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Abstract
One of the main challenges in CBIR systems is to choose discriminative and compact fea-
tures, among dozens, to represent the images under comparison. Over the years, a great
effort has been made to combine multiple features, mainly using early, late, and hierarchical
fusion techniques. Unveiling the perfect combination of features is highly domain-specific
and dependent on the type of image. Thus, the process of designing a CBIR system for new
datasets or domains involves a huge experimentation overhead, leading to multiple fine-
tuned CBIR systems. It would be desirable to dynamically find the best combination of
CBIR systems without needing to go through such extensive experimentation and without
requiring previous domain knowledge. In this paper, we propose ExpertosLF, a model-
agnostic interpretable late fusion technique based on online learning with expert advice,
which dynamically combines CBIR systems without knowing a priori which ones are the
best for a given domain. At each query, ExpertosLF takes advantage of user’s feedback to
determine each CBIR contribution in the ensemble for the following queries. ExpertosLF
produces an interpretable ensemble that is independent of the dataset and domain. More-
over, ExpertosLF is designed to be modular, and scalable. Experiments on 13 benchmark
datasets from the Biomedical, Real, and Sketch domains revealed that: (i) ExpertosLF sur-
passes the performance of state of the art late-fusion techniques; (ii) it successfully and
quickly converges to the performance of the best CBIR sets across domains without any
previous domain knowledge (in most cases, fewer than 25 queries need to receive human
feedback).

Keywords Content-based image retrieval · Late fusion · Prediction with expert advice ·
Online learning · Relevance feedback

1 Introduction

Nowadays, many image repositories are available for almost every domain, such as architec-
ture, astronomy, education, geology, medicine, multimedia, and remote sensing. With such
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a massive growth in the number of images available, the need to store and retrieve images in
an efficient manner arises, leading to an increase in the importance of Content-Based Image
Retrieval (CBIR) systems. Such systems have a multitude of real-life applications concern-
ing crime prevention, digital libraries, medical diagnostic, textile industry, traffic congestion
analysis, and so on.

One of the main challenges in CBIR is to choose features that are sufficiently discrimina-
tive to infer how similar images are, while keeping them compact to ensure that the system
is timely and computationally efficient. Furthermore, human perception of image similarity,
which is subjective, semantic, and task-dependent, may not be captured by commonly used
low-level features (e.g., color, shape, texture). This phenomenon is known as the semantic
gap between high-level concepts conveyed by an image (e.g., emotions, events, or objects)
and the limited descriptive power of low-level visual features [2, 60, 86, 115]. For example,
consider Fig. 1a (yellow car close to a green wall) as the query image of a retrieval system
that only uses low-level features. Both Fig. 1b (lady with a yellow dress on green grass) and
Fig. 1d (yellow car close to a tree) would be returned as a result (due to the color similarity).
However, it would be desirable that Fig. 1c (red car in the wilderness) would be returned
instead of Fig. 1b, since Fig. 1a and c are very similar semantically (both depict a car).

Over the years, multiple approaches have been proposed to mitigate the semantic gap:
(i) generation of high-level features that mimic human perception using deep learning; (ii)
multi-feature early, hierarchical, and late fusion methods to combine low-level features (and
to a lower extent, low- and high-level features, and multiple high-level features); (iii) incor-
poration of human expertise, through relevance feedback, in the retrieval process, leading
to perceptually and semantically more meaningful results.

Besides the semantic gap, another issue for CBIR systems concerns the choice of the
best features for a certain domain. If we consider pictures of our everyday life, one might
expect that, the more information available, the better a retrieval system’s performance will
be. However, in certain domains, such as art or medicine, this is not necessarily true. Not
only images from those domains have characteristics that are quite different from everyday
pictures, but also their characteristics within the same domain may differ significantly. For
example, many medical images are only gray-level (e.g., radiography, computed tomogra-
phy, Magnetic Resonance Imaging (MRI)), leading shape and texture to acquire increased
relevance, when compared to color or semantic features [26, 103].

Unveiling the perfect combination of different features to design novel CBIR systems for
new datasets or domains usually involves a huge experimentation overhead, and is highly
task and domain-specific, leading to the fine-tuning of CBIR systems for each domain.

Fig. 1 Example of a query image and three related images that illustrate the semantic gap between high-
level concepts and low-level features: only Fig. 1d is similar according to both visual and semantic features.
(figure best seen in color)
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Consider, for instance, a scenario where multiple biomedical CBIR systems are available,
each of them fine-tuned to a specific disease and diagnostic method (e.g., a shape-based
CBIR tuned for brain cancer MRI scans, a color and texture-based CBIR for breast cancer
histopathological images, etc.). How can one leverage on the existing fine-tuned CBIR sys-
tems to accommodate other diseases or diagnostic methods, or even other domains? Early
fusion and hierarchical approaches would require even further experimentation to combine
the different types of features, resulting in more fine-tuned systems. Although late fusion
approaches are more robust and well-suited for such task, they lack interpretability, as it is
unclear which CBIR system performs best for the task in hand. Relevance feedback tech-
niques could also be used to tune the results and adapt the CBIR system, but they usually
require constant feedback from the users. In the biomedical CBIR example above, it would
be unrealistic and costly to expect medical specialists to give feedback on every result
retrieved by a CBIR system.

To address these challenges, we present ExpertosLF, an interpretable late fusion tech-
nique that takes advantage of human feedback (requiring minimum effort and interaction).
For that, we propose a novel application of online learning to late fuse multiple CBIR sys-
tems, under the framework of prediction with expert advice. To each CBIR in the ensemble
is assigned a weight that determines how much it contributes to the final set of images to be
retrieved for a given query. The systems’ weights are updated in an online fashion, based on
the quality of each system’s results, assessed by one or more human evaluators at each query.
The resulting ensemble will be independent of the dataset and domain, while being able to
take advantage of previous experiments to create the individual CBIR systems. ExpertosLF
is designed to be interpretable, model-agnostic, modular, and scalable.

With this work, we aim to address the following research questions:

– RQ1) Does our late fusion technique improve retrieval performance?
– RQ2) Does the resulting ensemble perform as well as the best individual CBIR?
– RQ3) Can we use the ensemble learned in an online setting in an offline setting?
– RQ4)Are the CBIR experts in the resulting ensemble plausible considering
the domain in hand?

Our contribution is threefold:

1. A model-agnostic interpretable late fusion technique based on online learning with
expert advice, which dynamically combines CBIR systems without knowing a priori
which ones are the best for a given domain;

2. Mitigation of the semantic gap between the low-level information of an image and
its high-level semantic concepts, by studying the impact of combining both kinds of
descriptors in CBIR in different domains;

3. A set of extensive experiments on 13 benchmark datasets focusing on three different
domains: Biomedical, Real, and Sketch.

ExpertosLF surpasses the performance of state of the art late fusion techniques for the
majority of the datasets. It quickly converges to the performance of the best CBIR sys-
tems across domains, without any previous domain knowledge (in most cases, fewer than
25 queries need to receive human feedback). Moreover, the ensemble learned using our
weighted late-fusion technique can be successfully applied to an offline scenario (i.e., in
which there is no feedback available).
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2 Related work

The typical flow of a CBIR system is depicted in Fig. 2. The first step consists of generating
a set of features to accurately represent the content of each image in the database. These
sets of features, also called descriptors, are used to compute the distance between the query
image and each candidate image in the database, in order to retrieve the most similar images
to the query image.

Ascertaining the most discriminative descriptors is highly dependent on both the type
of images the CBIR system will handle (colored, black and white, or grey-level) and the
domain in hand (e.g., art, medical, textile, remote sensing). For example, an image of a
sunset will have more semantic and color information than an image from a medical exam-
ination (consider an X-ray or Computed Tomography scan whose shape of the organ under
analysis is more prominent). Moreover, there is a semantic gap between high-level con-
cepts, such as emotions, events, objects or activities conveyed by an image, and the limited
descriptive power of low-level visual descriptors, as exemplified earlier in Section 1.

Here, we analyse how the semantic gap has been addressed in several CBIR works
focusing on computational methods that: (i) propose novel low- and high-level descrip-
tors (Sections 2.1 and 2.2), and combinations among them (Section 2.3); (ii) improve the
retrieval process using human relevance feedback at each query (Section 2.4). Our analysis
is focused on the last five years. For a more complete review, see [52, 77, 122, 123].

2.1 Low-level descriptors

Hand-crafted global and local low-level descriptors representing color, shape, and texture
are widely used in current CBIR systems. Color is extensively used since it is the basic
constituent of images, relatively robust to background complexity and independent of orien-
tation and image size. Shape is useful for matching objects based on their physical structure
and profile. Texture is used to look for visual patterns with properties of homogeneity that
are not achieved by the presence of a single color, and how those patterns are spatially
defined.

Global descriptors extracted from the whole image, are easy to compute, and have lower
dimensionality. Multiple descriptors have been proposed: color (e.g., Auto Color Correl-
ogram (ACC) [38], Color Coherence Vectors (CCV) [89], Color Histogram (CH) [89],

Descriptor
Extraction

Descriptor
Extraction Descriptors

DB

Similarity
Comparison

Descriptor

Retrieved Results

Query

CBIR

...

Database

Fig. 2 Architecture of the typical CBIR setting. The retrieved images with a green border represent relevant
images, while a red border represents non-relevant images for the given query. (figure best seen in color)
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Color Moments (CM) [28], Opponent Histogram (OH) [105], and Reference Color Simi-
larity (RCS) [48]), shape (e.g., Edge Histogram (EH) [19], and Zernike Moment Descriptor
(ZMD) [47]), and texture (e.g., Gabor [64], Haralick [37], and Hybrid Directional Extrema
Pattern (HDEP)).

Local descriptors are extracted from sub-images of a given image. They are robust to
occlusion, changes in illumination and background, and geometric transformations; they
are usually complex and produce high-dimensional vectors [113]. The Local Binary Pat-
terns (LBP) descriptor is widely used in color and texture retrieval since it reflects the
correlation among pixels within a local area [32, 71]. Other binary descriptors are Binary
Robust Independent Elementary Features (BRIEF) [16], Binary Robust Invariant Scal-
able Keypoints (BRISK) [53], Fast Retina KeyPoint (FREAK) [4], Scale-Invariant Feature
Transform (SIFT) [66], and Speeded Up Robust Features (SURF) [12].

Singular Value Decomposition (SVD)-based descriptors take advantage of the local spa-
tial relationship of non-overlapping images’ sub-regions [32, 63, 106]. Radon transforms
are useful to reconstruct objects, and attain special attention on the medical domain [9, 100,
101].

2.2 High-level descriptors

Low-level information is useful to discriminate images, but it often fails at capturing high-
level semantic concepts perceived by humans. To model high-level abstractions present in
images, deep learning approaches have been proposed in the latest years. Deep approaches
are able to learn complex representations from large amounts of data, in a supervised man-
ner. An example of such representations are Convolutional Neural Networks (CNNs) [49],
which have been widely adopted for multiple tasks, such as classification, image seg-
mentation, or object recognition. Recently, CNNs have also been explored in retrieval
tasks.

The most common approach is to extract feature representations from a pre-trained CNN
model by feeding images in the input layer of a model, and taking activation values either
from fully connected layers (to capture semantic information), or from convolutional layers
using pooling techniques (to exploit spatial information). Pre-trained CNNs with ImageNet
dataset are commonly used in CBIR systems [29]: AlexNet [88, 104, 110], Fast Convolu-
tional Neural Network (FCNN) [118], VGG-19 [119]. Some authors have also proposed
novel deep approaches: a CNN to retrieve images of different body organs [79], a CNN scal-
able face CBIR [98], a Convolutional Sparse Kernel Network for the medical domain [3], a
Deep Belief Network for object-based retrieval [85], and a Fuzzy Neural Network to learn
effective binary codes, while enhancing interpretability [60].

In some domains, the amount of images available is not sufficient to train a robust deep
model, i.e., the model is prone to overfit. Transfer learning is beneficial in such situations,
since features can be learnt in a resource-rich domain and then applied to a resource-
scarce domain. Several works adopted pre-trained CNNs with natural images, and apply
it to their target domain: VGG-m and VGG-16 for landmarks/monuments [5], ResNet-
50 for diabetic retinopathy [26], Capsule Networks with 3D CNNs to detect Alzheimer
disease using MRI [50], VGG19 for brain tumors [93], Inception-ResNet-V2 for oto-
scope images [17], and DenseNet121 for chest X-ray images [94]. Most models were
pre-trained using ImageNet dataset [5, 26, 93, 94] (for the remaining ones, the information
is missing/unclear).
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2.3 Multi-feature fusionmethods

Over the years, different approaches have been proposed to combine global and local
descriptors (color and texture [13, 33, 44, 45, 107], color and shape [2, 25, 75, 113,
116], shape and texture [92, 103], and color, shape, and texture [7, 8, 14, 73, 81, 83, 86,
121]). To a lesser extent, authors have also proposed combinations of low- and high-level
descriptors [57, 58], and an ensemble of high-level descriptors [36].

The most common approach is to extract multiple descriptors, and combine them using
an early fusion approach [2, 7, 14, 25, 45, 81, 103, 113, 116, 121]. In the early fusion
approach, the descriptors are extracted and combined into a single feature vector. The result-
ing vector is used to index all the images in the CBIR and search for the most similar
ones. Usually, it is assumed that all descriptors have the same importance. However, that
is not necessarily true: descriptors may not yield the same results for different categories
of images. An alternative approach is to use weights to early fuse the descriptors using
Particle Swarm Optimization (PSO) algorithm [33], genetic algorithms [75], or weighted
functions [10, 83]. The fusion of descriptors at different levels can benefit CBIR systems,
but it requires mechanisms for the selection of appropriate weights which are usually highly
dependent of the dataset in use, and still involves a lot of experimentation (since the param-
eter tuning of the descriptors is carried out from the analysis of their performance in the
proposed CBIR). Moreover, although a large number of features may better represent the
discriminative properties of images, it may lead to the dimensionality curse problem.

Previous works focused mainly on single resolution processing of an image, however it
may not be sufficient to gather varying level of details in an image since an image consists
of both high and low resolution objects, and both large and small size objects [92]. Another
approach is to combine descriptors in a hierarchical way by processing an image at multiple
resolutions [8, 44, 45, 92]. This way, features that were not detected at a certain resolution,
will be detected at another one. Wavelets offer a good energy compression and multi-
resolution capability [8]. As such, LBP, Legendre moments, Gabor (or similar descriptors)
are combined using Discrete Wavelet Transform (DWT) to extract shape information from
texture features from an image at multiple resolutions.

A considerable body of work has been proposed to combine descriptors to create a sin-
gle CBIR. Another possibility is to combine multiple CBIR systems, which may be less
dependent on the task or type of images, while being able to take advantage of experiments
already performed to create the individual CBIR. Some authors have proposed a hierarchi-
cal approach to combine low-level CBIR [73, 107], and low- and high-level CBIR [57, 58].
When combining multiple CBIR hierarchically, the main idea is to use a single CBIR to find
the most relevant images [58, 73] or discard irrelevant images [57, 107], and then apply a
second CBIR to refine the search.

Late-fusion techniques are also used to combine CBIR systems (mostly based on low-
level features). In the late fusion approaches, multiple CBIR systems are created (where
each one uses one or more early-fused descriptors to index and search for the images),
and the results of each one are combined. They are usually split into two major groups:
(i) similarity score-based rank list fusion and (ii) order based rank list fusion [6]. For the
first group, the similarity scores of each image (of each retrieved list) are merged using an
aggregation function (e.g., minimum, median, or maximum) to form the final search result.
In the second one, a revised retrieval list is created as a function of the position in which
images appear in different rank lists. Such fusion techniques tend to be more robust and
efficient than early fusion techniques.
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Finally, Hamreras et. al [36] proposed to take advantage of ensemble learning to combine
different CNNs. However, its scope is very limited; the main focus was the identification
of good parameters to form the ensemble (the number of neural networks to be used, and
number of hidden neurons in each network).

All these methods, to some extent, require a huge experimental overload to find out which
are the best combinations of descriptors or CBIR systems for each possible domain/dataset.
Thus, in this work, we extend the late-fusion method so that it dynamically assigns a
greater weight to the best CBIR systems for the domain/dataset in hand, taking advantage
of relevance feedback provided by the user (when available).

2.4 Relevance feedback

Relevance feedback has been used in CBIR systems to modify the retrieval process in order
to generate perceptually and semantically more meaningful results by involving the user in
the retrieval process [65, 104]. The main idea is to present to the user the results from a
given query, collect feedback about whether or not those results are relevant, and perform a
new query based on that information; these steps are carried out iteratively until the user is
satisfied with the results.

The most common types of feedback are explicit and implicit. In the explicit feedback,
the user explicitly informs which images are relevant/not relevant (binary relevance feed-
back) or how relevant each image is (graded relevance feedback). In the implicit feedback,
the system automatically infers user’s feedback from their behavior.

Different approaches have been proposed to reformulate the query according to the feed-
back received: finding an optimized query feature vector using Rocchio’s algorithm [11,
46, 67, 114], modifying the similarity measure so that relevant images have a high simi-
larity value [1, 124], exploiting images’ geometrical and discriminant structures to learn a
semantic subspace [39, 120], or separating relevant and non-relevant images using Bayesian
Networks [87], CNN [56, 76, 78, 104], Clustering [27], Logistic Regression [30], Optimum
Forest algorithm [54], and Support Vector Machine [82, 97, 112].

Active learning has also been used to reduce the annotation effort, by selecting which
images should be annotated by the users [82, 97]. Moreover, Tang et.al combined different
active learning relevance feedback approaches carried out simultaneously, and then fused
their results to improve the initial query [97].

All the aforementioned methods to mitigate the semantic gap helped furthering the devel-
opment of CBIR systems, but they come with a number of drawbacks. Early and hierarchical
fusion involve a huge experimentation overload to choose the best set of descriptors among
descriptors of the same category or across categories. Furthermore, early approaches are
prone to suffer from the so called curse of dimensionality. With late-fusion approaches, the
merge of most similar images is done at a query-level, i.e., no knowledge of which CBIR is
better is acquired over time. Moreover, regardless of the fusion technique in use, most CBIR
solutions in the literature suffer from a lack of interpretability regarding which descriptors
or CBIR systems are the best for a given domain or type of images. Finally, relevance feed-
back relies on user feedback (which is not always available), and the retrieval process is
repeated multiple times until the user is satisfied.

To address some of these drawbacks, we propose to take advantage of human feedback
(when available), not to improve the results for the current query, but instead to improve the
late-fusion process for the next queries. Thus, our focus is to reward the CBIR systems that
made the best contributions to the final set of images retrieved to the user, giving them a
greater weight in the late-fusion for future queries.
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3 Dynamic late fusion of CBIR using online learning

Given several existing CBIR systems (each one encompassing different descriptors or com-
binations of descriptors), how can we combine them in order to dynamically reach at least
the performance of the best CBIR system (without knowing which are the best ones for a
given domain a priori)? To tackle this question, we frame our late fusion technique as a
problem of prediction with expert advice, using online learning to dynamically find which
are the best CBIR in the ensemble, making the most of minimal human interaction.

We start by providing some background on the prediction with expert advice online learn-
ing framework (Section 3.1), and then we describe how we adapt it to late fuse multiple
CBIR systems (Section 3.2).

3.1 Prediction with expert advice

A problem of prediction with expert advice can be seen as a repeated game between a
forecaster and the environment, in which the forecaster resorts to a set of weighted experts
to provide the best forecast [18]. At each round t , the forecaster F consults the predictions
pt

k in the decision spaceA made by each expert k. Considering the experts’ predictions, the
forecaster makes its own prediction, p̂t

F ∈ A. At the same time, the environment reveals an
outcome yt in the decision space Y .

In order to learn the experts’ weights, an online learning algorithm can be used. A
well-established algorithm for prediction with expert advice is the Exponentially Weighted
Average Forecaster (EWAF) [18]. In EWAF, the prediction p̂t

F made by the forecaster is
given by (1):

p̂t
F =

∑K
k=1 ωt−1

k pt
k

∑K
k=1 ωt−1

k

. (1)

At the end of each round, the forecaster and each of the experts receive a non-negative
loss based on the outcome yt revealed by the environment (�t

F and �t
k respectively):

�t
F , �t

k : A × Y → R (2)

The weights ωt
1, . . . , ω

t
K of each expert k are then updated according to the loss incurred

by each expert as shown in (3).

ωt
k = ωt−1

k e−η�t
k (3)

After T rounds, by setting:

η =
√

8 log
K

T
(4)

it can be shown that the forecaster’s regret for not following the best expert’s advice is
bounded as follows:

T∑

t=1

�t
F − min

k=1,...,K

T∑

t=1

�t
k ≤

√
T

2
logK (5)

i.e., the forecaster quickly converges to the performance of the best expert [18].

3.2 CBIR late fusion with expert advice

We frame the late fusion of multiple CBIR systems as a problem of prediction with expert
advice: given an ensemble of K CBIR systems, each system corresponds to an expert k =
1, . . . , K , associated with a weight ωk (all experts start with the same weight, ωk = 1

K
); all
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the possible sets of images that can be retrieved (from the database of images of each expert)
correspond to the decision space A; the late fusion of the CBIR systems thus corresponds
to the forecaster, i.e., the forecaster’s decision is the final set of images to be retrieved,
combining images from multiple systems in the ensemble.

An overview of the learning process is depicted in Fig. 3 and Algorithm 1, and can
be summed up as follows. At each round t , a query image qt is given as input to all the
experts m1, . . . , mK , and each returns the most similar ones to the query according to its
descriptor(s), retrievedt

k (line 5). Based on the experts’ selections, the forecaster selects the
final set of retrieved images queryResult t (line 7). Both the forecaster’s and each expert’s
set of images are then evaluated with a quality score, reflecting how similar the query image
and the ones retrieved by each expert are according to one (or more) human evaluators
(e.g., a user searching for similar images of their dog in a searching engine, or a doctor
using a system to obtain medical examinations similar to those of their patient or a specific
diagnosis) (line 9). This quality score is used at the end of the round to update the experts’
weights (lines 11–12).

In this paper, we propose to late fuse the images retrieved by the experts in the ensemble
by taking into account the weights learned using EWAF. Each expert contributes with a
number of images I t

k proportional to its weight (line 6), as shown in (6). Note that merging
the results from multiple experts deviates from the traditional EWAF formulation, in which
only a single expert is selected by the forecaster at a time (since prediction with expert
advice typically deals with single-value predictions).

I t
k = �ωk ∗ N� (6)

We sort the images in each retrieved set (either the forecaster’s or each of the experts’ sets)
in ascending order according to their distance to the query image (the smaller the distance,
the more similar the images are; a perfect match corresponds to a distance of 0). In order to
avoid duplicates, we skip images that have already been added to the set to be retrieved by
some expert. We consider first the images retrieved by the experts with a lower weight (i.e.,
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Final Retrieved Results
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Human Evaluators

Fig. 3 Overview of our late fusion of multiple CBIR systems with expert advice. (figure best seen in color)

the one that performed worse). This way, we ensure that each expert k contributes with I t
k

images.
A key condition for applying online learning is the availability of feedback (which, in

the case of EWAF, is based on the outcome of the environment). To simulate the feedback
from human evaluators in a real-world scenario, we used the images’ category present in the
datasets, curated by human annotators, as a feedback source to compute the loss and update
the weight of each CBIR system. In other words, images belonging to the same category are
considered as relevant for the remaining images within that category. We thus compute the
loss for each expert k at a round t as:

�t
k = 1 − sim(relevantt , retrievedt

k) (7)

where sim is computed using a set similarity measure that allows us to quantify how similar
the sets of relevant images relevantt and retrieved images retrievedt

k are for each expert
k (the set similarity measures experimented are listed in Section 5.2). The weights of all the
CBIR systems are then updated based on the loss received, according to (3).

Note that although we rely on the notion of relevance feedback from the user to learn the
weights, we did not follow the traditional setup, i.e., we did not refine the query by itera-
tively asking which images are relevant until the user is satisfied with the results retrieved.
We only need input once.

In Fig. 4, we present a snapshot of the learning process, in which we consider the same
query image as in Fig. 3, three CBIR experts, numResultst = 8, and the Jaccard index to
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Environment

Forecaster
Final Retrieved Results

Relevant Results

Retrieved Results from Expert 1 (w1 = 0.429)

0.0 0.11 0.17 0.41 0.45 0.55 0.58 0.72

Retrieved Results from Expert 3 (w3 = 0.567)

0.0 0.03 0.06 0.13 0.230.22 0.27 0.50

Retrieved Results from Expert 2 (w2 = 0.004)

0.0 0.12 0.14 0.33 0.38 0.42 0.89 0.95

0.640

0.364

0.003

Fig. 4 Example of an iteration using our online CBIR setting. The orange arrows represent the new weight
for each expert. (figure best seen in color)

compute the similarity between the sets (see Section. 5.2). Following (6) and considering
the weights assigned to each expert, Expert 3 will contribute with five images to the final
set, Expert 1 with three images, and Expert 2 with none, excluding possible duplicates. If
we had considered the traditional EWAF setting in which only one expert is selected by
the forecaster, we would have a precision of 75% (6 out of 8 successfully relevant images
retrieved). By late fusing the retrieved images from several CBIR experts, it increases to
87.5% (7 out of 8). Moreover, if there is an expert that clearly outperforms the others, its
weight would converge to 1, leading to EWAF’s traditional behavior of choosing only one
expert.

4 Implementation details

We created two late fusion CBIR solutions based on expert advice. In the first solution,
ExpertosLF V, we considered four CBIR systems as experts representing low-level infor-
mation (color, shape, texture, and joint). The first three ones represent the early fusion of
either color, shape, or texture descriptors alone. The joint one represents the early fusion
of three existing descriptors that already encompass multiple visual characteristics: color,
shape, and texture. In the second one, ExpertosLF VS, we added a fifth CBIR expert that
represents the semantic information.

One of our goals is to evaluate whether the experts in the resulting ensemble are plausible
for the domain in hand. We focused on low- and high-level descriptors in order to study
how the use of different kinds of information (visual or semantic) varies across the different
domains, and whether the resulting ensemble reflects it.

Each CBIR follows the typical architecture of a retrieval system with a Database to store
the images, a Descriptor Extractionmodule, a Descriptors DB (indexing structure), and a
Similarity Comparison algorithm. Following, we present the list of descriptors under con-
sideration (Section 4.1), and detail each component of the CBIR architecture (Sections 4.2
and 4.3).

11629Multimedia Tools and Applications (2023) 82:11619–11661



4.1 Low and High-level descriptors

We selected a diverse set of low-level descriptors representing color (Auto Color
Correlogram (ACC) [38], Color Histogram (CH) [89], Itten Contrasts
(IC) [41], Opponent Histogram (OH) [105], and Reference Color
Similarity (RCS) [48]), shape (Edge Histogram (EH) [19] and Edges),
texture (Tamura [96] and Haralick [37]), joint color, shape, and texture infor-
mation (Color and Edge Directive Descriptor (CEDD) [20], Joint
Composite Descriptor (JCD) [22], and Fuzzy Color and Texture
Histogram (FCTH) [21]), as well as high-level descriptors that represent images’
semantic content using tags (Adjective-Noun Pairs (ANP), Adjectives,
Nouns, and General Concepts (GC)) (see Tables 1 and 2).

The majority of the aforementioned descriptors were computed using jFeatureLib [35]
and LIRE [61]. The remaining descriptors were implemented by us. The Edges descriptor
can be seen as a simplified version of EH, where the number of edges of an image along ver-
tical, horizontal, 35◦, 135◦, non-directional, and all directions are counted and represented
as a descriptor. Our implementation of the IC follows the details presented in [41].

We used SentiBank [15] to extract ANPs. Each image was annotated with the 10 ANPs
with the highest probability. The ANPs descriptor has a dimensionality of 2089 (i.e., the
number of pairs that can be identified by SentiBank), and the probability for each ANP was
used as a feature. For each image, we divided each of the 10 ANP into adjective and noun,
and computed the average of the probabilities (considering how many times each adjective
or noun occurs in the image) to create the Adjectives and Nouns descriptors. Finally, the
semantic tags were obtained automatically, using the Clarify API deep learning pre-trained
General model [117], to avoid relying on human-generated tags. The General model com-
putes the probability of the presence of relevant general concepts in the image. It is able
to identify over 11,000 concepts within an image, but the set of possible concepts is not
known a priori. Furthermore, each image can only be annotated with at most 200 concepts.
To devise the final set of most relevant concepts among the possible 11,000 general con-
cepts identified by the model, we annotated each image from all the datasets used in our
study (with 200 concepts). The probability given to each concept for each image is used as
a feature to create the GC descriptor.

4.2 Descriptor Extraction

Before computing any descriptor, we first resized each image to a maximum of 400 pixels
on their larger dimension (width or height), keeping the original aspect ratio. Addition-
ally, images of Digital Imaging and Communications in Medicine (DICOM) format were
converted to the RGB color space (PNG or JPEG format).

Since we did not know a priori which were the best descriptors within each category,
we conducted some preliminary tests. We started by testing each descriptor individually.
All visual descriptors proved to be relevant for at least one dataset used, whereas the GC
descriptor was consistently better than the remaining high-level descriptors (even when we
combined it with the remaining high-level descriptors, those descriptors did not improve the
system performance comparing to using solely GC for any of the datasets).

As mentioned earlier, each type of descriptor usually captures only one aspect of an
image property. Thus, there is no single “best” descriptor that leads to accurate results
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regardless of the setting, which means that a combination of descriptors is usually needed
to provide adequate retrieval results [89]. As such, we tested multiple early fused combina-
tions of descriptors within each category (using the min-max normalization of each feature
before fusing them). Given the high dimensionality of some descriptors, we applied Princi-
pal Component Analysis (PCA) to reduce their dimensionality in all the tests performed. We
tested a different number of principal components to be able to account from 90 to 100%
of the variance. The best result was achieved for 90%. Besides ensuring that the system

Table 1 Summary of the color, shape, texture, and joint descriptors selected to study. The column ‘#’
indicates the feature vector length

Feature # Short Description

Auto Color Correlogram 1024 Color histogram combined with spatial cor-
relation between identical colors

.

Color Histogram 128 HSB Color histogram with 8 bins for hue, 4
for saturation and 4 for brightness.

Itten Contrasts 14 Histogram for saturation (avg., low, middle,
and high), lightness (avg., very light, light,
middle, dark, and very dark), hue (avg.,
warm and cold), and contrast.Color

Opponent Histogram 64 Combination of 1D histograms based on
the channels of the opponent color space,
where O1 and O2 represent color informa-
tion, while O3 represents intensity.

Reference Color Similarity 77 Average pixel color similarity of 77 colors
spaced evenly in HSV color space (18 hues
with 100% and 50% each in saturation and
brightness, plus 5 gray values).

Shape

Edge Histogram 80 5-bin histogram counting edges in vertical,
horizontal, 35◦, 135◦, and non-directional
directions (image divided into 16-equal-
sized, non-overlapping blocks).

Edges 6 Number of edges along vertical, horizontal,
35◦, 135◦, non-directional, and all.

Texture

Haralick 14 Relative frequency distribution that
describes how often one gray tone will
appear in a specific spatial relationship to
another gray tone on the image.

Tamura 18 Histogram for coarseness, contrast, and
directionality.

Joint

Color and Edge Directive Descriptor 144 Histogram that is constituted by 6 regions
determined by texture, where each region
is constituted by 24 individual HSV fuzzy
color regions.

Fuzzy Color and Texture Histogram 192 Histogram constituted by 8 regions deter-
mined by texture (Haar Wavelet), where
which region is constituted by 24 individ-
ual regions resulting from the combination
of YIQ and HSV color fuzzy systems.

Joint Composite Descriptor 168 Combines CEDD and FCTH. It is made up
of 7 texture areas, with each area made up of
24 color regions.
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Table 2 Summary of the semantic descriptors selected to study. The column ‘#’ indicates the feature vector
length

Feature # Short Description

Tags

Adjective-Noun Pairs 2089 Computes the probability for each possible
adjective-noun pair.

Adjectives 231 Computes the probability of the most rele-
vant adjectives from adjective-noun pairs.

Nouns 424 Computes the probability of the most rele-
vant nouns from adjective-noun pairs.

General Concepts 7786 Probability of the presence of relevant gen-
eral concepts (objects, moods, etc.)

was usable in a timely manner, we also improved the discriminative power of the resulting
vector.

4.3 Descriptors DB and similarity comparison

Indexing and Searching plays a fundamental role in Information Retrieval when dealing
efficiently with large collections of data (in our case, image descriptors). Thus, we used NB-
Tree [34], an efficient indexing structure for high–dimensional data points, which exhibits
low insertion and searching times. For the similarity comparison between the descriptor(s)
computed for the query image and those available at the descriptors database, we used the
k-Nearest Neighbors (kNN) query provided by the NB-Tree. kNN is commonly used in
content–based retrieval, and we chose this implementation since it takes advantage of the
indexing structure, which was optimized for high–dimensional data points. As expected, the
smaller the distance between the descriptor(s) of the query image and the descriptor(s) of
each retrieved image, the more similar the images are. Note that the NB-Tree was used both
in our dynamic late-fusion CBIR solutions and in the state of the art early and late-fusion
techniques (used for comparison in the experimental tests performed), as the kNN algorithm
and indexing structure.

5 Experimental setup

In this section, we present our experimental setup, in terms of: 1) the datasets in which
we performed our experiments; 2) the similarity measures tested as a loss function for the
update of experts’ weights; 3) the state of the art early and late fusion techniques under
comparison; 4) the evaluation metrics used to report and analyze the performance of each
retrieval system; 5) the computing infrastructure in which we ran our experiments.

5.1 Datasets

Experiments were conducted on 13 benchmark datasets divided into three main categories:
Biomedical, Real, and Sketch (see Table 3).

In the Biomedical category, we used BRAINCE-MRI, BREAKHIS, COVID19-RX,
HAM10000, IRMA, and PLANTPATHOLOGY datasets. They depict brain and breast tumors,
COVID-19, bone fractures, pneumonia, pigmented skin lesions, and leaf diseases (see
Fig. 5). BRAINCE-MRI contains 3064 T1-weighted contrast-inhanced images of three types
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of brain tumor: glioma, meningioma, and pituitary. BREAKHIS contains 7909 Histopatho-
logical images of benign breast tumors (adenosis, fibroadenoma, phyllodes tumor, and
tubular adenona), and breast cancer (carcinoma, lobular carcinoma, mucinous carcinoma,
and papillary carcinoma). COVID19-RX contains 3886 chest X-ray images for COVID-
19 positive cases along with normal and viral Pneumonia images. HAM10000 contains
10015 multi-source dermatoscopic images of pigmented skin lesions: actinic keratoses
and intraepithelial carcinoma/bowen’s disease, basal cell carcinoma, benign keratosis-like
lesions, dermatofibroma, melanocytic nevi, melanoma, and vascular lesions. IRMA, from
ImageCLEF initiative, contains 14410 images of scanned X-rays of various human body
parts. PLANTPATHOLOGY contains 1821 high-quality, real-life symptom images of apple
foliar diseases, with variable illumination, angles, surfaces, and noise.

In the Real category, we used COPYDAYS, COREL1K, COREL10K, and GHIM10K
datasets, which depict realistic images of diverse aspects of everyday life (see Fig. 6). COPY-
DAYS contains 3212 personal holidays photos that were artificially manipulated (cropped,
scaled, and strongly attacked). COREL1K contains 1000 images depicting African peo-
ple, beaches, buildings, buses, dinosaurs, elephants, flowers, foods, horses, and mountains.
COREL10K contains 10000 images representing buildings, sunsets, fish, flowers, cars,
mountains, tigers, etc. GHIM10K contains 10000 images depicting cars, insects, mountains,
ships, sunsets, etc.

In the Sketch category, we used $P, IMISKETCHS, and MCALI (see Fig. 7). These datasets
have a large variety in the types of symbols represented (e.g. digits, furniture, mathematical,
smiles), and the way they were drawn. $P contains 4802 images, drawn by 10 users, with
gestures (multi-stroke without rotation) representing geometric shapes, letters or symbols;
IMISKETCHS contains 1871 images of furniture symbols (e.g., doors, or tables) drawn with
multi-stroke and rotation; MCALI contains 8159 symbols, drawn by 17 users, with gestures
(with multi-stroke and rotation) representing geometric shapes, smiles, generic symbols and
letters.

Table 3 Summary of the datasets

Ref. Dataset #Images #Categories #Relevant

Biomedical

[23] BRAINCE-MRI 3064 3 708 - 1426

[90, 91] BREAKHIS 7909 8 444 - 3451

[24] COVID19-RX 3886 3 1200 - 1345

[102] HAM10000 10015 7 115 - 6705

[68] IRMA 14410 193 1 - 2343

[99] PLANTPATHOLOGY 1821 4 91 - 622

Real

[43] COPYDAYS 3212 157 20 - 24

[55, 111] COREL1K 1000 10 100

[59] COREL10K 10000 100 97 - 103

[59] GHIM10K 10000 20 500

Sketch

[108] $P 4802 16 299 - 301

[40] IMISKETCHS 1871 13 43 - 372

[109] MCALI 8159 24 339 - 340
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Fig. 5 Example images from the Biomedical datasets. (figure best seen in color)

5.2 Similarity Measures

In order to compute the loss for each expert in our late fusion solution with expert advice,
we tested four measures to quantify how similar the sets of relevant and retrieved images
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are: Jaccard index [42] (8), Otsuka-Ochiai coefficient [70, 72] (9), Overlap coefficient [74]
(10), and Sørensen-Dice index [31, 95] (11).

jaccard =
∣
∣relevant ∩ retrieved

∣
∣

∣
∣relevant

∣
∣ + ∣

∣retrieved
∣
∣ − ∣

∣relevant ∩ retrieved
∣
∣

(8)
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∣
∣
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sorensenDice = 2
∣
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∣
∣

∣
∣relevant

∣
∣ + ∣

∣retrieved
∣
∣

(11)

Sørensen-Dice and Jaccard are more rigid measures since they penalize the existence
of more retrieved images than relevant ones, and vice-versa. Otsuka-Ochiai is a less rigid
measure than the aforementioned ones since it penalizes less the existence of different car-
dinalities between the sets of retrieved and relevant images, so it can be seen as a more
balanced measure. Finally, Overlap prioritizes the existence of retrieved images that are

Fig. 6 Example images from the Real datasets. (figure best seen in color)
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Fig. 7 Example images from the Sketch datasets. (figure best seen in color)

relevant, even though the cardinality of the sets differs, thus being the least restrictive
measure.

5.3 State of the art fusion techniques

To assess the quality of the ensemble of CBIR systems produced by our technique, we
compared it to well-known state of the art fusion techniques.

The first technique is the widely used early fusion of the descriptors, followed by PCA
to reduce the high dimensionality of the resulting feature vector (EF). Since we wanted to
ensure that our technique performs as well as early fusion, we used EF as a baseline in
our work. Following, we considered two late fusion techniques to combine the results of
multiple CBIR systems. Let D be the set of all images in the database, and i an image from
this set (i ∈ D). Each CBIR j returns a list of the most similar images to the query one
(Lj ), where each image i contains its normalized similarity score (representing how similar
it is to the query image) denoted as Sj (i). The goal of each late fusion method is to produce
a final ranked list (Lf ).

Late fusion techniques are usually split into two major groups: (i) order based rank list
fusion and (ii) similarity score-based rank list fusion. For the first group, we implemented a
method based on the frequency of occurrence of each image inLj (FreqRankLF) [62].Lf is
sorted by descending order of the frequency of images. For the second one, we implemented
a method based on the similarity score (SimRankLF) [69]. The scores Sj (i) are arranged in
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ascending order and the final list Lf is generated. If an image is present in more than one
Lj , the lowest score is considered in the merging process.

5.4 Retrieval metrics

To evaluate the performance of our approach, we used precision (12), recall (13), F1 score
(14), and AveP (15). Precision allows us to identify the percentage of retrieved images that
are relevant, while recall allows us to obtain the percentage of relevant images that are
successfully retrieved. F1 score combines both precision and recall measures in a balanced
way (i.e., both metrics are evenly weighted). AveP evaluates whether all of the relevant
images retrieved are ranked higher (or not).

All the results are reported in terms of the average precision at the top-10 retrieved
images (avgP@10), average F1 score (avgF1), and the mean Average Precision (mAP ).
For each query, the number of retrieved results is set to be equal to the number of relevant
images for that query. Images belonging to the same category within the same dataset are
considered as relevant. With this setup, precision and recall are equal to the F1 score, thus
we did not report them individually.
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∣
∣relevant ∩ retrieved

∣
∣

∣
∣retrieved

∣
∣

(12)
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∣
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∣
∣

∣
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∣
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)

∣
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∣
∣

(15)

5.5 Computing infrastructure

All the experiments were carried out on the same PC, running Arch Linux 5.12.7, with an
Intel Core i7-8700 3.20GHz CPU, 64GB of memory, and two GeForce RTX 2080 8GB
GDDR6.

6 Experimental results

In this section, we report the performance of our expert-based solutions. Recall that the
ExpertosLF V encompasses four CBIR systems as experts: color (ACC, CH, IC, OH,
and RCS), shape (EH and Edges), texture (Tamura and Haralick), and joint
(CEDD, FCTH, and JCD - combines color, shape, and texture information into a single
expert). in ExpertosLF VS, a fifth CBIR expert was added to represent the semantic
information (GC). We considered the similarity measures presented in Section 5.2 to
update the experts’ weights. We report the best one for each solution, although overall the
difference between the different measures is negligible.

We compared the performance of each solution to the following state of the art fusion
techniques: a) early fusion of all the descriptors that compose our experts (EF); b) late
fusion of the experts’ results using frequency (FreqRankLF); c) late fusion of the experts’
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results using similarity (SimRankLF). we analysed our expert-based solutions in an online
setting, in which we assumed user feedback is always available (Section 6.1), and in an
offline setting, in which we assumed that feedback is no longer available (Section 6.2).

6.1 Online setting

We started by shuffling each dataset and randomly select 1000 images to be used as queries.
After each query, the weights of each CBIR expert in each expert-based CBIR solution were
updated according to how relevant the retrieved images were.

6.1.1 Biomedical

In Tables 4 and 5, we present, respectively, the results for the ExpertosLF V and
ExpertosLF VS solutions, and the best CBIR expert in each ensemble, and the afore-
mentioned state of the art techniques, for comparison purposes.

For ExpertosLF V, the best individual CBIR systems are shape and color. For
the majority of the datasets, ExpertosLF V performs as well as the best individual
CBIR, outperforming it in the HAM10000 dataset. When we include the semantic CBIR
in the ensemble, the results achieved by ExpertosLF VS are very similar to the ones
obtained by ExpertosLF V. The only exception is the PLANTPATHOLOGY dataset, which
benefits from using the semantic expert. SorensenDice metric shows better results for
ExpertosLF V, while Overlap is equally useful when we add semantic information.

In Fig. 8, for each dataset, we present the evolution of the weights for each expert in
the ExpertosLF V and ExpertosLF VS solutions, and the evolution of the F1 over the
queries. Overall, both solutions converge quickly to the best individual expert. An interest-
ing exception is COVID19-RX, for which ExpertosLF VS converges to a combination
of three experts: shape, joint, and semantic. With this, we are able to achieve bet-
ter results than the ones provided by the best expert individually (an increase of ≈ 0.02 for
avgF1 and mAP ).

To compare the different fusion techniques per domain, we report the difference between
our technique and the remaining ones (Δ), averaged across the datasets of each domain.
ExpertosLF V and ExpertosLF VS usually return more relevant images at the top of
the retrieved set of images. This is also supported by an avgP@10 better than the avgF1

1,
with an increase varying from 0.14 (BRAINCE-MRI) to 0.41 (BREAKHIS). The early fusion
of all experts (EF) is slightly better than ours when focusing on the top ten retrieved images
(ΔavgP@10 = −0.04 ± 0.07); while for the remaining metrics, they perform similarly
(ΔavgF1 = 0.01 ± 0.02, ΔmAP = 0.00 ± 0.02). The performance of our proposed tech-
nique surpasses both FreqRankLF (ΔavgP@10 = 0.48 ± 0.09, ΔavgF1 = 0.05 ± 0.04,
ΔmAP = 0.07 ± 0.06) and SimRankLF (ΔavgP@10 = 0.11 ± 0.09, ΔavgF1 =
0.06 ± 0.04, ΔmAP = 0.07 ± 0.06).

6.1.2 Real

The results for ExpertosLF V and ExpertosLF VS solutions, best CBIR expert in each
ensemble, and fusion techniques are presented in Tables 6 and 7.

1Notice that, in our scenario, avgF1 would be equal to the avgP recision and avgRecall.
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Table 4 Results for Biomedical datasets using only visual descriptors. Bold values indicate the best results

Dataset Method Metric avgP@10 avgF1 mAP

BestExpert (texture) - 0.67 0.53 0.35

EF - 0.83 0.49 0.33

BRAINCE-MRI FreqRankLF - 0.54 0.50 0.28

SimRankLF - 0.60 0.46 0.26

ExpertosLF V Jaccard 0.67 0.53 0.35

BestExpert (color) - 0.78 0.36 0.21

EF - 0.75 0.36 0.20

BREAKHIS FreqRankLF - 0.07 0.35 0.17

SimRankLF - 0.53 0.27 0.11

ExpertosLF V SorensenDice 0.77 0.36 0.21

BestExpert (shape) - 0.87 0.61 0.46

EF - 0.90 0.59 0.45

COVID19-RX FreqRankLF - 0.34 0.54 0.40

SimRankLF - 0.81 0.55 0.37

ExpertosLF V SorensenDice 0.87 0.61 0.46

BestExpert (color) - 0.68 0.52 0.38

EF - 0.71 0.53 0.38

HAM10000 FreqRankLF - 0.04 0.50 0.23

SimRankLF - 0.68 0.52 0.39

ExpertosLF V Overlap 0.70 0.52 0.37

BestExpert (shape) - 0.68 0.39 0.28

EF - 0.69 0.39 0.30

IRMA FreqRankLF - 0.05 0.22 0.09

SimRankLF - 0.46 0.28 0.16

ExpertosLF V SorensenDice 0.67 0.39 0.28

BestExpert (shape) - 0.44 0.33 0.13

EF - 0.57 0.33 0.14

PLANT PATHOLOGY FreqRankLF - 0.31 0.32 0.11

SimRankLF - 0.47 0.32 0.12

ExpertosLF V OtsukaOchiai 0.54 0.33 0.13

For ExpertosLF V, the best individual CBIR systems are color and joint.
ExpertosLF V performs as well as the best individual CBIR for almost all datasets, and
outperforms the individual expert for COREL1K dataset (except for avgP@10). When
considering semantic information in the ensemble (ExpertosLF VS), semantic expert
becomes the best CBIR system for COREL1K, COREL10K, and GHIM10K. Overall,
Sørensen-Dice and Otsuka-Ochiai similarity measures yield the best results for the majority
of the datasets.

Figure 9 depicts the evolution of the weights for each expert, as well as the evolution of
the F1 over queries. ExpertosLF V and ExpertosLF VS quickly converge to the best
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Table 5 Results for Biomedical datasets using visual and semantic descriptors. Bold values indicate the best
results

Dataset Method Metric avgP@10 avgF1 mAP

BestExpert (texture) - 0.67 0.53 0.35

EF - 0.82 0.49 0.33

BRAINCE-MRI FreqRankLF - 0.47 0.48 0.26

SimRankLF - 0.60 0.47 0.28

ExpertosLF VS Jaccard 0.67 0.53 0.35

BestExpert (color) - 0.78 0.36 0.21

EF - 0.77 0.34 0.18

BREAKHIS FreqRankLF - 0.06 0.29 0.11

SimRankLF - 0.55 0.27 0.11

ExpertosLF VS SorensenDice 0.77 0.36 0.21

BestExpert (shape) - 0.87 0.61 0.46

EF - 0.93 0.62 0.50

COVID19-RX FreqRankLF - 0.48 0.58 0.46

SimRankLF - 0.86 0.59 0.44

ExpertosLF VS Overlap 0.85 0.63 0.48

BestExpert (color) - 0.68 0.53 0.37

EF - 0.71 0.53 0.38

HAM10000 FreqRankLF - 0.04 0.50 0.24

SimRankLF - 0.67 0.51 0.35

ExpertosLF VS Overlap 0.70 0.52 0.37

BestExpert (shape) - 0.68 0.39 0.28

EF - 0.70 0.41 0.31

IRMA FreqRankLF - 0.09 0.30 0.14

SimRankLF - 0.49 0.28 0.17

ExpertosLF VS SorensenDice 0.67 0.39 0.28

BestExpert (semantic) - 0.67 0.39 0.21

EF - 0.63 0.35 0.17

PLANT PATHOLOGY FreqRankLF - 0.36 0.39 0.17

SimRankLF - 0.58 0.37 0.17

ExpertosLF VS OtsukaOchiai 0.67 0.39 0.21

individual expert. The only exception is the COPYDAYS dataset, for which ExpertosLF V
converge to a combination of two experts: color and joint. The result achieved by the
combination slightly outperforms the result of the best expert individually (an increase of
≈ 0.04 for both avgF1 and mAP ). Overall, our ExpertosLF V and ExpertosLF VS
solutions have a very good retrieval performance, in particular, with the inclusion of the
semantic expert. Many relevant images are successfully retrieved, with more relevant
images at the top of the retrieved set (avgP@10 is slightly better than the avgF1 for all
datasets).

11640 Multimedia Tools and Applications (2023) 82:11619–11661



Fig. 8 Evolution of the weights for each expert, and evolution of F1 over queries. (figure best seen in color)

When considering only visual experts, EF performs slightly better than our technique
(ΔavgP@10 = −0.07 ± 0.07, ΔavgF1 = −0.01 ± 0.03, ΔmAP = −0.03 ± 0.06).
Considering both visual and semantic experts, on average, our technique surpasses all
the remaining techniques for all the metrics. In particular, it is considerably better than
SimRankLF (ΔavgP@10 = 0.39± 0.32, ΔavgF1 = 0.38± 0.22, ΔmAP = 0.43± 0.25).
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Fig. 8 (continued)

6.1.3 Sketch

In Tables 8 and 9, the results for the ExpertosLF V and ExpertosLF VS solutions, the
best CBIR expert in each ensemble, and the state of the art fusion techniques are presented.

Considering only visual descriptors, the best individual CBIR systems are shape and
joint. For $P and MCALI datasets, ExpertosLF V performs as well as the best indi-
vidual CBIR, while for IMISKETCHS it outperforms the best individual expert. All datasets
benefit from the inclusion of semantic information in the ExpertosLF VS. Overall,
SorensenDice similarity metric shows better results.

In Fig. 10, we present the evolution of the weights for each expert, and the evolution
of the F1 over queries. For the $P dataset, we can see that the ExpertosLF VS solution
converges to a combination of the best experts: shape and semantic. For IMISKETCHS
dataset, ExpertosLF V solution also converges to a combination of the best experts:
shape and joint. Our solutions return more relevant images at the top of the retrieved set
of images (avgP@10 is always considerably better than the avgF1, with increases varying
from 0.147 (IMISKETCHS) to 0.375 (MCALI)).

The early fusion of all experts, EF, achieves slightly better results when compared to
ours, in particular when considering only visual experts (ΔavgP@10 = −0.09 ± 0.07,
ΔavgF1 = −0.02 ± 0.02, ΔmAP = −0.03 ± 0.01). Compared with the late fusion
techniques, our techniques achieves overall better results, being particularly better than Sim-
RankLF (ΔavgP@10 = 0.38 ± 0.11, ΔavgF1 = 0.21 ± 0.06, ΔmAP = 0.26 ± 0.10)
when considering both visual and semantic experts.

For all the domains under study, when considering both visual and semantic experts,
our late fusion technique achieved, as desirable, similar performance to the baseline
(ΔavgP@10 = −0.03 ± 0.05, �avgF1 = 0.01 ± 0.03, ΔmAP = 0.01 ± 0.04).
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Table 6 Results for Real datasets using only visual descriptors. Bold values indicate the best results

Dataset Method Metric avgP@10 avgF1 mAP

BestExpert (joint) - 0.88 0.74 0.73

EF - 0.89 0.70 0.69

COPYDAYS FreqRankLF - 0.75 0.74 0.62

SimRankLF - 0.82 0.64 0.60

ExpertosLF V SorensenDice 0.88 0.74 0.73

BestExpert (color) - 0.78 0.49 0.40

EF - 0.83 0.55 0.46

COREL1K FreqRankLF - 0.27 0.50 0.32

SimRankLF - 0.40 0.27 0.14

ExpertosLF V Overlap 0.67 0.53 0.40

BestExpert (color) - 0.51 0.22 0.15

EF - 0.59 0.27 0.20

COREL10K FreqRankLF - 0.12 0.21 0.09

SimRankLF - 0.17 0.07 0.03

ExpertosLF V OtsukaOchiai 0.57 0.25 0.11

BestExpert (joint) - 0.58 0.25 0.12

EF - 0.66 0.27 0.14

GHIM10K FreqRankLF - 0.12 0.25 0.10

SimRankLF - 0.24 0.12 0.02

ExpertosLF V SorensenDice 0.57 0.25 0.11

We would like to emphasize that our technique is not expected to always achieve bet-
ter results than the baseline, since it needs a few queries to learn the best ensemble. Yet,
our technique achieved better results than the two late fusion techniques tested: SimRan-
kLF (ΔavgP@10 = 0.25 ± 0.23, ΔavgF1 = 0.19 ± 0.19, ΔmAP = 0.22 ± 0.21) and
FreqRankLF (ΔavgP@10 = 0.44±0.19, ΔavgF1 = 0.03±0.04, ΔmAP = 0.09±0.06).

6.2 Offline setting

Our late fusion technique relies on the existence of feedback from its users to gauge how
well the experts are behaving, but such feedback may not be always available. Thus, we
studied how many queries need to receive feedback from users in order to successfully learn
the best set of weights to apply them in an offline setting (for a given dataset of images).

For each dataset, we used the set of weights learned in the online setting until learn-
ing round X to create the ExpertosLF V and ExpertosLF VS solutions (using our
weighted late fusion technique). We tested multiple X values: 25, 50, 75, 100, 125, 250, 500
and 1000. Contrary to what happens in the online setting, the weights used are always the
same throughout the offline queries, i.e., they are never updated.

In the offline setting, only the remaining images for each dataset are used as queries (i.e.,
we did not consider the images used as learning rounds in the online setting): 800 images for
COPYDAYS, IMISKETCHS, and PLANTPATHOLOGY, 2000 for BRAINCE-MRI, COVID19-
RX, and $P, 6000 for BREAKHIS and MCALI, and 9000 for COREL10K, GHIM10K,
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Table 7 Results for Real datasets using visual and semantic descriptors. Bold values indicate the best results

Dataset Method Metric avgP@10 avgF1 mAP

BestExpert (joint) - 0.88 0.74 0.73

EF - 0.91 0.77 0.75

COPYDAYS FreqRankLF - 0.65 0.66 0.51

SimRankLF - 0.85 0.66 0.63

ExpertosLF VS Jaccard 0.88 0.74 0.73

BestExpert (semantic) - 0.98 0.93 0.92

EF - 0.98 0.92 0.91

COREL1K FreqRankLF - 0.86 0.93 0.89

SimRankLF - 0.78 0.59 0.52

ExpertosLF VS OtsukaOchiai 0.98 0.93 0.92

BestExpert (semantic) - 0.87 0.67 0.61

EF - 0.89 0.67 0.61

COREL10K FreqRankLF - 0.41 0.67 0.52

SimRankLF - 0.25 0.17 0.09

ExpertosLF VS SorensenDice 0.86 0.67 0.61

BestExpert (semantic) - 0.98 0.84 0.81

EF - 0.97 0.76 0.70

GHIM10K FreqRankLF - 0.45 0.84 0.72

SimRankLF - 0.27 0.25 0.10

ExpertosLF VS SorensenDice 0.98 0.84 0.81

HAM10000, and IRMA datasets. We did not use COREL1K because it only has 1000
images.

This way, we ensure that the weights learned in the online setting are independent of
the queries used in the offline setting. Moreover, it allows us to evaluate the quality of
the ensembles learned using different query sizes, in particular, whether the performance
deteriorates with the increase of the number of unseen queries.

6.2.1 Biomedical

Figure 11 depicts the evolution of the F1 for each expert individually and both expert-
based ExpertosLF V and ExpertosLF VS solutions. For BRAINCE-MRI (Fig. 11a),
both ExpertosLF V and ExpertosLF VS surpass the best expert performance using the
weights learnt up toX = 25 and 50, keeping a similar performance after that. For BREAKHIS

(Fig. 11b) and IRMA (see Fig. 11d), both ExpertosLF V and ExpertosLF VS achieve
a similar performance as the best expert for X = 50. For COVID19-RX (Fig. 11c),
ExpertosLF V performs similarly to the performance of the best expert for X = 25.
ExpertosLF VS also performs similarly to the best expert for X = 25, and it ends up sur-
passing it (best performance achieved for X = 100 with an avgF1 of 0.627 against 0.605 of
that expert shape). HAM10000 (Fig. 11e) and PLANTPATHOLOGY (Fig. 11f) are the ones
for which our solution takes the longest to converge. In HAM10000, ExpertosLF VS
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Fig. 9 Evolution of the weights for each expert, and evolution of F1 over queries. (figure best seen in color)

does not converge for the best expert performance untilX = 1000, while for PLANTPATHOL-
OGY, ExpertosLF V converges at X = 500. For the remaining datasets, our solutions
converge at X = 50 (PLANTPATHOLOGY) and 75 (HAM10000).
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Table 8 Results for Sketch datasets using only visual descriptors. Bold values indicate the best results

Dataset Method Metric avgP@10 avgF1 mAP

BestExpert (shape) - 0.94 0.58 0.50

EF - 0.95 0.62 0.54

$P FreqRankLF - 0.24 0.45 0.28

SimRankLF - 0.88 0.44 0.31

ExpertosLF V OtsukaOchiai 0.94 0.58 0.50

BestExpert (joint) - 0.43 0.33 0.16

EF - 0.57 0.34 0.19

IMISKETCHS FreqRankLF - 0.27 0.33 0.20

SimRankLF - 0.50 0.29 0.14

ExpertosLF V Overlap 0.48 0.34 0.17

BestExpert (shape) - 0.52 0.21 0.10

EF - 0.59 0.24 0.13

MCALI FreqRankLF - 0.06 0.18 0.06

SimRankLF - 0.48 0.16 0.06

ExpertosLF V SorensenDice 0.43 0.21 0.10

Table 9 Results for Sketch datasets using visual and semantic descriptors. Bold values indicate the best
results

Dataset Method Metric avgP@10 avgF1 mAP

BestExpert (semantic) - 0.97 0.68 0.61

EF - 0.97 0.70 0.63

$P FreqRankLF - 0.36 0.68 0.51

SimRankLF - 0.62 0.42 0.24

ExpertosLF VS Overlap 0.89 0.70 0.61

BestExpert (semantic) - 0.74 0.42 0.28

EF - 0.75 0.42 0.29

IMISKETCHS FreqRankLF - 0.33 0.42 0.26

SimRankLF - 0.36 0.26 0.10

ExpertosLF VS SorensenDice 0.74 0.42 0.28

BestExpert (semantic) - 0.82 0.44 0.33

EF - 0.83 0.44 0.34

MCALI FreqRankLF - 0.16 0.44 0.26

SimRankLF - 0.33 0.25 0.11

ExpertosLF VS SorensenDice 0.82 0.44 0.33
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6.2.2 Real

In Fig. 12, we present the evolution of the F1 for each expert individually, and both expert-
based solutions (ExpertosLF V and ExpertosLF VS). For all datasets, the weighted
ensembles obtained from our expert-based solutions very quickly achieve the performance
of the best individual expert.

In COPYDAYS (Fig. 12a) and COREL10K (Fig. 12b), ExpertosLF V achieves a per-
formance similar to that of the best expert for X = 25; for COREL10K, ExpertosLF VS
also achieves a similar performance for X = 25, while for COPYDAYS, it does so for X

= 100, and it performs even better for X = 75. In GHIM10K (Fig. 12c), ExpertosLF V
achieves the best performance for X = 75, being marginally better at X = 150, while
ExpertosLF VS quickly converges to the best expert at X = 25.

Fig. 10 Evolution of the weights for each expert, and evolution of F1 over queries. (figure best seen in color)
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Fig. 11 Biomedical: PLANTPATHOLOGY (Q = 800), BRAINCE-MRI, COVID19-RX (Q = 2000), BREAKHIS

(Q = 6000), and IRMA and HAM10000 (Q = 9000). (figure best seen in color)

Fig. 12 Real. COPYDAYS (Q = 800), COREL10K, and GHIM10K (Q = 9000). (figure best seen in color)
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6.2.3 Sketch

Figure 13 depicts the evolution of the F1. Once again, for all datasets, the ensembles learnt
with our solutions very quickly achieve (or surpass) the performance of the best individual
expert. For $P (Fig. 13a), IMISKETCHS (Fig. 13b), and MCALI (Fig. 13c), ExpertosLF V
achieves the performance of the best expert for X = 25, and surpasses it for X = 50 (for
IMISKETCHS) and 75 (MCALI). ExpertosLF VS achieves the best expert’s performance
for X = 50 for IMISKETCHS, X = 25 for $P (surpassing the best expert performance for X

= 125), and X = 25 for MCALI.
To sum up these results: in the online setting, for all the domains under study, our

late fusion technique achieves similar results to the early fusion of all the experts (with
the exception of the avgP@10 metric), and surpasses the FreqRankLF and SimRan-
kLF late fusion techniques. We also validated that our solutions, ExpertosLF V and
ExpertosLF VS, converge to the performance of the best experts individually, surpass-
ing them in some cases. For the offline setting, the weighted ensembles obtained from our
solutions very quickly achieve (or surpass) the performance of the best individual expert for
almost all datasets.

7 Discussion

In this section, we discuss the results obtained in our experiments in the light of our research
questions.

RQ1) Does our late fusion technique improves retrieval performance?

Our late fusion technique achieved similar or better results than the baseline (EF), and
surpassed the FreqRankLF and SimRankLF late fusion techniques.

We believe that our technique achieves best results because we acknowledge the subjec-
tivity of human perception of image similarity by including human annotators in the loop
to learn which CBIR systems are more suitable for the different domains. Furthermore, the
fact that the best performing CBIR systems vary across domains illustrates how task depen-
dency affects the quality of the retrieval results: if, instead of using our dynamic ensemble of
CBIR systems, one had committed to a single CBIR system, it would perform inconsistently
across domains/tasks.

Fig. 13 Sketch. IMISKETCHS (Q = 800), $P (Q = 2000), and MCALI (Q = 6000). (figure best seen in color)
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Moreover, our technique allows to create ensembles adapted to each domain without
introducing an overhead of time in the retrieval process. To assess this, we considered the
larger datasets for each domain using visual and semantic experts. We performed five runs
to collect the average elapsed time of each query for each dataset and fusion technique,
which we report in Fig. 14.

Our technique is more efficient at performing a query than FreqRankLF and SimRankLF.
It takes a little longer at computing results than the baseline (EF), but the creation (extraction
and indexation of the descriptors) of the CBIR system for the baseline is slower than for any
of the late fusion techniques (e.g., for the IRMA dataset, creation with the late fusion takes
around 20 hours, and with early fusion 27 hours).

RQ2) Does the resulting ensemble perform as well as the best individual CBIR?

As we have seen across the different domains for all the datasets under evaluation, our late
fusion solutions based on expert advice indeed quickly converged to the performance of
the best CBIR expert. They usually needed fewer than 25 queries to converge to the most
suitable combination of weights for the CBIR experts.

Our solutions were also very quick to re-adapt the weights distribution to follow
the current best CBIR. This can be observed on the plots depicting the evolution of
the F1 over queries. For the majority of the datasets, our solutions achieved (or sur-
passed) the precision of the best CBIR expert(s) at a recall cut-off of 0.1 (BREAKHIS,
PLANTPATHOLOGY, COPYDAYS, COREL1K, COREL10K, GHIM10K, IMISKETCHS, and
MCALI), 0.2 (BRAINCE-MRI, and COVID19-RX), or 0.3 (IRMA).

We observed a possible limitation of our technique: it tends to converge to a single expert
in the ensemble, even if a combination of multiple experts yielded better results in previous
iterations. This may be explained by the exponential behavior of EWAF, which tends to
favor the highest weighted expert over the remaining ones. We believe the same effect may
happen with other late fusion techniques.

Fig. 14 Average elapsed time of performing a query on the datasets IRMA, GHIM10K, and MCALI, using
different fusion approaches. (figure best seen in color)
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RQ3) Can we use the ensemble learned in an online setting in an offline setting?

The ensemble learned using our weighted late fusion technique, for each dataset across
the three domains under study, was successfully applied to an offline scenario, in which
we did not have feedback available. The expert-based solutions (used to learn the weights)
only needed to receive feedback on how good the retrieved results are for approximately 25
queries for the Real and Sketch domains, and around 50 queries for the Biomedical domain.
After that, it is ready to be used in an offline scenario.

RQ4) Are the CBIR experts in the resulting ensemble plausible considering the
domain in hand?

In Fig. 15, we present an overview of the CBIR experts weights’ distribution for the
ExpertosLF V and ExpertosLF VS solutions considering either only CBIR visual
experts or the combinations of visual and semantic CBIR experts. We considered the com-
binations of weights of each CBIR expert at the first iteration for which they converged to
(or surpassed) the performance of the best CBIR expert. Each horizontal bar encodes the
distribution of the weights of each expert for each dataset. As we can see, the best experts
vary across the different domains.

Leveraging on the interpretability associated with each ensemble, we provide a thorough
and detailed analysis of each solution. Our aim is to demonstrate that the distribution of
the weights for the experts across the domains is plausible and well-rooted on the type of
images within each dataset.

In the Biomedical domain, and considering only the use of visual descriptors, BRAINCE-
MRI is well described by the texture expert with a slight contribution of the remaining
visual experts. This result can be explained by the fact that the images are gray-level with
brain and tumors’ shapes being roughly similar (they may vary in size), thus, there is little
color, shape or joint information available. As a result, mainly texture information is able
to successfully account for differences on tissue characteristics, such as calcifications, fat,
cysts, contrast enhancement, or signal intensity.

BREAKHIS and PLANTPATHOLOGY datasets are best discriminated only by the color
expert. These results can be explained, respectively, by the kind of differences observed in
images regarding the tissue of different breast tumors (BREAKHIS) or how the leaves change
with the foliar diseases (PLANTPATHOLOGY). BREAKHIS presents images in shades of
pink, white, and purple to represent what percent of the tumor forms normal duct structures,
how larger, darker, or irregular the cell nucleus is, and how many cells exist. PLANT-
PATHOLOGY depicts images mainly in shades of green where the visual symptoms of a
disease vary greatly between varieties, but color plays a major role in differentiating them.
For example, in apple scab, the initial infection appears as black or olive-brown lesions,
while in cedar apple rust, early symptoms of the disease are small, light yellow spots on
leaves, that will expand and turn into bright orange ones.

COVID19-RX, IRMA, and HAM10000 are better described by the shape expert. The
latter also slightly benefits from the inclusion of the remaining experts, in particular the
joint one. Both COVID19-RX and IRMA depict gray-level images where mainly the size
and shape of either the opacities and pleural abnormalities of the organs under study, respec-
tively, differ significantly. Color could also be relevant to capture the density of the whiter
pixels in the COVID19-RX dataset. Overall, our results are in line with the characteristics
of the images. HAM10000 depicts images of skin lesions with different shapes in tones
of pink (for the skin) and combinations of pink, brown, and black (for the lesion itself).
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Fig. 15 Distribution of the experts weights per dataset. (figure best seen in color)

Moreover, there is little texture information available in the images. It is widely known
that color in skin lesions provide important morphologic information (melanin is the most
important chromophore in pigmented skin lesions), however, our solution failed to cap-
ture that when using only visual experts: only the shape of the lesion itself was useful to
distinguish among types of lesions.

The inclusion of the semantic tags expert was useful to half of the Biomedical
datasets: COVID19-RX, HAM10000, and PLANTPATHOLOGY. We believe this is due to the
semantic richness of the identified terms: although they may not be suited to the domain,
they may be sufficiently distinct to discriminate the images and improve the performance
of the retrieval task. Interestingly, the inclusion of semantic information made the system
adjust itself in a way that, in addition to the semantic tags, it benefits from color
and joint experts for the HAM10000, and shape and joint for COVID19-RX. These
results are in line with what we believe it would be expected considering the characteristics
of the images of those datasets as described above.

In the Real domain, datasets are best described by either color (COREL10K),
joint information (COPYDAYS), or the combination of both (COREL1K and GHIM10K).
COREL1K also slightly benefits from the contribution of texture and shape experts. These
results are not surprising, since all datasets depicts natural colored images with diverse col-
ors, shapes, and textures. The inclusion of the semantic information majored almost all
datasets. These results were also expected since the semantic richness of the tags (which
describes objects, people, emotions, events, etc.) is much more powerful than just the visual
content of the images. For the COPYDAYS dataset, it is useful to use both visual (shape
and joint) and semantic information. We believe this is due to the fact that several images
have been heavily manipulated (scaled, decreased image quality, and parts of the image
painted or blurred). Thus, for many images, the semantic information is less discriminative.

In the Sketch domain, datasets are best discriminated by shape ($P), or a combina-
tion of shape and joint information (IMISKETCHS and MCALI). The latter datasets, in
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particular the IMISKETCHS, benefit slightly from the inclusion of the remaining visual
experts. All datasets depict black and white images representing numbers, geometrical
shapes, furniture, mathematical symbols, among others. As expected, shape plays an impor-
tant role in our expert-based solution (demonstrated by the use of both the shape and
joint expert). Similar to the Real domain, the inclusion of semantic information majored
our solution for the IMISKETCHS and MCALI datasets, and we believe it happens for the
same reasons. The $P dataset benefits from the use of semantic information combined with
shape.

Figure 16 depicts the difference between the performance achieved by our solution when
using both visual and semantic experts and the performance achieved by using only visual
experts. As we can see, the Biomedical domain is well described using mainly visual CBIR
experts. while the Real and Sketch ones benefit from the use of semantic information.

8 Conclusions and future work

We presented a novel late fusion technique using online learning and prediction with expert
advice to the problem of combining, in a dynamic fashion, the best types of descriptors to
discriminate images in a CBIR scenario, regardless of the dataset or domain in hand. We
did so by leveraging on relevance feedback that may be available in a realistic scenario.

Our late fusion solutions based on expert advice were indeed able to quickly learn the
best descriptor sets in three distinct domains (Biomedical, Real, and Sketch), spanning a
total of 13 benchmark datasets. The expert-based solutions achieved similar performance
to that of the early fusion of all the experts, and surpassed existing state of the art late
fusion techniques (FreqRankLF and SimRankLF). The expert-based solutions were also

Fig. 16 Difference between the ExpertosLF VS solution with visual and semantic experts and the
ExpertosLF V solution using only visual experts performance. Darker shades of green mean that the
performance of ExpertosLF VS is better than ExpertosLF V. (figure best seen in color)
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more efficient than state of the art techniques with similar or better results. Moreover, our
solutions guaranteed that the retrieval performance was as good as the best CBIR system in
the ensemble. Finally, the ensembles learnt through our approach also proved useful in an
offline setting (i.e., when human feedback is no longer available).

In this work, we focused mainly on low- and high-level descriptors (instead of using,
for instance, CNN layers), since we intended to 1) ensure that the resulting ensembles were
interpretable, and 2) study how the use of different kinds of information (visual or semantic)
varied across the different domains, and whether the resulting ensemble reflected it. For
future work, neural descriptors could also be included in the ensemble, since our technique
is model-agnostic, modular, and scalable.

Another line of future work to be explored is that of the online learning frameworks.
The framework used in this work, prediction with expert advice, assumes that the forecaster
learns both its own loss and the loss of each expert after the environment’s outcome is
revealed (i.e., that the set of the most relevant images for a given query is known). However,
this may not always be the case in CBIR. Thus, we intend to explore a related class of
problems, multi-armed bandits [51, 84], in which the environment’s outcome is unknown,
and only the forecaster learns its own loss , i.e., only the expert chosen by the forecaster
receives feedback regarding its set of retrieved images.
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