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Abstract
Garbage management is an essential task in the everyday life of a city. In many countries,
dumpsters are owned and deployed by the public administration. An updated what-and-
where list is in the core of the decision making process when it comes to remove or renew
them. Moreover, it may give extra information to other analytics in a smart city context.
In this paper, we present a capsule network-based architecture to automate the visual clas-
sification of dumpsters. We propose different network hyperparameter settings, such as
reducing convolutional kernel size and increasing convolution layers. We also try several
data augmentation strategies, as crop and flip image transformations. We succeed in reduc-
ing the number of network parameters by 85% with respect to the best previous method, thus
decreasing the required training time and making the whole process suitable for low cost and
embedded software architectures. In addition, the paper provides an extensive experimental
analysis including an ablation study that illustrates the contribution of each component in
the proposed method. Our proposal is compared with the state-of-the-art method, which is
based on a Google Inception V3 architecture pretrained with Imagenet. Experimental results
show that our proposal achieves a 95.35% accuracy, 2.35% over the previous best method.
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1 Introduction

The performance currently attained in computer vision tasks due to deep neural networks
has outranked humans in many aspects; being detection, inpainting, and image generation
some of the most celebrated ones. Recognition, a real challenge less than a decade ago,
does not currently attract as much attention as the tasks mentioned above. Arguably, the
proliferation of software libraries such as Tensorflow and PyTorch has made training deep
neural networks for recognition much easier. But, how much effective are they in actual
problems? Nowadays, recognition tasks are ubiquitous in each and every of the economic
sectors, but most of them are Intellectual Property (IP) of the client that asked and paid for
them. As a consequence, successes are seldom reported, depriving the community of that
knowledge.

In this paper we cope with the recognition of public dumpsters and garbage containers
in collaboration with Ecoembes1, the non-profit organization that cares for the environment
through recycling and eco-design of packaging in Spain. Ecoembes keeps a large database
of labeled images taken in-the-wild of all the dumpsters deployed in a mid-size city for the
sake of inventory and control. The effort to label such a database clearly does not scale to
all the territory, with more than 11700 ZIP codes. Hence, automated recognition is a task
of great interest to the organization as well as to the contractor of their services, normally
the city council, but poses a number of difficulties. First, dumpsters for the same purpose
show several sizes, shapes and designs. Second, they are often treated without much care
by operators and suffer numerous bumps with the garbage truck and other elements in the
street. Besides, in some countries, like Spain, they are 24×7 out in the street, suffering the
erosion by weather. Third, sometimes dumpsters are overloaded in a way that a large surface
of them are partially occluded. Other elements, different from garbage, such as motorbikes
are sources of partial occlusion too. Finally, dumpsters are the frequent target of vandalism,
ranging from graffiti to burning.

This problem has been previously tackled with state-of-the-art convolutional networks
in [11], attaining a 93% of accuracy. On one hand, this result is quite low compared with
the accuracy reported in other benchmark datasets such as MNIST, CIFAR or ImageNet.
On the other hand, in many real applications, every single percent point gained can make a
difference. For instance, in cybersecurity detecting 1% more intrusions, or in loan granting
rejecting 1% more defaulters, can save much money and prestige loss for a company. In this
case, with a data set of about 25000 dumpsters deployed throughout the city, increasing the
accuracy 1% means 250 more correct classifications. Since a single dumpster gives service
to a small community, the number of people benefiting from each correct labeling gained
is large enough to be important for the public administration because each mistake triggers
different problems such as mismanagement of material resources, improper spending and
double discomfort of the neighborhood if it implies unnecessary duplication instead of a
necessary substitution.

The solution introduced in this paper is able to improve the accuracy up to 95.35%,
and consists of a Capsule Network architecture (Capsnet). This architecture was initially
proposed in [12] and [6] as an approach to obtain high level features, different from pooling
the features extracted in successive convolutions as in Google Inception [13] or ResNet [5],
to mention only those that excelled at recognition tasks. To this end, Capsnets were designed
with the following novel properties with respect to the rest of deep architectures: (i) the

1www.ecoembes.com
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feature maps are chunked into primary capsules, elements in a vector space, (ii) a number
of linear transformations projects these primary capsules into a higher dimensional vector
space, and (iii) a ‘routing algorithm’ clusters all the elements resulting from the previous
step. The resulting features are vectors that not only capture high level visual features of the
object but also information about its pose. Thus, a vector that presents only a few features
that are related in a characteristic pose in that object is likely to yield to a right recognition.

Capsnets have attracted a great attention to real problems in short time. They have been
successfully used in different computer vision tasks and fields such as hyperspectral image
classification [10, 14], biomedicine [2, 9] and human 3D pose estimation from monocular
images [11]. At the same time, researchers have explored different routing algorithms [4, 8,
15], trading-off the computational burden with the performance of this architecture [1, 3]
and presented alternative architectures such as the Ladder Capsule Networks [7].

The contributions of this paper are: (i) a comparison of Capsnet architectures for recog-
nition of garbage dumpster images taken as the operator found them in the street, (ii) the
best performance so far in that real data set, and (iii) a discussion about the performance.
The rest of the paper is as follows. We recap the most relevant facts about the Capsnet archi-
tecture in Section 2. The experimental set up is presented in Section 3. Results are discussed
in Section 4. Finally we point out the conclusions and future work in Section 5.

2 Capsule architecture

Convolutional neurons (CNN) are able to learn convolution kernels that enhance different
visual features of its input such as borders, corners and curves or even more complex pat-
terns, depending on the kernel size. Thus, a layer of N convolutional neurons (that is N

kernels) produces a feature map that consists of N images (channels), each one of them
being the result of the convolution of the input image with the corresponding kernel. There-
fore, a feature map collects different visual features. In deep convolutional architectures,
these features are then pooled in order to preserve only the pixels with highest values. By
doing so the resolution of the feature map is squeezed, usually to half height and half width,
so the visual features are brought closer to repeat the process in the next convolution layer.
After successive convolution and pooling layers the resulting feature map is used as the
input to a classification network to carry out the recognition. This architecture strongly
relies on the high level features extracted after the last convolution+pooling pair; taken as a
single flatten vector, therefore missing spatial information. Thus, in order to be invariant to
translations, rotations, flips, and different poses of the object, practitioners usually do data
augmentation to have enough sample to generalize.

Capsules are an approach to obtain a representation that encodes both visual features and
spatial information. To this end, the input is first preprocessed with a convolutional network
to extract medium-level features. The resulting feature map is then fed into the capsnet,
which consists of three main steps. For the sake of completeness we recap the main facts
below (for further information we address the reader to [6] and [12]). From now on, we will
assume that all the vectors are 1-column sized, unless it is said otherwise.

1. Primary capsules is the set of N d-dimensional vectors {ui}, with i = 1, . . . , N ,
obtained by chunking the feature map. The purpose of this first step is to group fea-
tures that are close in the feature map into the same vector. This step is shown at the
left side of Fig. 1, where the coloured area in the input image is representing an area
related to the primary capsule coloured in the feature map. Notice also that the CNN
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Fig. 1 Representation of a capsule as a group of neurons with linear activation, which is equivalent to a
linear transformation given by the matrix Ai,j . The black dots representing weights of the synapses are the
elements of Ai,j

that preprocesses the input has to be designed so that the dimensions of the feature map
are compatible with an integer number of primary capsules, all of them equally sized.
Additionally, there is no restriction to the their shape, but in this paper we only consider
2D primary capsules, also known as low level capsules.

2. Inverse graphics is a linear transformation A that maps each primary capsule into a D-
dimensional space, with D > d. This transformation is done N ×M times, each one of
them with a different matrix A. Formally, Ai,j ·ui = vi,j , where j = 1, . . . , M , Ai,j ∈
R

d×D , and vi,j ∈ R
D are known as activity vectors. Therefore, each primary capsule ui

is transformed into M activity vectors. The purpose of this step is to learn the features
in the ‘real’ space where they live, for the initial capsules come from features obtained
from a projection, i.e. the input image. Notice that each transformation Ai,j is equiva-
lent to a layer of fully connected neurons with linear activation that takes ui as input and
produces the activity vector vi,j ; hence the full set of transformations

{
Ai,j

}
is simply

learned with back-propagation as usual. Every Ai,j is referred to as a ‘capsule of neu-
rons’ in [12], giving the name to this architecture. This step is shown at the center of
Fig. 1; where we have made explicit the elements of ui and vi,j as u = [u(1)

i , . . . , u
(d)
i ]

and vi,j = [v(1)
i,j , . . . , v

(D)
i,j ] for the sake of clarity.

3. Routing is the process that linearly combines all activity vectors in the set
{
vi,j

}
, for

i = 1, . . . , N and a given j . Let ci,j be the coefficients of such a linear combination and
let vj = ∑N

i=1 ci,j ·vi,j be its resulting vector. The coefficients ci,j are obtained with
the routing process. For instance, [12] presents the dynamic routing, that attempts to
keep those activity vectors that most agree. During training, these coefficients are fitted
three times in the feed-forward pass, and then remain fixed during back-propagation.

Finally, let σ(ν) = ‖ν‖2

1+‖ν‖2 · ν
‖ν‖ be the squash function of a vector ν; which is used to

normalize every vj . Thus, let
{
wj

}
, with

wj = σ

(∑N

i=1
ci,j ·vi,j

)
, (1)

be the set of final vectors, referred to as final capsules or high level capsules from now
on. This step is shown at the right side of Fig. 1.
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In summary, every capsule in the set
{
wj

}
j=1,...,M

is a vector obtained as the result of
activity vectors oriented in a similar direction. If there are as many capsules as classes, as in
this paper, we can interpret the module of each one of these vectors as a degree of belonging
to that class. Otherwise, we have to combine them into a fully connected neural network as
it is customary for classification/regression tasks.

3 Experimental set up

In this section we introduce the data set, the different network architectures used in this
paper, the data augmentation operations carried out for the analysis, and summarize the
training and inference procedure.

3.1 Data set

We use the Ecoembes Dumpster Images Data set (EcoDID-2017), provided by the Spanish
nonprofit company Ecoembes. 2 This data set provides a total of 27624 images of dump-
sters, showing different conservation states, shapes and colors along with different lighting
conditions as well as camera positions and look at angles. The resolution of the original
images is 299×299 pixels but we rescale them down to 70×70 due to memory constraints.
The images are given in seven folders (classes) according to the features shown in Fig. 2.
An example of each type is displayed at Fig. 3.

3.2 Architectures

Following the architecture described in Section 2, we propose a baseline network, that will
be referred to as A0, and four variations: A1 to A4. Architecture A0 consists of:

Preprocessing. It is a convolutional neural network as described in Table 1; where
padding ‘same’ means that the output has the same width and height than the input, while
‘valid’ reduces both depending on the kernel size and the stride. The resulting feature
map is a tensor in R

16×16×32.
Capsules. We begin processing the feature map with an extra convolution layer of 256

kernels of size 9×9, stride 2×2, valid padding and no activation (a.k.a. linear or identity),
which produces a tensor in R

4×4×256. Primary capsules are obtained chunking this tensor
into a set of 512 vectors of 8 elements, denoted as {ui ∈ R

8}, for i = 1, . . . , 512,
in Fig. 1. The inverse graphics are carried out with matrices Ai,j ∈ R

8×16, for i =
1, . . . , 512 and j = 1, . . . , 7, as many as different classes for each primary capsule;
resulting a set of 3584 activity vectors {vi,j ∈ R

16}. Next, we apply the Dynamic Routing
proposed in [12] to {vi,j } and the squash function to the result of it, finally obtaining the
set of high level capsules {wj }.

Header. We use two headers at the same time. The main one is for predicting the class of
the input image. Specifically, the class predicted is the one associated to the high level
capsule with greatest module. The other header attempts to reconstruct the input image
and consists of three dense layers of 512, 1024 and 14700 successively. The output is
reshaped to 70 × 70 × 3 to match the original image resolution.

2The dataset must be requested to the corresponding author
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Fig. 2 Taxonomy and number of images contained in each folder of EcoDID-2017

3.2.1 Architectural modifications

We have also tested four variations of A0; one with a different header and the rest (A1,
A2, A3 and A4) with different preprocessing stage. We stress that there are 512 primary
capsules, each being an array of 8 elements in all of them, so the capsule stage remains
invariant. Thus, we can assess the impact of the double loss function in the training of the
capsule network and find the best feature map for the classification task.

A1: It is the architecture A0 without the reconstruction header.
A2: It is the architecture A1, replacing the preprocessing stage shown in Table 1 by the

one shown in Table 2. Notice that the change only affects to the preprocessing but the
output of this stage remains in R

16×16×32.
A3: It is the architecture A2, but increasing the number of filters N from 32 to 128 in

both layers. Hence, the output of the preprocessing stage is a tensor in R
16×16×128.

A4: It is the architecture A3, but with filters of size 5×5 instead of 3×3. This modification
produces a tensor in R

15×15×128 as output of the preprocessing stage.

Fig. 3 A sample of each dumpster type in the data set
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Table 1 Layers of the preprocessing stage in architecture A0

Order Layer N size Strides Padding Activation

1 conv 2D 32 3 × 3 1 × 1 valid ReLU

2 maxpool 2 × 2 1 × 1 same

3 conv 2D 32 3 × 3 1 × 1 valid ReLU

4 maxpool 2 × 2 1 × 1 same

3.3 Data augmentation

In this work we have tested four transformations, which are represented over an original
image in Fig. 4.

Jit: Random color jitter in a range [0%, 10%] in brightness, contrast, saturation and hue.
Crop: Random crop at a random position in the range [0, 7] from every corner.
Rot: Random rotation in the range [−10, 10] degrees.
Flip: Horizontally flip the original image randomly with 0.5 probability.

In the training pipeline of architectures A0 to A4, every image fed into the network has a
probability of being modified. If so, then Flip and Crop are applied. After having evaluated
all the architectures, we carried out additional experiments with eleven other transformation
pipelines that include also Rotation and Jitter operations, but only with A4 (see details in
Section 4).

3.4 Loss function

All the architectures produce as many high-level capsules (that live in a vector space) as
there are different labels, and the predicted label is that one with greatest module. Therefore,
there is not dense neuronal network acting as a predictor header. However, architecture A0
includes a reconstruction header. For this reason the loss function has two terms for A0 and
only one term for the rest, unless the reconstruction header is appended (see Ablation study).

To train the predictions, we use the Margin loss [12], whereas to train the reconstruction
header we include the Mean Squared Error (MSE). Thus, the total loss L is a weighted
combination if both are necessary. In that case, given the order of magnitude of both, we
finally choose L = 5 · 10−4 · MarginLoss + MSE. Otherwise, the loss is the Margin Loss,
without the weight.

3.5 Training and inference

For the sake of completeness, we summarize here how to train the proposed neural network
and how to make inference.

Table 2 Layers of the preprocessing stage in architecture A2

Order Layer N size Strides Padding Activation

1 conv 32 3 × 3 2 × 2 valid ReLU

2 conv 32 3 × 3 2 × 2 valid ReLU
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Fig. 4 A sample of each operation applied during data augmentation.

First of all, the data set has to be split in two sets: one for learning and another of testing.
Yet, in order to prevent overfitting, the first set is split again in two. In this paper the data
set has been split in Training (60%), Validation (20%) and Test (20%); all of them keeping
the same the ratio of images per class than the whole data set.

Training a neural network such as the one presented here consists of an iterative process
with three steps. 1) Feed-forward; training images are fed into the network, which acts like
a parametric and derivable function that produces the predicted label of these images. 2)
Loss; since the true label is known it is possible to measure the discrepancy of the predicted
label by means of a loss function that has to be minimized. 3) Back-propagation; if the loss
function is derivable, then the parameters of the neural network can be updated via gradient
descent methods. Every complete iteration gets new images from the training set up to all
of it has been used; although it is customary to start over, beginning a new epoch.

Each one of these steps is carried out differently from one problem to another. In the feed-
forward, images can go in batches instead of one by one. Specifically, we use a batch size
of 16 images, and each one of them is processed by the augmentation strategy as discussed
above. Regarding the loss function, we gave the details in Section 3.4. Finally, gradient
descent methods are controlled by several hyperparameters. In our paper we use Adam
optimizer with learning rate = 0.001 and learning rate decay = 0.99 in each epoch.

Inference is just a feed-forward step with new images, which are input one by one
because we are interested in their predicted label; for this reason it is much faster than
training. Inference is done with the validation set in order to evaluate how the training is
progressing; and with the test set to assess the accuracy of the predictions with images never
fed during training, mimicking what will happen once the neural network is on production.
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Currently, Tensorflow and PyTorch are the two most popular software libraries for imple-
menting, training and testing neural networks. Both provide methods that make invisible the
gradient descent algorithms so one can focus only on designing the architecture and pro-
gramming the loss function if it is not a standard one, as in this paper. Specifically, we have
used PyTorch, and the code is publicly available.3

4 Experimental analysis

All the experiments were run on a Intel Core i7-8750HQ (2.2Ghz, 9MB) with 16GB RAM
DDR4 and a GPU GTX 1070 8GB GDDR5, and training is always performed for 100
epochs.

We have carried out four analysis; the first one is for choosing the architecture out of the
five alternatives, whereas the rest are to assess its goodness.

4.1 Architecture comparison

The state-of-the-art with EcoDID-2017 is due to [11], with a Google Inception V3 network,
pretrained in Imagenet, and consisting of 23.8 million parameters. We use this network as
baseline to compare with capsule network architectures A0 to A4 in three axis: accuracy,
millions of parameters and training time per epoch (TTPE), measured in seconds. Results
are shown in Table 3 and visualized in Fig. 5-Left. The millions of parameters are repre-
sented in the size of the balls, the dotted line is the accuracy attained in test and the solid
line is the TTPE.

The first relevant fact is that a drop in the number of parameters has an impact on the
TTPE, which is expected since there is much less computational load. A second remark is
that A2, A3 and A4 attain a better accuracy than the rest. Moreover, the accuracy increases as
we modify the architectures, up to A4 that has the best performance, with a 95.35% accuracy
on the test data set. Finally, we also stress that none of the capsule network architectures
tried benefits from transfer learning, while Google Inception V3 did.

For these reasons, architecture A4 has been chosen as the final classification network. In
order to assess its goodness, we carry out an ablation study, a data augmentation strategy
comparison and a training size sensitivity analysis.

4.2 Ablation study

We make seven modifications over architecture A4, which are summarized in Table 4, where
the first row corresponds to A4, and the first column contains the code for each change.

First, we add the reconstruction header again (row +R), that was removed from A1 on.
This extra header greatly increases the number of parameters and the TTPE; but the reduces
the accuracy 0.67 percent points. This leads us to think that the variety of containers within
any class makes the reconstruction much harder; so the classification task is dominating the
gradient descent and the reconstruction is slowing it down.

Second, we remove the Crop-Flip data augmentation (row −DA). This modification
produces the worst accuracy, 3.13 percent points down with respect to A4.

3https://github.com/capo-urjc/Capsnet-for-dumpsters
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Table 3 Comparison between our proposed models (A1-A4) and state-of-the-art (SotA) architectures Incep-
tion V3 [11] and the original CapsNet (A0). Param. is the millions of parameters, Acc. is the the percentage
of accuracy, TTPE is the seconds of training time per epoch. The TTPE of Inception V3 was not reported in
[11]

Architecture Param.(×106) Acc.(%) TTPE(s.)

Incep.V3 (SotA) 23.8 93.00 n.r.

A0 - Capsnet 38.8 90.88 325.74

A1 23.1 92.20 315.54

A2 1.1 93.12 13.95

A3 3.2 94.52 15.73

A4 3.5 95.35 15.80

Third, we remove one of the two convolutional layers in the preprocessing stage (row
1CNN). As a consequence, the output of the preprocessing stage is a tensor in R

34×34×32,
and the convolution layer at the beginning of the capsule network transforms it into
R

34×34×32. Since we keep the primary capsules in R
8 the number of them, as well as the

number of matrices Ai,j , increases from 512 to 5408. This explains the great increase in
the number of parameters. On the other hand, missing that convolutional layer accounts for
poorer visual features, which has an impact on the accuracy, losing 2.72 percent points with
respect to A4.

Forth, we try with more and less filters in the two convolutional layers of A4 preprocess-
ing stage. Specifically, we try 64 and 256 filters (rows 64F and 256F respectively); which is
half and double the number of filters respectively. In the same line, we also try two different
kernel sizes, one smaller and one larger: 3 × 3 and 9 × 9 (last two rows).

These results are depicted in Fig. 5-Right. Notice that the right-most ball in Fig. 5-Left is
the same than the left-most ball in Fig. 5-Right, both corresponding to A4; showing to have
the greatest accuracy value being one of the smallest in terms of millions of parameters.

4.3 Data augmentation pipeline comparison

All the architectures A0 to A4 had a data augmentation pipeline consisting of Crop and Flip
operations as described above. Once A4 has been selected, we try all the variations listed in
Table 5 in decreasing order of accuracy. Results are also depicted in Fig. 6. It can be clearly
noticed that the Jittering operation increases the TTPE because it is pixel-wise. Besides the

Fig. 5 (Left) Visualization of Table 3. (Right) Visualization of Table 4. In both, the ball size is proportional
to the millions of parameters of the architecture; the dotted line is the accuracy (%, left Y-axis) and the solid
line is the TTPE (s., right Y-axis)
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Table 4 Ablation study

Modif. Param.(×106) Acc.(%) Acc. down TTPE(s.)

None 3.5 95.06 0.00 15.80

+R 19.2 94.39 0.67 20.22

−DA 3.5 91.93 3.13 15.86

1CNN 7.5 92.34 2.72 76.11

64F 1.9 94.73 0.33 13.40

256F 7.4 94.82 0.24 25.75

3 × 3 3.2 94.81 0.25 15.73

9 × 9 4.1 94.33 0.73 12.59

accuracy is down more than one percent point only when Cropping is not used. Therefore,
the initial choice of Crop and Flip remains the best trade-off between accuracy and TTPE.

4.4 Training size sensitivity analysis

Finally, we consider reducing the number of training images by using the 80%, 60%, 40%
and 20% of the training set. We show the confusion matrix with the full training set in
Table 6 (above) and in the left-most panel of Fig. 7. Table 6 (above) has not absolute val-
ues but the percentage with respect to the number of images in the corresponding class. The
rest of panels depict the cell-wise difference between that one with the confusion matrix
obtained using less training examples. Thus, the darker a diagonal cell the more images of
that class mislabeled. Qualitatively, the confusion matrix diagonal gets darker as the train-
ing set reduces, meaning that there are less images correctly labeled. Specifically, Table 6
(below) shows the percent point difference between the diagonal of the confusion matrix
using 100% training set and the corresponding reduced one. Classes C4, C5 and C7 are quite
robust which is probably indicating a greater inter-similarity between the images inside each
class. Nevertheless, in all the cases using only 1 out of 5 images per class clearly degrades
the performance.

Table 5 Data augmentation ablation study

Transformation pipeline Accuracy Acc. down TTPE (s.)

Crop-Flip (CF) 95.06 0 15.80

Rot-Crop (RC) 94.97 0.09 15.90

Crop-Jit-Flip (CJF) 94.91 0.15 20.42

Rot-Crop-Jit-Flip (RCJF) 94.91 0.15 20.68

Rot-Crop-Jit (RCJ) 94.77 0.29 20.70

Rot-Crop-Flip (RCF) 94.75 0.31 15.85

Jit-Crop (JC) 94.21 0.85 19.98

Flip-Rot (FR) 93.85 1.21 15.90

Rot-Jit-Flip (RJF) 93.48 1.58 20.48

Jit-Rot (JR) 92.40 2.66 20.21

Jit-Flip (JF) 92.25 2.81 20.01

None 91.93 3.13 15.86
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Fig. 6 Loss in accuracy with respect to Crop-Flip augmentation strategy (left vertical axis and bars) and
Training time per epoch (right vertical axis and line) vs. the rest of augmentation strategies listed in Table 5

Additionally, we have carried out a binary classification with a One-vs-Rest strategy for
each class. Results are depicted in Fig. 8, where the X-axis is the training data set size and
the Y-axis is the Precision, Recall and F1-score respectively. The three metrics are quite
stable as the training data set size decreases. We remark that the more images per class, the
lower these metrics are, which reflects the difficulty of the task increases with the size of
the sample, mainly due to the variability mentioned above.

4.5 Discussion

After experiments, A4 together with Crop and Flip augmentation functions proved to be the
best option; successfully outperforming the previous best result with 83% fewer parameters;
but it still remains to discuss whether the results are compatible with the expectations.

Firstly, we removed the reconstruction header of A0 to get A1. The purpose of this header
is to regularize the learning process; but the amount of parameters that introduces to generate
every pixel makes A0 even bigger than Google Inception V3 and forces to design a loss
function that mixes both the reconstruction and the classification task, which causes the

Table 6 (Above) Confusion matrix with all training data. Rows are true labels and columns are predicted
labels. Values are the percentage with respect to the number of images in that class. (Below) Percent point
difference of the correctly labeled images for each class as the training data set size decreases

C1 C2 C3 C4 C5 C6 C7

C1 90.69 3.47 0.92 4.45 0.40 0.00 0.06

C2 2.68 92.37 0.77 3.88 0.23 0.03 0.03

C3 1.58 1.29 89.96 6.95 0.07 0.07 0.07

C4 2.65 2.65 5.34 85.50 1.68 1.26 0.92

C5 0.05 0.00 0.01 0.33 99.08 0.08 0.45

C6 0.00 0.00 0.17 0.44 0.61 94.09 4.70

C7 0.02 0.00 0.02 0.49 0.86 1.70 96.93

Size C1 C2 C3 C4 C5 C6 C7

80% 1.7 1.7 3.8 2.3 0.3 4.1 0.5

60% 1.7 1.7 3.8 2.3 0.3 4.1 0.5

40% 5.5 4.1 4.6 2.2 0.3 5.7 0.7

20% 12.2 7.5 6.4 6.3 1.2 12.1 2.7
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Fig. 7 (Left) Confusion matrix with validation data using the full training set. (Others) Difference between
the confusion matrix with full training set and with a reduced one

accuracy to drop below the state-of-the-art. Thus, removing the header brings the following
consequences: 1) the loss function consists only of the so called Margin Loss, 2) there is no
classification header because the estimated label is the high level capsule (i.e. the outcome
of the capsule network) with greatest module, 3) reduces the size of the whole network, and
4) we recover almost the same accuracy than the Google Inception V3. In the ablation study
we confirm these effects, since we connect the reconstruction header again on A4 and show
that the accuracy decreases again.

Next, in order to keep on reducing the number of parameters, we removed the Maxpool
layers, doing both the feature extraction and the resolution reduction with the convolu-
tion stride twice as large as in A1. The resulting A2 architecture has ×20 less parameters
than A1, and its accuracy already slightly surpasses the state-of-the-art. Arguably, a much
smaller parameter space has two advantages: fewer local optima and more expressive fea-
ture representation. Indeed, we exploit this latter idea to improve the architecture by adding
more feature maps, from 32 in A2 to 128 in A3. Thus, the more visual features the CNN
preprocessing extracts, the more initial capsules are available for the capsule network stage
to model the hierarchical relationships between them. Finally, we changed the 3 × 3 ker-
nels for 5 × 5 kernels, keeping the same number of feature maps. Consequently, the visual
features extracted by A4 are of higher level than those of A3.

All in all, the A4 architecture has a compact and efficient CNN that extracts the visual
features that best fit how the capsule network processes its inputs. Each new version, from
A0 to A4, is designed to achieve better performance, and experiments confirm this goal.

Fig. 8 Precision, Recall and F1-score for each class vs. the rest as the training data set size is reduced. Lines
are: C1(solid-dots, blue), C2(dashed, orange), C3(dotted, black), C4(solid, green), C5(solid-circles, red),
C6(solid-stars, magenta) and C7(solid-squares, brown)
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Since we are using a two-layer CNN followed by one capsnet, another relevant discussion
is why not using deeper architectures. More convolutional layers account for higher level
visual features. But Capsule networks are efficient with mid-level features because they are
designed to “look” at different parts of the image and select those that agree. If the receptive
fields that are looked at are very small or large, this effect is diminished. In the ablation
study we show that more and less feature maps, as well as smaller and larger convolutional
kernels, attain slightly worst performance.

The use of another capsule network would introduce an excessive computational cost due
to the dynamic routing algorithm; which consists of a clustering-like process with all the
activity vectors, that has been carried out 3 times. Finally, the CNN followed by the capsnet
is expected to produce as many high-level capsules as there are different labels. In other
words, each output (high-level capsule) is a vector representing the input image according
to the label corresponding to that output. The higher the module of the vector, the better
the match; therefore, the estimated label is the one with the highest module. For this reason
we do not add a classification header consisting of a dense neural network with a softmax
activation function.

5 Conclusions and future work

In this paper we present a solution for classifying images of dumpsters. The task is far from
trivial, even with the current techniques, due to the problems induced by a real data set,
as it is collected and served by a company or client. We use one of the most promising
deep learning architectures, Capsule networks, and present a systematic study for boosting
the performance above the state-of-the-art in the given data set. Additionally, we report
a comprehensive experimental analysis of the solution that includes an ablation study, a
comparison of different augmentation data pipelines and a study of the sensitivity to the size
of the training data set. All the experiments have more than one metric in order evaluate
possible trade-offs. The solution proposed, architecture A4 with a pipeline of Crop and Flip
operations, has proved to be the best choice, with an accuracy of 95.35%.

The EcoDID-2017 database of dumpster images provides a large variety of labels
describing the conservation status such as broken, burned, deformed, among other relevant
defects. A future research line is to achieve automatic dumpster status labeling. This appli-
cation is highly demanded by the company that maintains the database; and it is also very
interesting as a smart maintenance service concept for smart cities. As dumpsters are emp-
tied regularly by garbage trucks, an on-board vision-based system running this application
would update the dumpster status on the fly. Additionally, we plan to extend these smart
diagnosis system to consider different urban furniture.
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