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Abstract
By embracing Generative Adversarial Networks (GAN), several face-related applications
have significantly benefited and achieved unparalleled success. Inspired by the latest
advancement in GAN, we propose the PlasticGAN which is a holistic framework for
generating images of post-surgery faces as well as reconstruction of faces after surgery
completion. This preliminary model works as a helping hand in assisting surgeons, biomet-
ric researchers, and practitioners in clinical decision-making by identifying patient cohorts
that require building up of confidence with the help of vivid visualizations prior to treat-
ment. It helps them better provide the tentative alternatives by simulating aging patterns. We
used the face recognition system for evaluating the same individual with and without masks
on surgery face, keeping the current trends in mind such as forensic and security applica-
tion and recent worldwide COVID scenario. The experimental results suggested that plastic
surgery-based synthetic cross-age face recognition (PSBSCAFR) is an arduous research
challenge, and state-of-art face recognition systems can negatively affect face recognition
performance. This can present a new dimension for the research community.

Keywords Plastics surgery · Generative adversarial networks ·
Cross-age face recognition · Face aging · Face masks

1 Introduction

Usually, facial plastic surgery reshapes the structure or improves the appearance of the face
or neck. Procedures typically include the nose, ears, chin, cheekbones, and neckline. People
seeking this surgery might be motivated by a desire to remove irregularities introduced in
the face by an injury, a disease, congenital disabilities, or post-surgical deformities. The fol-
lowing is according to the recent statistics released by The American Society for Aesthetic
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Plastic Surgery (ASPS)1 for the year 2019 and International study on aesthetic procedures
(ISAP)2 for the year 2019.

1. According to the ASPS, almost 17.7 million people underwent surgically and minimally
invasive cosmetic procedures, and more than 5.9 million reconstructive procedures
happened in the United States in 2019.

2. In 2019, According to the ISAP, more than 2 million facial rejuvenation surgical proce-
dures were performed, and the most common were Chemical Peel, Full-Field Ablative
Resurfacing, Micro-Ablative Resurfacing, Dermabrasion, Microdermabrasion, Nonsur-
gical Skin Tightening, and Face Rejuvenation.

3. In 2019, 11.1% and 8.5% of face and head plastic surgery procedures were performed
in Brazil and the USA, respectively. 10.5% and 18.3% of facial rejuvenation were
constituted by USA and Japan, respectively.

4. Plastic surgery distribution by age: 0−18 years constitutes 4%, 19−34 years constitutes
43%, 35 − 50 years constitutes 36%, 51 − 64 years constitutes 14%, and 65 years and
above constitute 3% of the total number of plastic surgery procedures.

5. 86.5% of women and 13.5% of men are now more affirmative toward plastic surgery
procedure as per the data provided by the ISAP in 2019.

The statistics provided by ASPS and ISAP indicate the popularity of facial plastic surgery
across all age categories, ethnicity, countries, and gender. In South Korea, every one in three
women between 19 to 29 year had a cosmetic or plastic surgery.3

These surgical processes demonstrate ideal for individuals experiencing facial distortions
or those who want to counter the aging process. Similarly, these procedures can be misused
by individuals who are attempting to hide their personality with the goal to cause extor-
tion or dodge law implementation [34]. These surgeries may permit anti-social elements to
openly move around with no dread of being recognized by any automated face recognition
framework. A considerable amount of research on plastic surgery has been performed and
reported [33], cross-age face recognition(CAFR) [40], synthetic aging [5, 8], and synthetic
face mask recognition [27]. Due to advances in technology in the medical field, variation
in faces due to plastic/cosmetic surgery has also led to the emergence of co-variates [33] of
face recognition. Furthermore, if we add synthetic aging to surgery faces then the cross-age
face recognition task becomes arduous.

Facial plastic surgery is a discipline that requires years of training for a surgeon to gain
the necessary experience, skill, and dexterity. As the demand of minimally invasive proce-
dures (MIP) is increasing rapidly, the patient wants to know how the changes are reflected
on their face after the surgery. But in these procedures, the surgeon’s vision often relies on
their own and the patient’s imagination completely. Due to the lack of appropriate visualiza-
tion techniques and technology, surgeons are bound to rely on their skills and imagination
power while performing the surgery; this can make this task more challenging.

To attempt to alleviate these challenges, we propose the PlasticGAN framework which
can generate diverse photo-realistic faces with respect to facial surgery; this can work as a
middleware between surgeons and patients and aid clinical decisions with the help of vivid

1https://www.surgery.org
2https://www.isaps.org
3https://www.isaps.org/event/aesthetic-plastic-surgery-2018-korean-society-aesthetic-plastic-surgery
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visualizations. In this manuscript, we also focus on quantifying the effect of plastic surgery
with aging and wearing face masks on the performance of face recognition systems.

Our key efforts are summarized as follows:

1. An effective Conditional Generative Adversarial Network (cGAN) based network,
PlasticGAN, is proposed to solve the face aging and rejuvenation problem on faces
that have undergone plastic surgery for the very first time. Specifically, age and gen-
der are passed as conditional information into both the discriminator and generator to
acquire more fine-grained information between input and synthesized results. Besides,
BlockCNN-based residual blocks are adopted to remove the artifacts and improve
convergence behavior.

2. PlasticGAN will work as a middleware between surgeons and patients in terms of moti-
vation provider and confidence booster for the surgery by providing a better glimpse of
post-surgery looks.

3. Our framework does not require pre- and post-plastic surgery faces in the training
dataset. At the time of testing, our model synthesizes face aging, rejuvenation, and face
completion on surgery faces.

4. We defined a new challenge in the face recognition field named plastic surgery-base
synthetic cross-age face recognition (PSBSCAFR).

5. We evaluated the robustness of the PlasticGANmodel. For this, we performed an exces-
sive qualitative and quantitative comparison with faces with and without face masks
that will contribute to the forensic and law enforcement field.

The primary aim of this paper is to add a new dimension to clinical decision-making
between surgeon and patient as well as lend an impact on cross-age face recognition on
faces that have undergone plastic surgery. The remainder of the paper is organized as fol-
lows: In Section 2 we present a detailed description of different types of plastic surgery. In
Section 3, we provide the generative model-based related work on face images. In Section 4,
we present the proposed PlasticGAN model in detail. Section 5 presents the overall objec-
tive functions used in the optimization of our model. Section 6 describes data collection,
pre-processing on surgery, and mask-wearing face. Section 7 presents the qualitative study
on different types of surgeries. Section 8 discusses qualitative study on mask-wearing
faces. Section 9 presents extensive quantitative experiments to demonstrate the superior-
ity and wide-range practical application of our proposed model. Section 10 presents the
performance ablation study. Finally, in Section 11, we conclude the paper and discuss the
challenges in the face recognition research domain.

2 Plastic surgery and face recognition

Primarily, plastic surgery constrained to the face can be characterized into two major cate-
gories: (1) local plastic surgery and (2) global plastic surgery. Local plastic surgery accounts
for correcting defects and craniofacial anomalies and improving skin texture. Procedures
for local plastic surgery include Rhinoplasty, Mentoplasty, Blepharoplasty, Browlift, Malar
Augmentation, and Otoplasty. It is also used for cosmetic and aesthetic purposes [28].
Global plastic surgery remodels the overall facial structure. This plastic surgery procedure
is recommended for cases of recovery from fatal burn, changing facial appearance and
skin texture, and modifying facial geometries. Procedures for global plastic surgery include
Rhytidectomy, Skin Peeling, Craniofacial, Dermabrasion, and Mole Removal [26, 32].
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When global plastic surgery is performed on an individual, face components such as
nose, lips, and eyelid geometries might be disturbed or modified. In parallel, we observed
that face recognition accuracy was significantly improved by the commercial of the shelf
(COTS) and open source deep face recognition system on face aging [5], plastic surgery
[34], and disguise face [10].

In this paper, PlasticGAN based on Generative Adversarial model is synthesized with
reference to faces that have undergone plastic surgery with and without mask consider-
ing face aging and rejuvenation effect. Subsequently, we performed face verification using
Face++ app on faces generated by PlasticGAN. Hence, this creates a significant challenge
for the face recognition system as it produces extensive changes in facial features. This chal-
lenge, namely plastic surgery-based synthetic cross-age face recognition (PSBSCAFR) can
become a new dimension for upcoming researches.

3 Related work

3.1 Generative adversarial networks

GAN was proposed by Ian Goodfellow et al. which incorporates two networks, a generator
which produces new instance data by accepting noise, a discriminator of the genuineness
of the produced images by generator. GAN has gained interest due to its high performance
in a wide range of practical applications such as facial attribute alteration [3, 19], find-
ing missing children [4, 5], transferring and removing makeup style [7], super-resolution
techniques [22], anti-forensic [11, 37] and law enforcement [1, 21], Age-Invariant Face
Recognition [40], etc. Additionally, GAN can explicitly control the features or latent vector
in a manner that in its given class includes categorical description of text [29], landmark-
type conditions, and background and foreground details to generate images; these conditions
make it a conditional GAN (cGAN) [25] model.

However, GAN still has the disadvantage of unstable training and mode collapse prob-
lems. GAN-based Single Image Super-Resolution (SISR) models such as SRGAN [22]
generate photo-realistic results with respect to these problems. However, the loss function
on the feature space makes it to sacrifice the issue of its. Simultaneously, Wasserstein GAN
(WGAN) [2] and Wasserstein GAN-Gradient Penalty (WGAN-GP) [15] improved training
techniques by adding a Wasserstein (Earth Mover) distance metric loss to address the issues
of generator and discriminator training and gradient vanishing. They stabilize their training
over an extensive range of architectures with almost no hyper-parameter tuning. It does not
rely on weight clipping techniques but penalizes the model if the gradient norm moves away
from its target norm value 1. The adversarial loss proposed by Gulrajani et al. [15] moved
the distribution of the generated images to the distribution of the real images. Especially,
we seek to generate photo-realistic as well as less blurry images of post-surgery faces. To
accomplish this, we employ deep feature consistent principle [17] to generate comprehen-
sible face images with natural eyes, teeth, hair texture, and nose. In parallel, we also use
improved GAN training mechanism to generate images that lie in the manifold of natural
images.

All these principles and improved GAN techniques motivate us to work in facial plastic
and aesthetic surgery fields, benefiting the society with its needs and considering current
trends such as forensic and security application and the recent worldwide COVID-19 face
mask scenario.
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3.2 Face aging and rejuvenation

Face age progression is the prediction of future looks, and rejuvenation is the estimation
of younger faces also referred to as facial age regression. It significantly impacts a wide
range of applications in various domains. Generative models [14] are progressively used to
perform face aging and de-aging due to their unquestionable and plausible generation of
natural face images with an adversarial training approach. For e.g Zhang et al. proposed
CAAE [38] for face aging and de-aging framework that learns a face manifold. Yang et
al. [36] designed pyramidal adversarial discriminator for high-level face representations in
a detailed manner. Wang et al. [35] presented an identity permanence conditional GAN and
used pre-trained age classification loss to estimate the age correctly. Attention-cGAN [41]
used the attention-based mechanism, which is a modification of only the facial regions rel-
evant to aging. Recently, Praveen et al. [5] proposed ChildFace specific to child-based face
aging and de-aging by introducing the gender and age-aware condition vector to preserve
the identity in a small age span.

The aforementioned generative models used for beautification and face rejuvenation
inspired us to propose PlasticGAN that integrates both face aging and rejuvenation. More-
over, it does not require any training on the dataset with before and after plastic surgery
faces. We leverage the conditional GAN-based architecture integrated with adversarial,
perceptual-based identity, and reconstruction loss function. The proposed model is designed
as an innovative method for vivid visualization of realistic post-surgery faces to help
surgeons in building up confidence and acquiring the patient’s acceptance for surgery.

4 Network architecture

We propose a PlasticGAN framework. The architecture of this framework evolved from the
deep feature consistency principle [18], adversarial auto encoder [23], and BlockCNN base
residual block [24]. As depicted in Fig. 1, the PlasticGAN system consists of four deep
networks: a) deep residual variational autoencoder including a probabilistic encoder E(x),
b) probabilistic generator G(z, l), c) pre-trained VGG19 (�)[31] for identity preservation,
and d) deep residual critic discriminator Dimg(x, x̄). This model is based on the principle
of WGAN-GP [15] to improve the accuracy results for face aging and rejuvenation in terms
of generating natural and realistic images.

The encoder (E) compresses the input image x having the size 128 × 128 × 3 through
two fully connected layers (for mean μ and variance σ ), and then they are added to sample
latent vector z. Furthermore, this vector z appends with identity feature maps that combine
two vectors: 12 times of age vector (a) and 25 times gender vector (g). Then, the output
from previous zl passes as an input to the generator (G) for generating image x̄.

Then in the next step, VGGNet takes both x and x̄ as input and extracts deep feature
from these images and then constructs the perceptual loss. Meanwhile, the generated images
and the real image are conveyed to the Discriminator Dimg . The idea is to take these two
as inputs to perform the adversarial min-max game policy and to calculate the discrepancy
between the generated and input images. In addition to this information,Dimg also considers
the identity feature map l (e.g. age and gender vector) in its first hidden layer as depicted in
Fig. 1; these vector values are used as a conditional setting to obtain more fine-grained age
and gender information between x and x̄.
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Fig. 1 Overview of training and testing phase of the proposed PlasticGAN model. Encoder (E) ,Genera-
tor (G), and Discriminator (Dimg) are used for reconstruction and aesthetic surgery. LKL(μ, σ ) represent
the KL loss, Lrec represent the reconstruction loss, Φ represent the perceptual loss, LadvG and LadvDimg

represent generator and discriminator adversarial loss. For simplicity, we have omitted the total variation
loss LT V

E, G, and Dimg have BlockCNN-based residual blocks after each convolution and
deconvolution layer except the first one of Dimg . These blocks are used to improve con-
vergence behavior and remove the compression artifact [24]. The spatial differences of
pre-trained VGG19 network are calculated in the middle of the layer architecture and then
are combined to find total perceptual loss (�). This loss network is based on the principle
of deep feature consistency [17] and is used to capture the most prominent image features.
Our model generates age-progressed and regressed plastic surgery images with compara-
tively better aesthetic results in terms of the reconstruction of damaged facial parts such as
nose, teeth, lips, mouth, and ear textures.

5 Objective function

The adversarial training of PlasticGAN can be considered as a two-player min-max game
in which the team of probabilistic residual encoders and generators is trained against the
team of residual adversarial discriminators. Both teams have to minimize five losses: 1) KL
divergence loss (LKL(μ, σ )) to regularize the feature vector z with the prior distribution
P(z) ∼ N(0, 1); 2) the reconstruction loss (Lrec) between input and generated images is
adopted so that sparse aging outcomes are produced and the image background is preserved;
3) L� perceptual loss is computed by pre-trained high-performing CNN as VGGNet [31]
the loss network captures the spatial correlation between x and x̄ face images; 4) the aim
of Ladv adversarial by incorporating the WGAN-GP into PlasticGAN is to improve the
perceptual quality of the output images; 5) The total variation loss (LT V ) function goal is
to regularize the total variation in the generated images.

KL divergence loss LKL(μ, σ ) helps the residual encoder network learn better feature
space representations. For input face x image, the E network E(x) = (μ(x), σ (x)), output
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the mean μ and variance σ of the approximate posterior. To calculate the feature vector z

forgiven x, we sample a random ε Gaussian distribution where ε ∼ N (0, 1). We sample
the feature vector using z = μ + σ

⊙
ε, where

⊙
represents element-wise multiplication.

LKL(μ, σ ) as shown in (1).

LKL(μ, σ ) = −1

2

∑

k

(1 + log(σ k) − μk
2 − σk) (1)

where k denotes the indexes over the dimensions of the latent vector.

Reconstruction Loss Lrec ensures the generated image preserves the low-level image con-
tent between its input x. For this, we incorporated a mean square base reconstruction loss
between x and x̄ in the image space which could be written as (2).

Lrec = ||x − (G(E(x), zl))||22 (2)

Where G is taken in the latent vector z generated by E(x) and the identity feature map (l)

concatenated with z and passed as zl with input image x.

Perceptual loss Perceptual loss calculates the spatial difference between the layers of
VGG19 [31] and effectively minimizes the perceptual distance between the synthesized x̄

and input image x. Here, we denote perceptual loss by Φ(x)l with l as the layer. Here,
we exploit the intermediate activation layer feature map denoted as relu1 1, relu2 1,
relu3 1, relu4 1, relu5 1 of VGG as VGG19.

Φ = ΣΥ ΦΥ (3)

In order to calculate ΦΥ at layer l, we use Euclidean distance between the activation map
of module l for input image x and generated image x̄. Here C, W , and H denote the number
of filters, width, and height of each feature map, respectively. ΦΥ denotes the perceptual
loss of a single layer ϒ .

ΦΥ = 1

2×CΥ WΥ HΥ

CΥ
∑

c=1

WΥ
∑

w=1

HΥ
∑

h=1

(Φ(x)Υc,w,h − Φ(x̄)Υc,w,h)
2 (4)

Adversarial loss The adversarial training between the generator G and discriminator Dimg

stimulates the generated results to be realistic and identical to real ones. Besides, image
generation quality and attribute immutability is also guaranteed by including the attribute
of input face images as a conditional vector in adversarial training. To accomplish these
two goals, our discriminator Dimg is designed to take the input and generated images with
their corresponding attributes after the first convolution block.Dimg calculates the improved
adversarial loss by discriminating between input image x and the image generated by G.
Formally, the objective function for training the discriminator adversarial loss (LadvDimg

) is
shown in (5).

LadvDimg
= Ex,l∼Pdata(x,l)

[
Dimg (x, l)

]

−Ex,l∼Pdata(x,l)

[(
Dimg (G (E (x) , l))

)]

−λgpEx̂∼Px̂
[(|| �x̂ Dimg(x̄)||2 − 1)2] (5)

Where x̂ ∼ Px̂ is uniformly sampled along straight lines between pairs of input x and
generated x̄ images, and λgp is the penalty coefficient to penalize the gradients ncritic=5.
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The generator network G is trained to confuse Dimg with visually conceivable synthetic
images and the objective function is shown in (6).

LadvG = −Ex,l∼Pdata(x,l)

[
Dimg (G (E (x) , l))

]
(6)

Total Variational Loss (LT V ) Total Variational (TV) loss is used for assuring measurable
continuity and smoothness in the generated image to avoid noise and sudden changes in
high-frequency pixel intensities. The TV loss is the sum of the absolute differences for
adjacent pixel values in the generated image. (7) shows TV loss.

LT V =
C∑

c=1

W∑

w=1

H∑

h=1

|(x̄)w+1,h − (x̄)w,h)|2 + |(x̄)w,h+1 − (x̄)w,h)|2 (7)

Overall objective To generate realistic faces while also preserving the identity corresponding
to input. The final objective function for the discriminator Dimg is shown in (8).

max
||Dimg ||L≤1

LDimg
= λadvDimg

LadvDimg
(8)

where ||Dimg||L ≤ 1 represents the set of 1-Lipschitz constraint on Dimg . The final objec-
tive function for the generator G is shown in (9).

min
E,G

LG = λklLKL(μ, σ ) + λrecLrec + λper� + λadvGLG + λtvLT V (9)

where λkl, λrec, λper , λadvDimg
, λadvG, λtv are the hyper-parameters that tune the weight of

the above-mentioned loss function. In our model, we used λkl, λrec, λper , λtv , λadvDimg
as

1 and λadvG as 0.0001.

6 Experimental results

The primary objectives of facial plastic surgery are to reconstruct faces, remove defects,
and improve the appearance of the patient or preserve the facial personality. In this section,
we demonstrate the power of publicly available facial dataset on a large scale. This section
is further divided into 3 subsections: (1) Description of dataset which merges the differ-
ent publicly available datasets. (2) Dataset preprocessing. (3) Processing of mask-to-face
mapping on surgery faces.

6.1 Dataset

To train a relevant population of diverse facial plastic surgery synthesis models, one of the
key elements is to generate plausible images and reasonably aged face images from different
ethnicities. Thus, we have selected [1−40] year age range images from publicly available
Cross-Age Celebrity Dataset 35,450(CACD) [6], 5822 UTKFace [38], 35,484 CLF [4, 9],
and 1113 Adience [12]. In total, we have used 77,889 images of size 128 × 128 pixels
and divided the dataset into 4 age groups as [1−10], [11−20], [21−30], [31−40] as shown
in Fig. 2. To test our model on plastic and aesthetic surgery face images, we have web-
crawled real-world pre- and post-surgery face images. In total, there are 24 paired before
and after surgery face images which are referred to as plastic-surgery testing images. The
test dataset contains various types of face surgeries such as Otoplasty (ear surgery), Skin
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Fig. 2 Training dataset group formation: shows the distribution of face images in given age ranges to train
PlasticGAN model

Resurfacing (skin peeling), Lip Augmentation, Oral Surgery (teeth surgery), Craniofacial,
and Dermabrasion. The testing dataset of plastic surgery includes pairs of before and after
plastic and aesthetic surgery faces as shown in Fig. 3.

6.2 Prepossessing on dataset

For training the proposed model to reconstruct damaged areas in the correct orientation,
preprocessing the dataset is necessary. As the dataset images have improper alignment and
different resolutions, we have used MTCNN [39] to detect the five landmarks points (two
eyes, nose, and two mouth corners) used for proper alignment and for cropping the images
to a resolution of 128 × 128 pixels as shown in Fig. 3.

6.3 Processing onMask-to-facemapping

To test our proposed model on the mask-wearing face, we have to cover pre-surgery images
with a mask; we used MTCNN [39] to crop and align pre-surgery faces. Besides, an image
of 12 key points has been manually annotated on the reference mask image as show in Fig. 4.
In the final stage, it has used the face-to-mask mapping on cropped and aligned images.

6.4 Implementation details

We have trained PlasticGAN model on 77,889 images and divided these into 4 equal age
categories, i.e., 1−10, 11−20, 21−30, 31−40. The architecture of our model is presented in
Fig. 1. In the training phase, all components are trained with batch size 24 using ADAM [20]
with hyper-parameter α = 0.0001 and β = (0.5, 0.999). The output of Generator (G) is
restricted to [−1, 1] using the tanh activation function. After 20,000 iterations, we received
competent results. In the testing phase, we included plastic surgery images with and without
masks, E and G are responsible for generating age-progressed and regressed facial images.
The model was trained from scratch with a learning rate of E, G, and Dimag as 0.0001. We
have optimized Dimag every 5 iterations and G is updated at every iteration.
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Fig. 3 First and third row are examples of pre- and post-surgery images respectively where images were
acquired using web-crawling. Second and fourth show the cropping and alignment effect of MTCNN[39]
face detector. The types of plastic surgery procedures are given below the fourth row

7 Qualitative evaluation of plastic surgery face

In order to extensively evaluate the performance of our proposed PlasticGAN frame-
work, we use state-of-the-art work CAAE 4, AcGAN 5, AIM (Age-Invariant Model) 6 and
IPCGAN 7.

The following presents important common observations related to CAAE, AcGAN,
AIM, and IPCGAN on various surgery faces. As observed, CAAE does not perform well in
the aging effect and even produces artifacts and blurry results due to pixel-wise loss between
the input and generated images. AcGAN utilizes an attention mechanism that only modifies
the regions relevant to the aging effect. Hence, AcGAN performs poorly on plastic-surgery
testing images in terms of reconstruction (teeth, face, lips), aging effect, and generate wired
faces. Age-Invariant Model (AIM) though addresses the challenges of face recognition with
large age variations but is not capable of generating photorealistic surgery faces with the
desired aging effects. IPCGAN uses Image-to-Image translation-based generator network
component so it cannot properly structure the different types of plastic surgery faces into a

4https://github.com/ZZUTK/Face-Aging-CAAE
5https://github.com/JensonZhu14/AcGAN
6https://github.com/ZhaoJ9014/High-Performance-Face-Recognition/tree/master/src/
7https://github.com/dawei6875797/Face-Aging-with-Identity-Preserved-Conditional-Generative-Adversarial-
Networks
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Fig. 4 First column presents the examples of pre-surgery face images where images were acquired using
web-crawling. The second column shows the cropping and alignment effect of MTCNN [39] face detector.
Third column references the mask images. Fourth column presents the mask-wearing face

realistic face. Compared to state-of-the-art aging frameworks, the age progress and regress
images of the PlasticGAN model are photo-realistic, and it rejuvenates identity-preserved
faces on plastic-surgery faces.

7.1 Evaluation I: Teeth surgery

As is evident in each dotted box 6th column of Fig. 5, the pre-surgery image is improperly
aligned (crooked, missing teeth). Our model has generated a perfect-looking set of teeth
and the real image for the same which is shown in post-surgery row. In 6th column, missing
teeth are generated in the mouth. As seen in all age range observations, the aesthetics of the
face improve with age. In addition, the respective skin texture is preserved. At the beginning
of this Section 7, we have mentioned logical reasons and demonstrated why the face-aging
state-of-the-art models do not perform well on surgery faces in terms of post-surgery looks.

7.2 Evaluation II: Face surgery

As shown in Fig. 6, the pre-surgery image has no nose and mouth. However, PlasticGAN
generated both the missing components perfectly by adhering to structure and texture of
the face and even improved the appearance of eyes, producing a youthful appearance. AIM
addresses the challenges of cross-age face recognition with large age, however, it is not
capable of generating visually appealing faces with the desired aging effect. IPCGAN and
AcGAN generator network components translate the input to image space and reconstruct
from this space; hence, they cannot properly structure a before-surgery face into an after-
surgery face as shown in Fig. 6. Due to this reason, these frameworks are not very helpful
to clinical decision-making between doctor and patients.
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Fig. 5 Teeth Surgery: Each dotted box denotes one person’s pre- and post-teeth surgery images. In each box,
from second column left to right, are images generated by CAAE, AcGAN, AIM, IPCGAN, PlasticGAN,
and ablation study, respectively

7.3 Evaluation III: Ear surgery

In Fig. 7, the pre-surgery image shows an ear lunging outwards. In PlasticGAN, the gener-
ated images are aligned perfectly to the normal settings. In addition, PlasticGAN constructs
the internal structure of the ear compared to the state-of-the-art models. Therefore, the post-
surgery images resembles the age progress and regress images. In the case of IPCGAN and
AcGAN, only the face region is altered. Therefore, the age progress and regress ear surgery
images do not properly align.

7.4 Evaluation IV: Lips surgery

In Fig. 8, the pre-surgery image contains a partial lip and a deformed face structure. Plas-
ticGAN input this image and completed the lip as well as produced open eyes, depicting
how the child will look in the future. In addition, PlasticGAN performed age translation and
beautifies the entire face, which enhances the rejuvenation effects. Compared to our frame-
work, CAAE produces over-smoothed surgery images with subtle changes of appearance.

Fig. 6 Face Surgery: Each dotted box denotes one person’s pre- and post-surgery facial images. In each box,
from second column left to right, are images generated by CAAE, AcGAN, AIM, IPCGAN, PlasticGAN,
and ablation study, respectively
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Fig. 7 Ear Surgery: Each dotted box denotes one person’s pre- and post-ear surgery images. In each box,
from the second column left to right, are images generated by CAAE, AcGAN, AIM, IPCGAN, PlasticGAN,
and ablation study, respectively

As for IPCGAN and AcGAN, due to their incapability of face completion, faces generated
by these models are deformed as evident in Fig. 8.

8 Model robustness onmask wearing face

To check the robustness of the proposed model, we covered the nose and mouth areas with
synthetic masks and checked the aging effect on overall plastic surgery face. As shown in
Fig. 9, IPCGAN and AcGAN models could not remove the face mask, could not complete
surgery tasks, and could not show the aging effect. In case of CAAE, the face mask region
can be seen with a little transparency which causes artifact in generated images. These
effect due to pixel-wise loss. As evident from the results for PlasticGAN, it performed
well overall in the context of various parameters such as skin tone, hair color, open eyes,
reconstruction, and lighter to darker beard appearance. In addition to these, it generated
better facial structures with the aging effect.

Fig. 8 Lip Surgery: Each dotted box denotes one person’s pre- and post-lip surgery images. In each box,
from second column left to right, are images generated by CAAE, AcGAN, AIM, IPCGAN, PlasticGAN,
and ablation study, respectively
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Fig. 9 Mask Wearing face: Each dotted box denotes the same individual’s mask-wearing and pre-surgery
images. In each box, from second column left to right, are images generated by CAAE, AcGAN, AIM,
IPCGAN, PlasticGAN, and ablation study, respectively

9 Quantitative evaluation

Most of the existing age estimation and face verification approaches have primarily focused
on unconstrained face recognition and no endeavor has been made to examine their effect
on synthesized face aging and rejuvenation on local and global plastic surgery faces as
well as mask-wearing surgery faces. As surgery-based aging and rejuvenation procedures
becomes more and more prevalent, face verification framework fails to recognize individ-
ual’s faces after surgery. In this section, we explore age estimation and verification aspect
on synthesized surgery faces.

We have evaluated the aging and identity permanence accuracy on age progress and
regress on plastic surgery face with/without the mask. For this, we have generated all age
range [1−10], [11−20], [21−30], [31−40] faces from pre-surgery faces with/without the
mask. Then, we used the online face analysis tool known as Face++ API [13] to estimate
the age distribution and face verification scores. We considered twenty-four test faces and
the following protocol used for our comparison:

Face++ test: [test face, progress-face1], [test face, progress -face2], [test face, progress-
face3], [test face, progress-face3], [test face, progress-face4]. (where test face is pre-plastic
surgery faces with/without mask).

9.1 Age estimation

Identically, age estimation was conducted to measure aging and deaging accuracy.

9.1.1 Plastic surgery face without mask

Following are the observations on plastic surgery face without mask shown in Table 1.
IPCGAN and AcGAN introduce an identity-preserved loss and an age classification loss
with the Image-to-Image translation-based generator network. However, if the classification
error value is high then the gradient for small age range is not accurate. Therefore, these
models’ age estimation accuracy is lower compared to PlasticGAN in most age ranges.
AIM generated similar-looking and aged faces as depicted in Figs. 5, 6, 7, and 8. Therefor,
this model’s age estimation standard deviation values are high in all age ranges. In case of
CAAE, the generated images are blurry owing to the fact that the generated faces in the age
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Table 1 Estimated Age Distribution (years) on Plastic-surgery testing images by PlasticGAN, ablation, and
state-of-the-art models. For simplicity, we only address the mean and standard deviation of age estimation
error computed over all age ranges

Age group 1-10 11-20 21-30 31-40

CAAE [38] 14.41 ± 7.58 20.50 ± 5.18 27.22 ± 5.18 28.58 ± 6.34

AcGAN [41] 16.13 ± 14.13 34.96 ± 17.00 32.83 ± 19.33 41.26 ± 18.55

AIM [40] 24.00 ± 10.40 40.44 ± 7.42 36.67 ± 9.15 42.11 ± 7.42

IPCGAN [35] 13.81 ± 14.45 17.24 ± 9.01 22.14 ± 13.01

PlasticGAN 28.80 ± 7.83

Ablation 15.79 ± 9.11 17.63 ± 9.70 20.96 ± 11.25 23.00 ± 12.44

ranges (1−10, 11−20) are aged. PlasticGAN model provides better age estimation results
in three age ranges out of four compared to other state-of-the-art models.

9.1.2 Plastic surgery face with mask

CAAE uses the mean square-based reconstructed loss, and AcGAN and IPCGAN generator
architecture are based on image-to-image translation network. AIM disentangles the age
and identity attributes. Consequently, the progress and regress images with face mask are
completely deformed as they detect local and global face attributes e.g, nose, lips, mouth,
eyes completely deformed. Therefore, state-of-the-art model generated the aged face in age
ranges (1−10, 11−20, 21−30) compared to PlasticGAN as illustrated in Table 2.

Note: Face images generated by AcGAN and IPCGAN are not detected by Face++ app
because due to the fact that they did not remove the face mask region and due to unstructured
eye construction.

From the result in Tables 1 and 2, we have the following observation.

1. The age estimation results of no mask compared to with mask are better.
2. IPCGAN and AcGAN do not unmask the surgery face as shown in Fig. 9. Therefore, the

aging pattern only reflects the periocular region and forehead. Thus, the age estimation
value is not properly distributed over the age ranges as shown in Table 2.

Table 2 Estimated Age Distribution (years) on Plastic surgery with mask, testing images using PlasticGAN,
ablation, and state-of-the-art models. For simplicity, we only address the mean and standard deviation of age
estimation error computed over all age ranges

Age group 1-10 11-20 21-30 31-40

CAAE [38] 30.52 ± 10.56 35.19 ± 9.62 38.42 ± 8.52 41.14 ± 9.49

AcGAN§ [41] 25.00 ± 6.21 24.42 ± 3.99 26.84 ± 4.65 29.89 ± 5.67

AIM [40] 22.31 ± 7.90 40.77 ± 4.50 40.59 ± 5.60 45.50 ± 5.06

IPCGAN# [35] 26.75 ± 5.03 29.25 ± 7.23 30.58 ± 9.87

PlasticGAN 28.63 ± 6.55

Ablation 17.50 ± 9.49 20.77 ± 9.81 24.77 ± 9.65 27.50 ± 10.34

#:5 face is not detected,§: 12 face is not detected
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9.2 Face verification on surgery faces with and without mask

For identity permanence, face verification rates are reported along with threshold set to
76.5@FAR = 10−5 experimented according to the Face++ API [13]. A confidence score
is then obtained for each comparison, demonstrating the similarity between two faces.
The confidence range lies under [0−100]. A higher confidence score indicates a higher
probability that two faces (real and generated) are from the same subject.

9.2.1 Plastic surgery face without mask

With plastic surgery, it is evident that PlasticGAN outperforms over AcGAN and AIM.
Although, CAAE in the context of identity information generates surgery faces with ghost-
ing artifacts. PlasticGAN, AIM, and CAAE aging models generate age progress and regress
face by disentangling the age and personality features from the latent vector, due to which
identity is also altered with age. Thus, face verification accuracy is low compared to
IPCGAN and AcGAN.

9.2.2 Plastic surgery face with wearing mask

To verify the robustness and stability of the proposed model, even if the mask covers a region
of the plastic surgery face, the features of the upper half of the face, such as eyes, eyebrow,
and forehead can still be used to improve the masked cross-face recognition (MCFR). The
experiment results are shown in Fig. 9; PlasticGAN can still progress and reconstruct a
complete face. In AcGAN and IPCGAN, the network component is unable to unmask the
masked face. These models alter the regions particularly relevant to face aging. This is
why the face verification accuracy is high compared to other models as shown in Table 4.
Objectively speaking, a few progress faces have distortion. Thus, the Face++ APP is unable
to detect. Following are general observations from Tables 3 and 4.

1. Without wearing mask cross-age face verification score is improved with wearing face
mask in all age ranges and face aging model.

2. With increasing the age gap, the face verification score is decreased in all age ranges.
3. The face verification score of CAAE and AIM models are lower than PlasticGAN.
4. IPCGAN and AcGAN do not unmask the surgery face as shown in Fig. 9. Owing this,

the face verification accuracy is better of these models with the no-mask surgery face.

Table 3 Face verification results (in %) on Plastic surgery testing images by PlasticGAN and other state-of-
the-art models

1-10 11-20 21-30 31-40

Verification rate (Threshold=76.5 FAR=1e-5)

CAAE [38] 69.22 ± 14.42 60.96 ± 12.18 54.56 ± 11.88 49.24 ± 12.22

AcGAN [41] 92.14 ± 6.56 88.98 ± 10.49

AIM [40] 65.45 ± 11.20 57.96 ± 12.18 48.75 ± 14.07 46.56 ± 13.83

IPCGAN [35] 91.63 ± 0.32 91.66 ± 0.49

PlasticGAN 73.63 ± 8.64 69.27 ± 8.87 66.53 ± 9.33 63.05 ± 9.68

Ablation 71.28 ± 10.97 67.13 ± 12.01 65.95 ± 12.30 64.55 ± 9.01
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Table 4 Face verification results (in %) on plastic surgery with mask; testing images by PlasticGAN and
other state-of-the-art models

1-10 11-20 21-30 31-40

Verification rate (Threshold=76.5 FAR=1e-5)

CAAE [38] 61.52 ± 9.19 58.83 ± 9.36 55.81 ± 9.40 52.12 ± 9.37

AcGAN§ [41] 87.29 ± 2.28 84.61 ± 3.51

AIM [40] 72.03 ± 7.20 67.79 ± 8.54 58.93 ± 11.36 57.49 ± 11.55

IPCGAN# [35] 93.88 ± 0.76 93.48 ± 0.78

PlasticGAN 62.53 ± 8.11 61.03 ± 8.87 60.53 ± 9.13 58.05 ± 9.68

Ablation 60.26 ± 9.48 58.23 ± 9.81 55.11 ± 9.49 53.41 ± 10.04

#:12 face is not detected, §: 5 face is not detected

Despite the potential of our proposed model, we can conclude that the task of cross-age
face recognition on these synthetic faces after applying surgery becomes challenging as it
degrades the verification score. This challenge, namely PSBSCAFR, can become a new
dimension for upcoming research regarding how to improve the recognition accuracy of
synthetic surgery faces generated by GAN.

9.3 Comparison between surgery face with and without mask

Traditional CNN-based face recognition systems trained on existing datasets are almost
ineffective on faces that have undergone surgery or that are wearing a mask. Simultaneously,
new challenges create new opportunities and research direction in this field. The one which
we want to include in this study is how plastic surgery face and facial mask face can be
correlated based on the idea of and considering face verification of same individuals. During
our experiment, we observed a few significant aspects which can also be seen in the Fig. 10.
We have conducted this study by Face++ App.

1. In many cases, masked faces are not even detected when the eyes are closed and face is
not properly aligned.(In block 2 and 4 of Fig. 10).

2. Different types of face surgery with mask leads to many differences in the impact on
face recognition reliability. When it is the case of the mask covering the lip and half nose
region, the confidence score is upgraded because eyes are an important consideration
at the time of verification. This score is also affected by same mask covering. When
it is the case of the above-mask region, the score is degraded due to the fact that the
recognition system does not find any similarity points while verification except the
mask. (In block 1 and 3 of Fig. 10).

9.4 Inception and Fréchet inception distance

The image quality with the diversity of the generated data is assessed in terms of the
inception score (IS) [30] and the Fréchet inception distance (FID) [16]. In Table 5, the Plas-
ticGAN achieves best IS and FID scores on plastic surgery test datasets compared to the
state-of-the-art models. Meanwhile, high IS and low FID score indicate that our framework
generates more realistic faces.
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Fig. 10 Each block is an example of pre- and post-surgery face with and without mask. We have evaluated
the confidence score with the help of Face++ app. ND represents the cases of no detection because the face
is covered with mask and showing non similarity

9.5 Beauty Score and Gender Prediction

We evaluate beauty score and gender prediction experiment of PlasticGAN and state-of-the-
art models on plastic surgery test images. For fair comparison, Face++ [13] as is used as a
face analysis tool to evaluate the beauty score and gender prediction of pre-plastic surgery
face and corresponding age progress in all age ranges as shown in Table 6.

General observations are as follows:

1. CAAE generates images introducing grain-like artifact, which deteriorates image
quality. Due to this reason, wrong gender prediction is shown in red color.

2. IPCGAN and AcGAN use an image-to-image translation-based generator network
component. Hence, it cannot properly restructure a partially covered face into a realistic

Table 5 Comparing IS and FID
on PlasticGAN and its variant
with other state-of-the-art models

Model IS FID

CAAE [38] 2.10 ± 0.25 144.04

AcGAN [41] 2.38 ± 0.42 72.28

AIM [40] 1.41 ± 0.09 154.02

IPCGAN [35] 2.03 ± 0.34 74.43

PlasticGAN

Ablation 2.18 ± 0.14 107.05
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Table 6 Beauty score and gender prediction: The second column contains pre-surgery images followed by
beautification score with gender prediction values. In column 4, the state-of-the-art model, PlasticGAN, and
Ablation study are shown

S.No Pre-Surgery Image PBSGP Model GBSGP GBSGP GBSGP GBSGP

1-10 11-20 21-30 31-40

1 74.21(M) CAAE [38]
AcGAN [41]
AIM [40]
IPCGAN [35]
PlasticGAN
Ablation

74.86(F)
76.93(M)
79.818(F)
74.87(M)
71.39(M)
70.30(M)

76.11(F)
ND
81.86(F)
79.59(M)
71.46(M)
68.87(M)

73.32(M)
74.51(M)
82.12(F)
74.78(M)
69.19(M)
69.26(M)

72.50(M)
75.25(M)
84.07(M)
69.00(M)
70.23(M)
68.67(M)

2 73.27(M) CAAE [38]
AcGAN [41]
AIM [40]
IPCGAN [35]
PlasticGAN
Ablation

79.10(F)
75.17(M)
75.17(M)
67.51(M)
76.48(M)
74.73(M)

78.22(F)
77.12(F)
77.13(F)
73.34(M)
76.17(M)
74.92(M)

77.09(F)
71.82(M)
71.83(M)
70.90(M)
74.99(M)
73.79(M)

77.94(F)
68.26(F)
68.26(F)
66.45(M)
73.43(M)
73.79(M)

3 72.56(F) CAAE [38]
AcGAN [41]
AIM [40]
IPCGAN [35]
PlasticGAN
Ablation

76.49(F)
76.94(M)
77.64(F)
72.45(F)
75.49(F)
78.68(M)

78.04(F)
71.02(F)
79.52(F)
74.95(F)
77.38(F)
79.15(M)

79.44(F)
72.09(F)
77.16(F)
70.89(F)
79.81(F)
79.14(M)

77.69(F)
68.52(F)
75.49(F)
70.10(F)
77.62(F)
76.10(M)

4 74.83(M) CAAE [38]
AcGAN [41]
AIM [40]
IPCGAN [35]
PlasticGAN
Ablation

79.66(F)
70.37(M)
80.38(F)
68.58(M)
76.70(M)
78.12(M)

81.08(F)
78.73(M)
80.57(F)
70.83(M)
80.77(M)
79.56(M)

82.56(F)
72.08(M)
83.71(M)
71.23(M)
78.29(M)
76.07(M)

82.22(F)
74.36(M)
84.03(M)
69.72(M)
75.59(M)
76.16(M)

5 89.61(F) CAAE [38]
AcGAN [41]
AIM [40]
IPCGAN [35]
PlasticGAN
Ablation

84.23(F)
89.86(F)
79.85(F)
84.23(F)
90.49(F)
81.98(F)

80:99(F)
88.83(F)
83.30(F)
80.99(F)
90.39(F)
82.16(F)

81:31(F)
88.92(F)
82.47(F)
81.31(F)
87.58(F)
80.95(F)

78:91(F)
85.09(F)
81.51(F)
78.91(F)
87.01(F)
78.93(F)

This is followed by generated beautification score with gender of all age ranges from column 5 to 8

Note: PBSGP: pre-surgery beauty score and gender prediction, GBSGP: generated beauty score and gender
prediction, ND: Not Detected face, M: male, F: female, highlighted incorrectly predicted gender in bold

face. Owing to this, the destroyed face is not detected by Face++ App as mentioned
(Not Detected ) ND in Table 6.

3. PlasticGAN is better at overcoming ghosting artifacts and color distortions. Further,
it maintains uniformity in the background and face boundaries as well as shows
comparative the beauty score with other state-of-the-art models.

4. The pre-surgery test images’ gender prediction value is either male or female. How-
ever, the generated images’ gender prediction value is changed from the ground truth.
Compare to PlasticGAN, state-of-the-art models are predicting incorrectly.
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5. In ablation study (Without KL loss), the skin color is shown lighter compared to Plas-
ticGAN as shown in Figs. 5, 6, 7 and 8. Due to this effect, the beauty score value is
low compared to PlasticGAN.

10 Ablation study

To comprehend the effect of LKL(μ, σ ) over our proposed model, we conducted an exper-
iment on variants of the PlasticGAN model by removing LKL(μ, σ ) (sampling block).
This effect can be easily seen in Figs. 5, 7, 6, and 8 for visual comparison. We have
observed throughout the process that PlasticGAN produces artifacts-free age-progressed
and regressed faces and applies some effects of beautification as well. As shown in the
Tables 1, 2, 3, 4, 5, and 6, the Kl loss helps in face verification, age estimation, fidelity
generation, and gender preservation with beautification score. This further elucidates our
objective functions and network components that are designed well for face aging and
rejuvenation based on social and forensic applications.

11 Conclusions and future research work

The advancement of generative models in beautification and rejuvenation has inspired and
motivated us to propose the robust and general PlasticsGAN framework. This model inte-
grates face aging and rejuvenation, face recognition, and face completion which relies on
plastic and aesthetic facial surgery cases. This can contribute to a wide range of applications
such surgeon and patient consultancy, forensics and security, digital entertainment, and even
the fashion and wellness industry.

Furthermore, PlasticGAN unmasks the mask wearing face and properly structures it with
aging/deaging effect. Moreover, the PlasticGAN framework does not require pre- and post-
plastic surgery faces as a paired dataset during training. In the testing phase, our model
paralelly synthesized face aging, rejuvenation, and face completion on faces that had under-
gone surgery. From the concluded qualitative and quantitative experiments and from the
comparison with state-of-the-art face aging architectures on various plastic surgery faces
(teeth, face, ear, lips), it was found that our model is robust and has diverse applications
especially in the case of aging and rejuvenation with face completion.

As future work, we would like to enhance the framework’s performance by analyzing
face aging and rejuvenation entailed in plastic surgery. This can further degrade a commer-
cial and publicly available face recognition systems performance. When these co-occur with
other factors, e.g different types of mask-wearing and synthetic surgery face. This can be a
new dimension for future work.
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