest threat to global health is the coronavirus disease 2019 (COVID-19) pandemic.
To prevent COVID-19, recognizing and isolating the infected patients is an essential step.
The primary diagnosis method is Reverse Transcription Polymerase Chain Reaction (RT-
PCR) test. However, the sensitivity of this test is not satisfactory to successfully control the
COVID-19 outbreak. Although there exist many datasets of chest X-rays (CXR) images,
but few COVID-19 CXRs are presently accessible owing to privacy of patients. Thus,
many researchers have utilized data augmentation techniques to augment the datasets. But,
it may cause over-fitting issues, as the existing data augmentation techniques include small
modifications to CXRs. Therefore, in this paper, an efficient deep convolutional generative
adversarial network and convolutional neural network (DGCNN) is designed to diagnose
COVID-19 suspected subjects. Deep convolutional generative adversarial network
(DGAN) consists of two networks trained adversarially such that one generates fake
images and the other differentiates between them. Thereafter, convolutional neural net-
work (CNN) is utilized for classification purpose. Extensive experiments are conducted to
evaluate the performance of the proposed DGCNN. Performance analysis demonstrates
that DGCNN can highly improves the diagnosis performance.

Keywords Chest X-ray . Generative adversarial network . COVID-19 . Convolutional neural
network . Data augmentation

1 Introduction

COVID-19 pandemic has taken millions of lives and created havoc worldwide over a short
period. COVID-19 is a highly contagious respiratory disease that affects the lungs very badly
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[13]. The only viable solution is to detect the infected individual and break the chain of
infection further. Presently, Reverse Transcription Polymerase Chain Reaction (RT-PCR) is
widely used for detection of COVID-19 [25]. The expert lab technicians and testing kits are
required to perform the testing [3]. The time and expenses involved in testing a sample range
from 2 h to a few days. Moreover, RT-PCR does not produce accurate results for some cases
due to its high false-negative rates (39-60%) [15]. New variants of SARS-Cov-2 virus have
made it even more difficult to detect it by using the existing diagnostic techniques [20].

To overcome the above-mentioned issues, researchers have used artificial intelligence (AI)
techniques to develop an automated diagnosis system for coronavirus infection [9]. AI coupled with
medical imaging has assisted many fields especially, healthcare in various diagnoses and treatments
within thepast decade.Recently, deepneural networks [26] arewidelyused inhealthcare system.The
well-known deep neural network is convolutional neural network (CNN) [8]. CNNs require huge
training data for detecting the coronavirus infection inChestX-ray (CXR) images [16].However, the
appropriate datasets ofCXRs that consists of equal number ofCOVID-19 andnormal chest images is
not available [23]. Lack of supervised datamay lead to the class imbalance problem [27].

To handle the class imbalance problem, semi-supervised learning techniques are used to
perform the classification task [4]. Data augmentation is used to overcome the small-sized
dataset problem [24]. The data augmentation includes various operations such as flipping,
rotation, and translation. These operations are widely used in most of the computer vision’s
applications [1]. A new and more efficient form of augmentation is synthetic data augmenta-
tion of good-quality samples [2]. Synthetically obtained data samples enrich the dataset and
improved the training efficiency. However, it is not possible to generate the completely
different images by using the data augmentation [14]. Nowadays, Generative Adversarial
Networks (GAN) are used to generate large dataset by generating synthetic data [5].

Deep convolutional GAN (DGAN) [17], which is special type of GAN, is used in this
paper. DGAN is used to generate the synthetic COVID-19 CXR images. A novel deep
learning-based model is developed for detecting the coronavirus infection on the CXR images.
The key contributions of this paper are as follows:

i. An efficient deep convolutional generative adversarial network and convolutional neural
network (DGCNN) is designed to diagnose COVID-19 suspected subjects.

ii. Deep convolutional generative adversarial network (DGAN) utilizes two networks trained
adversarially such that one generates fake images and the other differentiates between them.

iii. The convolutional neural network (CNN) is utilized for classification purpose.
iv. Extensive experiments are conducted to evaluate the performance of the proposed

DGCNN.

The remaining structure of this paper is as follows. Section 2 presents the related work done in
the direction of COVID-19 diagnosis. The proposed deep learning-based model is described in
Section 3. The experimental results and discussion are mentioned in Section 4. The concluding
remarks and possible future research directions are presented in Section 5.

2 Related work

Many studies have implemented a supervised learning framework to develop CNN models for
COVID-19 diagnosis using CXRs. Hemdan et al. [13] integrated seven convolution networks

31202 Multimedia Tools and Applications (2022) 81:31201–31218



and proposed a COVIDX-Net model in CXRs. COVIDX-Net provided better performance
than the individual models. However, the efficiency of COVIDX-Net was tested on very small
dataset. Wong [25] developed a COVIDNet to detect and classify pneumonia cases along with
COVID-19. This model attained the classification accuracy of 92.4%. Ioannis [3] expanded the
dataset taking 224 COVID-19 positive cases. This model obtained a 98.75% success rate for
binary and 93.48% accuracy for triple-classes. Narin [15] coupled ResNet-50 with CXRs and
achieved a 98% accuracy in diagnosis. Sethy and Behra [20] used feature classification of
images obtained from various deep networks with a support vector machine (SVM) classifier.
Besides these, many recent studies are using deep learning that worked on Computed
Tomography (CT) of lungs to classify and detect COVID-19 cases. However, the lack of
publicly available datasets was an issue in all the deep learning models as they were trained on
very small datasets.

A few more experiments were conducted by DeGrave [9] to test the robustness and
generalizability of CNN models. They achieved good test accuracy on replicating various
supervised models like COVID-Net [26] on the COVID-x dataset. However, their predictive
performance falls by 50% on validating the model on external COVID and non-COVID
datasets [8]. They used saliency maps and image edges for detecting COVID-19 [16]. It is
found that non-COVID markers did not provide the prediction such as cardiac silhouette and
diaphragm. The images obtained from different scanners can be problematic as the models
with high accuracy on a particular dataset cannot be generalized for other datasets.

The above-mentioned data inadequacy in medical diagnosis led to explore new ways to
expand image datasets. Recently, GANs are utilized by many researchers in medical imaging
[23]. Zhao [27] proposed a VGG-16 network with DGAN for synthetic image generation in
lung-nodule classification. A progressively grown GAN (PGGAN) was trained to synthesize
medical scans of the fundus containing premature retinopathy vascular pathology (ROP) and
MRI scans [4]. Waheed et al. [24] presented an auxiliary classifier GAN (ACGAN)-based
model named as CovidGAN to generate the synthetic CXR images for COVID-19 classifica-
tion. CovidGAN improved the performance of CNN. However, the performance can be further
by using PGGAN. Acar et al. [1] hybridized GAN, data augmentation and segmentation to
improve the performance of COVID-19 classifier. The synthetic CT images generated from
hybrid approach were applied in CNN for identification of COVID-19. The performance of
classifier was little improvement by utilizing the proposed hybrid approach. Al-Shargabi et al.
[2] utilized a conditional GAN for generating synthetic CXR images. These images were used
for training the InceptionResNet_V2 model and provided better performance than the
InceptionResNet_V2 without GAN. However, the model has high computational time. Schlegl
[19] studied the data distribution of healthy tissues in the retina using GAN. It was used for
anomaly detection in the retinal region on new and healthy image patches.

It is observed from the above-mentioned literature that GAN-based techniques can be
useful to detect the infection caused by COVID-19. Studies showed that the anomalies in
chest radiographs are more frequent during the initial symptom period and at the peak of
illness. Thus, CXR should be used as a major screening method for COVID-19 diagno-
sis. It has other advantages such as easy accessibility and portability. The less number of
CXR images are available due to small duration of this pandemic. Hence, GAN can be
used to create the synthetic training data. CXR images can be synthesized from scratch
using GAN and produce the desirable results when it is combined with other methods.
These fact motivated us to develop the novel deep learning-based model for identifica-
tion of COVID-9 in CXR images.
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3 Materials and methods

3.1 Dataset

CXRs dataset is obtained from [7] for experimental purpose. It is a well-structured dataset that
consists of four classes namely, COVID-19, normal, pneumonia viral, and pneumonia bacte-
rial. It has 306 images in total that are further divided into 270 training images and 36 test
images, respectively (refer [7]). Figure 1 shows a sample view of CXR’s testing dataset.
Table 1 shows the subject wise distributions of the dataset. It shows that the dataset is balanced
in nature. The only problem with this dataset is limited number of images for deep learning
models. To produce synthetic images for each of the four classes, CXRs dataset [7] is utilized
as an input to DGANwith real images. The obtained images and actual CXRs images are used
to train the proposed model.

3.2 Proposed architecture

To augment the dataset, DGAN is used for obtaining the synthetic images for each of the four
classes of the original dataset. Further, CNN classifier is used to evaluate the effect of synthetic
images on the classification performance.

3.2.1 Generative adversarial network (GAN)

GANs are the specific frameworks of a generative model. A generative model learns the data
distribution (pdata) to obtain new samples from a given set of sample images x1, x2…, xn.
DGAN is used when both discriminator and generator are deep CNNs [11]. It consists of two

Fig. 1 Sample view of CXR’s testing dataset
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simultaneously trained networks, i.e., discriminator (D) and the generator (G). D discriminates
between the obtained real and fake images. It takes input as i and outputs the probability of the
real sample as D(i). The generator network takes input j1,…jn from a uniform distribution p(i)
and synthesizes samples after mapping G(j) to the image space p(g). G targets to obtain f(g) =
f(data). In a two player minimax game, the loss function is optimized to train the adversarial
networks as:

min
G

max
D

Ei∼ f datað ÞlogD ið Þ þ Ei∼ f ið Þ log 1−D G jð Þð Þð Þ½ � ð1Þ

D is trained such that D(i) is maximized for images having i ∼ f(data) and is minimized for
images having i = f(data). G outputs images G(z) and deceives the discriminator during the
training process such that D(G(j)) ∼ f(data). Hence, the generator is trained to maximize
D(G(j)), or minimize 1 − D(G(j)) [6].G boosts its capacity to synthesize more realistic images
during training. While D boosts its capacity to differentiate the real from the synthesized
images.

a. Generator

An input vector consisting of 100 random numbers is given to the generator from a uniform
distribution, which produces the output of 64 ∗ 64 ∗ 1 sized image. The network architecture
is made up of a fully connected layer that is resized to 4 ∗ 4 ∗ 512 and four fractional-stride
convolutions to up-sample the image with 4 ∗ 4 sized kernels. A fractional stride convolution
is expanded by inserting zeros in between the pixels. Besides the output layer, Batch-
normalization is applied to every layer. The learning process of DGAN is stabilized by
normalizing the responses throughout the mini-batch, which stops the generator from reducing
all samples to a single point. Tanh activation function is used by the output layer and ReLU for
all the other layers. Figure 2 shows the generator network architecture along with the trainable
parameters.

b. Discriminator

The discriminator network inputs CXR images with size of 64 ∗ 64 ∗ 1 and outputs one
decision if CXR is real. Figure 3 depicts the architecture of discriminator. It consists of four
convolutions and fully connected layers with 4 ∗ 4 sized kernels. The spatial dimensionality is
reduced by using stride convolutions. Leaky Rectified Linear Unit (ReLU) function f(i) =
max (i, leak ∗ i) and batch normalization is used for all layers except the input-output. The
sigmoid function is used in the output for the likelihood probability score of CXR as [0, 1].
Also, to prevent the over-fitting issue, the dropout is used for every layer, except the second
and the output layers.

Table 1 Subjects wise distribution of the dataset

Set/Class COVID-19 Normal Bacterial pneumonia Viral pneumonia Total

Training 60 70 70 70 270
Testing 9 9 9 9 36
Total 69 79 79 79 306
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3.2.2 Classifier

The architecture of the proposed classifier and the relative trainable parameter are demonstrat-
ed in Fig. 4. CNN architectures for medical imaging generally consist of lesser convolution
layers due to small datasets and small input sizes. In this paper, CNN classifier utilizes fixed
size grayscale input CXRs of 64 ∗ 64 that is normalized in the range of [0, 1].

The network architecture is a three-layered convolution with 3 ∗ 3 kernel, ReLU activation
functions, batch normalization, and max pooling. The output layer have two fully connected
layers with dropout as 0.5 and Softmax output function over the four classes. Batch normal-
ization and dropout are utilized to prevent over-fitting.

3.2.3 Model building

After defining the network architecture, this section explains the training of the proposed
DGCNN model. It involves the selection of appropriate loss function, selecting epoch value,
and various learning rates. DGANs are capable of producing extremely good results, but
training a DGAN is quite challenging as both the sub-networks are trained simultaneously and
may affects the training of each other. It is often the case that improvements to one sub-
network come at the expense of the other sub-network.

CNN architectures for medical imaging generally consist of lesser number of convolution
layers due to lesser size of the datasets and small input sizes [22]. In this paper, the training
process is extended until the loss curve stabilizes around its minimum axis. It may depend on
the size of the dataset. Since the dataset length differs, therefore, epochs are allowed to
be 1500.

Fig. 2 Generator architecture in DGAN
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i. Batch Size

For training DGAN, larger batch size is not recommended. Because in the initial phases of
training the discriminator gets a lot of examples to train. Also, a larger batch size can
overpower the generator. It may lead to an unstable model and it may not converge properly.
Considering the size of the dataset, the batch size is taken as 32. It is quite suitable since both
the discriminator as well as the generator could train with stability.

For classifier, the strategy used is operating in a small-batch regime wherein the set of
training data, a subset of 256 elements is randomly sampled to obtain an approximation to the
gradient. The quality of the model is significantly degraded for a larger batch size. The batch
size strategies are evaluated and it seems to be the best suited for the proposed DGCNN.

ii. Transform of training samples

To train CNN, separate sets of training datasets were developed using classical augmented and
synthetic augmented CXRs. Various image transforms are utilized together before assigning
the training samples to DGCNN:

& Resize: It is used to resize the input image to the given size. Since DGAN takes images
having size 64 ∗ 64, thus, the input images are resized 64 ∗ 64 to before providing them
to DGCNN.

& Random horizontal flip: It can augments the images by flipping them horizontally with
random degree.

Fig. 3 Discriminator architecture in DGAN
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& Grayscale: This function converts the input image to a single channel which is later
assigned to DGCNN.

& Normalize: The given set of CXR images are normalized to have unit mean as well as unit
standard deviation.

& Color Jitter: It is used to alter saturation, brightness, and contrast of CXR images.
& Random Rotation: It is used to randomly rotate CXRs depending upon the predefined

interval range of degrees.
& Random Affine: It is used for translation and scaling to CXR images in the predefined

range.

iii. Hyper parameters

Four separate DGANs [21] are trained to synthesize images for each of four type classes. Both
the networks are trained iteratively. Mini-batches are drawn of n = 32 CXR samples x(1),…,
x(n) for each CXR class ∈ (COVID, Normal, Pneumonia bacteria, and Pneumonia virus) and n
= 32 noise samples y(1), …, y(n) from a uniform distribution. The slope of leak was 0.2 in
Leaky ReLU. Adam optimizer with parameters α1 = 0.5 and α2 = 0.999 are used. The initial
learning rate was 0.0002 for both networks. Different combinations of learning rates for
generator and discriminator networks are used to analyze the convergence of DGAN. Finally,
the learning rate of generator is increased to 0.002.

Fig. 4 Proposed architecture of CNN classifier
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For training the classifier, batch size is used as 256. Stochastic gradient descent optimiza-
tion with a high learning rate (LR = 0.01) is used that performed better for this specific task.
Nesterov momentum updates (m = 0.9) and gradient at lookahead position are used, which
speed up the training process and improve the performance. Separate CNNs are trained on
different augmented CXR scans for each of the available datasets for variable epoch’s
quantities depending on the dataset dimensions, i.e., 150 to 750 epochs depending upon the
size of the dataset.

4 Experimental setup and analysis

This section discusses the performance metrics, comparative analysis of the proposed DGCNN
model. For experimental purpose, an open-source machine learning library PyTorch is used.
Google Colab is used to train both DGAN and classifier models.

4.1 Evaluation metrics

For evaluating the performance of the proposed DGCNN, the training performance can be
evaluated as:

& Loss_D: It represents the discriminator loss and is taken as the sum of losses for all the real
and fake batches that given as: (log(D(G(j))) + log (D(i))).

& Loss_G: It is the generator loss and can be taken as log(D(G(j))).
& D(x): It represents the average discriminator output for all real batches. It initializes using 1

and then theoretically can converge to 0.5 according to the value of G.
& G(z): It is the average discriminator output for all the fake batches. The first value is (D _

G _ j1) before updating D and the second value is (D _ G _ j2) after updation of D. D _
G _ j2 is initialized as 0 and later converges to 0.5 according to the value of G .

Whenever a discriminator is updated, it tries to push D(i) towards 1 and at a same time pushes
D(G(j)) towards 0. An updated generator tries to increase D(G(j)), i.e., it tries to dupe D that
the images generated from noise are the real ones. The discriminator cannot differentiate
between real and fake images in an ideal case [12]. However, this scenario is not easily
achieved practically.

To evaluate the classifier, the number of CXRs in the training set is (9, 9, 9, and 9) for all
kinds of subjects. Therefore, a batch of 36 CXRs is used to maintain the balance of CXR
images in every class. The average performance is computed over 500 iterations. The average
testing accuracy value is used to evaluate the performance of DGCAN. Additional measures
such as sensitivity, specificity, and F1-score are also computed for each category.

4.2 Performance analysis

4.2.1 Fake images generation using DGAN

COVID-19 CXR [7] dataset is used for training DGAN. For analysis of every trained network,
the relevant parameters namely, D(G(j1)), D(G(j2)), D(i), Loss _ D, and Loss _ G, are
obtained and plotted against the epochs. Figure 5 shows the performance of a stack of real
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CXRs from the dataset and fake CXRs generated from DGAN trained. It is found that the
stability of both networks is increased as the epochs increased. The fake images are shown in

(a)

   (d) normal fake 

fake 

(c) normal real

(e) bacterial pneumonia r

(g) viral pneumonia real

COVID real       (b) COVID fake 

eal         (f) bacterial pneumonia

(h) viral pneumonia fake 

Fig. 5 Pairs of real (left) and fake (right) images generated using DGAN
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the right portion of Fig. 5, which are single-channel images obtained from an individual
DGAN trained with 512 epochs for each of the four classes.

4.2.2 Comparison for different learning rates

Four DGANs are trained by considering every individual class of the dataset. Initially, a low
learning rate of 0.0002 for the generator network resulted in the poor quality of synthetic

(a) G_loss (LR=0.0002) (b) G_loss (LR=0.002) 

(c) D_loss (LR=0.0002) (d) D_loss (LR=0.002) 

(e) Generated image (LR=0.0002) (f) Generated image (LR=0.002)

Fig. 6 Analysis of the learning rate: a and b generator loss analysis with respect to epochs, c and d discriminator
loss analysis, and e Generated fake image for the generator network when LR = 0.0002, and f generated fake
image when LR = 0.002
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images. The major cause is the discriminator overpowering the generator network. The output
synthetic images from the network are improved in quality when the learning rate is increased
to 0.002. Thus, DGAN perform efficiently on the used dataset when the learning rate is
0.002 (see Fig. 6a–d).

4.2.3 Analysis of epochs

The performance of DGAN is also evaluated by using the epoch values as 128, 256, and 512.
Figure 7 shows the obtained fake images using the different epoch values. The quality of
images is increased as the number of epochs are increased. It is found that DGAN produce fake
images, which are closer to the actual CXR images for larger value of epoch.

4.2.4 Convergence failure

During the training process, if the generator and the discriminator fail to reach a balance, it
may results in a convergence failure. In the case of discriminator dominates, the generator
score approaches to 0 and the discriminator score approaches to 1. It overpowers the generator
as shown in Fig. 8.

(a)      (b) (c) (d) 

Fig. 7 Epochs analysis a Actual pneumonia virus CXR. b Generated image at epoch 50. c Generated image at
epoch 100. d Generated image at epoch 200

Fig. 8 Discriminator overpowering the generator
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In contrast to the discriminator dominates, in the case of generator dominates the generator
score approaches to 1. The score remains near to 1 for many iterations and the discriminator is
duped by the generator almost every time. Figure 9 shows the case of generator dominates
where the generator overpowers the discriminator.

4.2.5 Classification analysis

Figure 10 shows the flowchart of the proposed DGCNN for the evaluation of synthetic data
augmentation to diagnosis the suspected cases. Initially, the performance of existing data
augmentation techniques is evaluated. DGAN is then used to synthesize CXR scans and the

Fig. 9 Generator overpowering the discriminator

Fig. 10 Flowchart of the proposed DGCNN for synthetic data augmentation to diagnose COVID-19 suspected
cases
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resultant images are combined with the actual CXR scans for training purpose. Subsequent
section discusses the various steps of the proposed DGCNN for COVID-19 diagnosis.

Step 1: Existing augmentation In this step, the classification results of CNN model are
evaluated on actual and data augmentation-based training dataset. CNN is trained and the
respective performance is evaluated separately for both sets of data, i.e., actual and augmented
CXRs as. Let Dclassic represents the training data that includes an augmented CXR scans for
training. Some fraction of CXR scans is also used for evaluations during the testing time.
Additional data groups are formed for examining the effect of increased samples. First data
group consist of only actual CXR scans. Various data augmentations are utilized (Nrot = 2,
Ncolor = 2, Nflip = 2, Nscale = 4,and Ntrans = 4) for each original scan. It results in N = 128
augmented images per CXR scan. Therefore, 8000 samples per class are obtained. Thereafter,
the images are selected by sampling random augmented scans such that same augmentation
volume is sampled for each original scan. To summarize this data group preparation process in
augmentation, 500, 1000, 2000,and 3000 samples are added, respectively to each fold. The
training process is cross-validated over 4 different folds. Fig. 11 shows the sampled images
after the data augmentation.

Step 2: Synthetic augmented datasets In the second step, synthetic CXR scans are gener-

ated for data augmentation using DGAN. The optimal point for classic augmentationDoptimal
classic is

Fig. 11 Sampled images after the data augmentation

(a) 1-channel (b) 3-channel

Fig. 12 GAN trained generated images for bacterial pneumonia CXRs

31214 Multimedia Tools and Applications (2022) 81:31201–31218



taken and the augmented data group is used for training DGAN. For effective training, the
existing data augmentation is incorporated because of the small dataset. DGAN [10, 18] is
employed for training each class separately using the same data fraction. The generator
synthesized new samples after separate learning of each class data distribution. Some examples
of synthesized CXR scans from each class are presented in Fig. 12. The same approach is used
for constructing data groups. Additionally, numerous synthetic scans for all four classes are
collected and data groups Dsynthetic of synthetic data are evaluated. The same number of
synthetic scans are sampled for every class to keep them balanced. To summarize the data
group preparation process in synthetic augmentation, 100, 500, 1000,and 2000 samples are
appended to each of the four-folds.

Figure 13 shows the experimental results obtained from DGAN for synthetic augmentation.
The baseline results for the existing data augmentation techniques are marked as red. Total
accuracy measure for each group of data for CXR diagnosis is evaluated. The average test
results of CNN prediction over 500 iterations are reported in tables. The blue line demonstrates
the result of the existing data augmentation scenario. The red line shows the result obtained
from the combined approach of both synthetic data augmentation and the existing data
augmentation base CXR scans. It results in 76.9% accuracy when no augmentation is used.
This is happened due to the over-fitting problem. Table 2 shows the performance evaluation of
proposed model without using data augmentation over 750 epochs.

Fig. 13 Accuracy analysis of existing data augmentation and DGAN based CXR scans with respect to increase
in training set size

Table 2 Performance analysis of CNN model on training set without data augmentation

Model/Metric Accuracy Sensitivity Specificity F1-score

COVID-19 0.9119 0.9055 0.9202 0.9116
Normal 0.9152 0.9172 0.9068 0.9142
Bacterial Pneumonia 0.9165 0.9192 0.9172 0.9135
Viral Pneumonia 0.9113 0.9149 0.9205 0.9107
Average 0.9137 0.9142 0.916175 0.9125
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Table 3 shows performance analysis of CNN model when it is trained with 750 epochs on
training dataset by using the existing data augmentation techniques. It clearly shows that there
is an improvement in terms of average accuracy as 1.7463%. The main reason behind this
improvement is that the impact of over-fitting is reduced due to the increase in the training
dataset.

Table 4 demonstrates performance analysis of CNN model when it is trained on existing
data augmentation and DGAN based training dataset with 750 epochs. It clearly shows that
there is an improvement in terms of average accuracy as 5.8472% as compared to the without
the use of any data augmentation technique and 4.1009% as compared to the existing data
augmentation-based CNN model, respectively. The main reason behind this improvement is
that the impact of the over-fitting is significantly reduced due to the major improvement in the
size of the training dataset.

4.3 Discussion

Table 5 shows the comparative analysis of the proposed and the existing COVID-19 diagnosis
models such as CSEN [34], TL-SVM [36], COVID-Net [33], MC-ResNet [40], COVID-
DenseNet [39], COVIDX-Net [32], CNN-SVM [31], ResExLBP-SVM [30], COVIDiagnosis-
Net [29], Xception and ResNet50V2 [28], ChestNet [18], MobileNet and SqueezeNet-based
SVM [5], Xception [12], CovXNet [14], and DCNN [10]. Compared to these models the
proposed DGCNN model achieves significantly better accuracy. It is also observed from
results that the significant improvement has been achieved by the proposed model by using
both exiting data augmentation and synthetic data augmentation generated by DGAN. The
improvement in average accuracy is 5.8472% as compared to the without the use of any data
augmentation technique. Whereas, the improvement in average accuracy is 4.1009% as
compared to the existing data augmentation-based CNN model, respectively.

Table 3 Performance analysis of CNN model on training dataset with the existing data augmentation

Model/Metric Accuracy Sensitivity Specificity F1-score

COVID-19 0.9493 0.9472 0.9427 0.9442
Normal 0.9379 0.9346 0.9388 0.9358
Bacterial Pneumonia 0.9397 0.9362 0.9404 0.9385
Viral Pneumonia 0.9366 0.9456 0.9454 0.9341
Average 0.9408 0.9409 0.9418 0.9381

Table 4 Performance analysis of CNN model on training dataset with both existing data augmentation and
synthetic augmentation

Model/Metric Accuracy Sensitivity Specificity F1-score

COVID-19 0.9922 0.9827 0.9866 0.9838
Normal 0.9912 0.9828 0.9921 0.9832
Bacterial Pneumonia 0.9835 0.9819 0.9885 0.9802
Viral Pneumonia 0.9886 0.9884 0.9851 0.9923
Average 0.9889 0.9839 0.9881 0.9849
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5 Conclusion

It has been found that the sensitivity of RT-PCR test is not satisfactory to successfully control
the COVID-19 outbreak. Therefore, an efficient DGCNN has been designed to diagnose
COVID-19 suspected subjects. In the proposed DGCNN model, initially, DGAN consists
two networks that has been trained adversarially such that one generates fake images and the
other differentiates between them. Thereafter, CNN has been utilized to diagnose suspected
cases from CXR scans. Extensive experiments have been drawn to evaluate the performance
of the proposed DGCNN. Performance analysis have shown that DGCNN can highly im-
proves the diagnosis performance. It has been found that the proposed DGCNN achieved an
improvement in terms of average accuracy as 5.8472% as compared to without the use of any
data augmentation technique and 4.1009% as compared to the existing data augmentation-
based CNN model, respectively. The main reason behind this improvement is that the impact
of the over-fitting has been significantly reduced due to the major improvement in the size of
the training dataset.

In near future, the proposed model will be improved further by designing an evolving
DGCNNmodel. Additionally, the proposedDGCNNmodel will be applied on other datasets too.
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