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Abstract
The outbreak of novel coronavirus (COVID-19) disease has infected more than 135.6
million people globally. For its early diagnosis, researchers consider chest X-ray exam-
inations as a standard screening technique in addition to RT-PCR test. Majority of
research work till date focused only on application of deep learning approaches that is
relevant but lacking in better pre-processing of CXR images. Towards this direction, this
study aims to explore cumulative effects of image denoising and enhancement ap-
proaches on the performance of deep learning approaches. Regarding pre-processing,
suitable methods for X-ray images, Histogram equalization, CLAHE and gamma correc-
tion have been tested individually and along with adaptive median filter, median filter,
total variation filter and gaussian denoising filters. Proposed study compared eleven
combinations in exploration of most coherent approach in greedy manner. For more
robust analysis, we compared ten CNN architectures for performance evaluation with and
without enhancement approaches. These models are InceptionV3, InceptionResNetV2,
MobileNet, MobileNetV2, Vgg19, NASNetMobile, ResNet101, DenseNet121,
DenseNet169, DenseNet201. These models are trained in 4-way (COVID-19
pneumonia vs Viral vs Bacterial pneumonia vs Normal) and 3-way classification scenario
(COVID-19 vs Pneumonia vs Normal) on two benchmark datasets. The proposed
methodology determines with TVF + Gamma, models achieve higher classification
accuracy and sensitivity. In 4-way classification MobileNet with TVF + Gamma
achieves top accuracy of 93.25% with 1.91% improvement in accuracy score, COVID-
19 sensitivity of 98.72% and F1-score of 92.14%. In 3-way classification our
DenseNet201 with TVF + Gamma gains accuracy of 91.10% with improvement of
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1.47%, COVID-19 sensitivity of 100% and F1-score of 91.09%. Proposed study con-
cludes that deep learning modes with gamma correction and TVF + Gamma has superior
performance compared to state-of-the-art models. This not only minimizes overlapping
between COVID-19 and virus pneumonia but advantageous in time required to converge
best possible results.

Keywords Deep learning . Chest X-ray . COVID-19 analysis . Image enhancement . Image
denoising . Pneumonia classification

1 Introduction

Coronavirus disease 2019 (COVID-19) [49], has been declared a global epidemic by WHO
within fewer than four months when 3.3 million confirmed and 238,000 deaths were reported
as of 2nd May 2020. COVID-19 disease was instigated by SARS CoV-2 and till 12 April,
2021, WHO reports depict, there have been 135,646,617confirmed cases with 2,930,732
confirmed deaths globally [72]. Due to absence of adequate knowledge related disease and
its enormously contagious behaviour, it is extremely important to stop its spreading and to
explore diverse methodologies that can help in the early classification of COVID-19. Globally,
many researchers of Artificial Intelligence, medicine, clinical study and others have been
trying to find out different methods for classification that helps to prevent spreading of
COVID-19 virus and any such epidemic in future. Preliminary testing approach RT-PCR
(“Reverse-transcriptase polymerase chain reaction”) shows less sensitivity [69] for COVID-19
but on the other hand radiological examinations were found very helpful in diagnosis and
assessment of disease progression. Most scientific studies worldwide revealed that symptoms
of COVID-19 can be clearly seen in CXR and CT images of lungs [5]. CT (Chest-computed
tomography) is most popular and effective technique for lung related infection, but it is
expensive. Screening of CT images for COVID-19 diagnosis shows higher sensitivity [34]
compared to preliminary testing procedure RT-PCR [29, 69]. But, due to unpredicted increase
in COVID-19 prevalence it is tough to make regular use of CT because of its portability and
expensiveness. Thus, CXR images are usually preferred to detect infection attacks of COVID-
19. Earlier CXR images were commonly used to diagnose pneumonia, abscesses, Tuberculosis
[7], lung inammation and enlarged lymph nodes [26]. Radiological studies presented that due
to similarity in pneumonia and COVID-19 [5] virus, most patients of COVID-19 were
diagnosed with pneumonia. So, it is important to develop techniques that can easily distinguish
between viral pneumonia, COVID-19 pneumonia and bacterial pneumonia [1] as crucial for
future preventive measure against such deadly epidemic.

To make healthcare systems more proficient to deal with such epidemic situations, Bio-
medical image analysis is a significant research field. Recent radiological studies depicted
certain abnormalities [5] in CXR of patients diagnosed COVID-19 and pneumonia. Even CXR
analysis can help in epidemic situation to determine the patients having high risk to give
priority treatment. Accordingly, many deep learning models have been used by researchers
that help in classification of CXR [3, 6, 9, 15, 58] and CT images [51, 74, 75] better than
radiologists. These models have very powerful feature extraction and learning capabilities for
numerous image processing tasks. However, analysis of CT images and video endoscopy [75]
have been successfully achieved by convolutional neural networks more efficiently. Various
comparative studies amongst radiologists and deep learning models have been proposed where
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DL models performed exceptionally well in image analysis tasks [56, 70]. Numerous
convolutional neural network models have been proposed and improved time to time that
helps in extraction of more useful features to analyse large [31, 36, 41, 60] volume of images.
VGG16 model was proposed by Wang et al. [75] particularly for diagnosis of various types of
pneumonia in lung regions. Dense CNN based [56] 121 layers model, proposed by Rajpurkar
et al. to differentiate pneumonia amongst other pathology classes using CXR images.

CheXNet is very popular model proposed using 121 layered CNN architecture trained with
publicly available ChestX-ray14 dataset [55] containing more than 100,000 X-ray frontal-view
images. The performance of the model is compared to radiologists. This study claims that
performance of CheXNet model is superior to that of radiologist’s results based on F-measure
metric. CheXpert [26] is another common study on chest x-ray images driven by deep learning
approaches to gain expert label performance. This study practices on dataset of 224,316 chest
x-ray radiographs obtained from 65,240 patients to distinguish the presence of 14 annotations
in radiological reports. The results obtained on test set were also evaluated by three radiolo-
gists. Deep learning models outperformed the radiologists in diagnosis of several pathologies
like edema, cardiomegaly, and pleural effusion etc. in CXR images [26, 29]. Since, deep
learning approaches have been used on various labelled datasets to gain expert-level perfor-
mance on various types of medical images. Initially only COVID-Net was proposed deep
learning model by Wong and Wang [71] for diagnosis of COVID-19 cases in CXR with 80%
sensitivity. Various deep CNN models including AlexNet, VGG19, Inception, ResNet50,
MobileNetV2, InceptionResNetV2, VGG16, GoogleNet, MobileNet, DenseNet121 and many
more have been used for drawing conclusions from CXR images.

Although, early achievements of deep learning approaches in finding certain irregularities
successfully in CXR images [30] motivated us to examine more about deep CNN architectures
for feasibility analysis of COVID-19 [55] among other pathology classes. In such epidemic
situations, even a small contribution may assist a lot to handle such data in future. Table 1,
represents the abbreviations used in this study. Therefore, primary aim and major contributions
of this study is explained as follows:

1. In the best of author’s knowledge this is first study that cumulatively analysed the effects
of image denoising and image enhancement techniques on benchmark datasets used in
majority of research studies.

2. To find best image pre-processing pipeline using image denoising and image enhance-
ment techniques that improve performance and interpretation of the deep learning models.

3. To find a novel convolutional deep neural network architecture appropriate for finding
COVID-19 cases using CXR images with higher COVID-19 sensitivity.

4. To study the effect of image enhancement techniques on sensitivity of individual classes
and confidence score based on different threshold values.

5. To analyse the effect of image enhancement approaches on interpretation of variousmodels
by building visualization attention maps by gradient weighted class activation mapping.

The whole structure of this article is defined as; In Section 2, we discuss critical review of
existing methodologies for COVID-19 diagnosis. Section 3 discuss about making of dataset by
fusion of different data resources. Section 4 describes proposed methodology to achieve desirable
task followed by class imbalance, classification process and evaluation metrics. In Section 5 we
discuss results obtained by proposed study. Finally, Section 5 ends with a conclusion.
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2 Literature review

With progression in machine intelligence and deep learning approaches in the field of
healthcare assist radiologists in more accurate diagnosis of disease in early stage. In last
decade, deep learning approaches has been widely applicable in diagnosing respiratory
diseases using CXR images. Motivated by early achievements of radiological studies success-
fully, we explore deep learning approaches for classification of COVID-19 infected via CXR
images [9, 51, 55, 58]. For instance, research study proposed in [15], author proposed deep
learning approaches with multi objective optimization technique for diagnosis of COVID-19
patients. Decision tree based J48 approach efficiently identify COVID-19 features on CXR
images. This study performs comparative analysis of 11 CNN models including DenseNet,
ResNet, VGG16, AlexNet and InceptionV3. ResNet101 outperforms others with overall
accuracy and sensitivity of 100% with hyena optimizer for parameter optimization. In study
[73], author proposed anomaly detection method for finding COVID-19 by 100 COVID
samples and 1431 normal samples. This study involves 70 and 1008 COVID-19 and control
participants. The obtained results gain sensitivity of 96 and 76% for COVID-19 and control
examples with EfficientNet as baseline model. Weak pre-processing and class imbalance are
series limitations of study. Another study [12] uses pretrained transfer learning VGG16 model
on balanced dataset for COVID-19 classification against normal and pneumonia CXR sam-
ples. This Study containing corpus of 132 COVID-19, pneumonia and controls samples each.
Obtained results gain 100% sensitivity for diagnosing COVID-19.

In [24], author used AlexNet model to differentiate COVID-19 from control, viral and
bacterial pneumonia cases. This Study considers 2 way, 3-way and 4-way classification
scenarios. In 2-way classification strategy comparison of normal vs COVID-19, bacterial
pneumonia vs COVID-19, normal vs bacterial pneumonia, normal vs viral pneumonia and
in 3-way (COVID-19 vs bacterial pneumonia vs normal) are compared whereas in 4-way
classification scenario all classes are compared to diagnose COVID-19. Proposed model
achieved an accuracy score 91.30% and 89.18% sensitivity in 4-way classification strategy.
In another study [14], author pick Xception model as baseline architecture for finding COVID-
19. Transfer learning model applied on of 500 pneumonia, 500 normal, 127 COVID-19
samples. Proposed model gains an accuracy score 97% for COVID-19 detection. In [22],
author experimented using seven CNN models with limited imbalanced training dataset
comprises of 25 COVID-19 and 50 normal samples. Pretrained models VGG19 and
DenseNet121 achieved best score with F1-measure 0.91 and 0.89 for covid-19 and normal
CXR samples. In Another study [33], Xception architecture is used as baseline for classifica-
tion by using two multiclass datasets. First task contains 4 classes: i) COVID-19 vs. controls
vs. bacterial pneumonia vs viral pneumonia; ii) Second task includes COVID-19 vs normal vs.

Table 1 Abbreviations
Abbreviations Full form

HE Histogram equalization
CLAHE Contrast limited adaptive histogram equalization
BCET Balance contrast enhancement technique
AMF Adaptive median filter
TVF Total variation filter
CAM Class activation mapping
Grad-CAM Gradient weighted class activation mapping
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pneumonia. Also, under-sampling is used to deal with class imbalance. This study contains
corpus of 310 Normal, 290 COVID, 330 and 327 bacterial and viral pneumonia CXR samples.
Moreover, model gain accuracy of 89% and 94% for 4-class and 3-class respectively.

In article [27], hybrid of CNN and LSTM is applied for COVID-19 detection purpose.
CNN is used as feature extractor whereas LSTM plays a vital role for classification purpose.
This experimental study contains 4575 CXR images and three classes (COVID-19, normal and
Pneumonia). Study uses balanced dataset with each class contributes 1525 samples whereas
COVID-19 class contains 912 augmented examples. Hybrid model gain an accuracy score
99% by using 5-fold cross validation. In [40], four CNN models i.e., ResNet50, DenseNet-
121, SqueezeNet, and ResNet18 were used to enable transfer learning. Experimental analysis
involves 5000 no-finding, pneumonia samples and 184 COVID-19. COVID-19 images are
collected using COVID-19 chest-Xray repository. Results indicate 98% sensitivity and 93%
specificity. In [52], again five CNN models i.e., ResNet, Inception, NASNetLarge,
DenseNet169, ResNet-v2 and InceptionV3 as baseline architectures. Study collects subset of
samples from RSNA dataset and compares COVID-19 with normal and pneumonia cases.
Class imbalance is resolved using resampling and entropy-based approach. Study depicts
NesNetLarge gain an accuracy score of 98% and 96% and sensitivity of 90 and 91% in 2-
way and 3-way classification problem. Due to limited availability of COVID-19 examples
models may lead to biased results because of class imbalance. So, another approach was used
in [68] for generating identical images for better training purposes. With support of GAN
(generative adversarial network) artificial examples of CXR images has been generated. This
approach resulted in corpus of 1124 control and 403 COVID-19 images. By data augmentation
technique, author claimed 10% improvement in accuracy from 85% to 95% via VGG16 as
backbone.

Another, comparative study [50] for diagnosis of COVID-19 in 2-class and multiclass
problem used similar dataset used in [14] but compares among COVID-19, normal and
COVID-19, pneumonia and normal cases. In this study DarkNet model is modified, used as
baseline and trained using cross validation technique with K = 5. It gains of 98% and 87%
accuracy in 2-way and 3-way classification. In another approach [67], CapsNet (capsule
networks) model employed for 3-way classification of COVID-19 vs. normal vs pneumonia
and binary classification (normal vs COVID-19). Experimental analysis contains corpus of
pneumonia (1050), COVID (231), and normal (1050) CXR images. To reduce class imbalance
augmentation operations like rotation and shifting are used to increase COVID images to 1050.
Results depict an accuracy score of 97% and 84% for binary and multiclass classification
strategy. In [5], similar transfer learning technique applied using five baseline CNN models –
MobileNetV2, InceptionResNetV2, InceptionV3, VGG19, Xception to distinguish COVID-19
from pneumonia and control examples. Study was carried out in two stages: one containing
COVID (224), control (504) and bacterial pneumonia (700) images and in stage 2 same
COVID and normal data used but contained with 714 new viral and bacterial pneumonia
samples. MobileNetV2 achieves top result with 94% and 96% accuracy score in 3 and 2-class
classification scenario.

Another model is proposed named CovXNet [38] for detection of COVID-19 infection
against other classes by using depth wise CNN model. In phase 1 model is trained using
bacterial, viral pneumonia and control images. Then, transfer learning is used to obtain new
model for COVID-19 training. Study was carried out using two datasets to compare normal vs
COVID-19 cases and COVID-19 vs normal vs viral and bacterial images. CovXNet gains 90%
and 97% accuracy score in 4 and 2-class classification scenario. In study [37], GAN
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architecture was implemented to increase the size of dataset using augmentation technique.
Dataset collected for study comprises 307 images having four different classes: COVID-19,
normal, viral and bacterial pneumonia. AlexNet, Restnet18, GoogleNet were the CNN base-
line models used for classification. GoogleNet model gains best accuracy of 99%. In article
[49], patch-wise processing strategy was introduced to handle limited training data using.
Similar, transfer learning based ResNet-18 was employed for classification network and for
segmentation purpose FCDenseNet model is used. The dataset collected under study includes
180 COVID-19, bacterial (54) and viral pneumonia (20), Normal (191) and Tuberculosis (57)
cases. This patch-based study gain accuracy of 89%. Especially wong and wang et al. [71] in
early studies introduced a deep learning COVID-Net architecture. Experiments performed on
benchmark dataset contains corpus of 13,975 CXR images having pneumonia, control and
only 266 COVID examples. Proposed COVID-Net architecture gains improved sensitivity and
accuracy score of 91% and 93.3% for COVID cases in comparison to ResNet50 and VGG19.
Another popular COVID-19 detector COVID-AID [39] based on DenseNet model having 121
layers experimented on covid-chestxray-dataset for [13] COVID cases. It detects COVID
infection in CXR images with 100% sensitivity score among viral, bacterial pneumonia and
control cases.

In study [6], author performed three individual experiments to differentiate COVID-19
samples from pneumonia and control pathology classes. These experiments were performed
on whole slides, cropped images corresponding to lungs and on lung area segmented using U-
Net. The study includes more than 8573 images of COVID including augmented samples
collected from different repositories. The model achieves top accuracy score of 91.75%. In
article [1], DeTrac model (decompose, transfer and compose) grounded on shallow and deep
transfer learning i.e., GoogLeNet, SqueezeNet, VGG19, ResNet and AlexNet to differentiate
COVID-19 (105) against SARS (11) and normal (80) cases. DeTrac gain an accuracy score of
93.1% for COVID-19 diagnosis. In [53], InceptionResNetV2, Xception, AlexNet and
DenseNet-201, were baseline architectures studied to categorise COVID-19 against normal
and pneumonia cases. DenseNet-201 claimed to be the best baseline model that classify
COVID-19 with accuracy, specificity and sensitivity score as Acc = 98.16%, Sp = 98.77%
and Se = 98.93% respectively. In study [21], author aim to classify CXR images of COVID-
19, pneumonia and normal patients using Optimized CNN. Optimization of hyperparameters
is performed using Greywolf Optimizer algorithm (GWO). The proposed approach contains a
total of 2700 samples including 900 COVID -19 generated with augmentation. It achieves best
accuracy and sensitivity of 97.78% and 97.75%. In another study [48], author used shallow-
CNN for outbreak screening of COVID-19. This model achieved top accuracy score of
99.69%, sensitivity and AUC score of 100% and 99.95% respectively. In another study
[16], author used Meta heuristics approach combined with CNN. This study uses ResNet-50
for features extraction and ASSOA (Advanced Squirrel Search Optimization Algorithm) used
for selection of better features and finally compared with Genetic Algorithm and GreyWolf
Optimizer. Experiments were performed on 5863 samples collected form Kaggle containing
pathology classes COVID, control, viral and bacterial pneumonia. It achieves best mean
accuracy score of 99.26%.

Specifically, to resolve the issue of COVID-19 data collection, another model developed
named MAG-SD [35] for automatic classification of COIVD-19 from pneumonia cases. In
this, more relevant features vector is extracted by multiscale attention guided network. It is
advantageous because of soft distance regularization, generation of attention guided synthetic
data, attention pooling and CLAHE. Proposed model is tested on three dissimilar datasets
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comprised of 2, 3 and 4 classes. In addition, proposed model is superior to VGG16, ResNet,
InceptionV3 and COVID-Net model. Because of data collection from different repositories,
there exists certain uncertainty at level of diagnosis. A semi-supervised uncertainty estimation
framework [8] was introduced for improving uncertainty of COVID-19 diagnosis using
unlabelled data. Various popular approaches like deterministic uncertainty quantification,
Monte-Carlo dropout, Softmax scores have been utilized for uncertainty estimation. For
reliability comparison of these estimation approaches Jensen-Shannon distance function is
used. However, Monte Carlo dropout algorithm gives better results compared to others.
Another model named MSRCovXNet [19] was proposed for purpose of efficient feature
extraction form limited CXR data. This multi-stage residual network model extracts initial
features based on ResNet-18 model and perform feature optimization with two FEM modules
i.e., high level and low-level feature maps. Advanced single and multi-stage proposed feature
fusion approach enhances the representation of high and low-level features. MSRCovXNet
achieves recall and precision score of 94% and 98.9%. This model is compared with COVID-
Net and ResNet models. However, it uses only 100 samples from each class for testing.
Majority of proposed DL models suffer from generalization errors, high variance and
overfitting caused limited corpus of data samples. EDL-COVID, an ensemble model [66]
was proposed to combine prediction ability of multiple COVID-Net snapshot models. It claims
to improve generalization, interpretation and performance measures. It outperforms accuracy
of COVID-Net model i.e., 93.5% on similar COVIDx dataset with improved accuracy of 95%
and COVID-19 sensitivity of 94.1%.

In Table 2, we listed the summary of contributions added to the literature with features as
reference of article, deep learning models used followed by number of classes, number of
samples of each class, performance metrics in terms of overall accuracy (Acc.), COVID-19
sensitivity (Sencov), other metrics including F1-score, precision (PPV), specificity and image
enhancement technique applied if any. Interpretation from the related work concludes that
transfer learning models found very useful in identification of COVID-19 even with limited
availability of training COVID-19 images among other pathology classes.

2.1 Existing methodologies and results analysis

In this Analysis, we reviewed quality literature from IEEE, Springer and Elsevier databases
concerning deep learning for COVID-19 application. Almost thirty papers have been consid-
ered in review process regarding diagnosis of COVID-19 from CXR images. Majority of the
publications concerning deep learning networks, including VGG [1, 5, 12, 15, 22, 35, 71],
NASNetLarge [52], AlexNet [1, 15, 24, 37, 53], DenseNet [15, 16, 22, 39, 40, 53], MobileNet
[5, 22], Inception [1, 5, 15, 22, 35, 37, 52, 53], Xception [5, 14, 22, 33, 53], EfficientNet [73],
ResNet [1, 15, 16, 22, 35, 37, 40, 49, 52, 71] and with four involving custom CNN [21, 38, 67,
71] architectures. Most of research studies involves two classification scenarios. First scenario,
CXR images are classified into one of these, that is COVID-19, normal and pneumonia
whereas second involves more specific classification of pneumonia class into viral and
bacterial pneumonia in addition to COVID and normal. DenseNet, MobileNet and ResNet
models presented better results compared to other DL models with accuracies ranging from
88% to 99%. Similarly, COVID-19 sensitivity is maximum with DenseNet models and ranges
from 90% to 100%. However, DenseNet model extract more relevant features and has better
interpretation because of more depth and variation in connections as compared to other
models. Major drawbacks of majority of studies lies regarding better pre-processing of images,
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class imbalance, size of dataset, and interpretation of CXR images. Also, some studies balance
these classes by generating synthetic data using GAN [37, 68] that further improves perfor-
mance of models. Usage of advanced meta-heuristic [16] approaches for relevant feature
selection also improves performance and confidence score of models. ASSOA optimization
approach improves feature selection process compared to grey wolf optimizer (GWO), genetic
approach and ant colony algorithm. In addition, hyperparameters selection [21] with GWO
improves performance of models. Regarding advanced image enhancement only [12, 35, 49,
52] have randomly selected one of these; Histogram equalization, Total variation filter,
CLAHE and gamma correction. Also, traditional machine learning approaches have been
applicable on features extracted with VGG, ResNet50 and DenseNet but less effective
compared to classification with deep learning approaches.

2.2 Two-way classification process

In Fig. 1 we have shown the block diagram showing two ways for analysis of CXR and other
sequences of steps required to follow for better classification and diagnosis of COVID-19. In
first way, whole CXR image can be considered for analysis whereas in second way image
segmentation is performed firstly to extract relevant lung regions for CXR analysis. To achieve
segmentation task other annotated datasets are used containing corresponding output mask
associated with each input image for pixel level classification by training various segmentation
CNN models. These models are basic UNet, UNet++, UNet with ResNet block, UNet with
DenseNet block and other variants of UNet model. Once the segmentation models are trained,
then these models can be used to extract lung regions of existing dataset taken into consider-
ation for diagnosis of COVID-19 pathology. After automated annotation of lung regions from
CXR images both paths follow similar sequence of steps. Initially universal pre-processing
operations like resizing, normalization and formatting is performed, followed by advanced
image pre-processing operations like image denoising, image enhancement. After this, pre-
processed images are fed into deep learning approaches for automatic feature extraction and
classification of CXR images into one of pathology class. Finally, to make results

Fig. 1 Block diagram of two ways and sequence of basic elements for analysis of COVID-19 among other
pathology classes
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interpretable, visualization of features learned by model can be seen by feature visualization
approaches like CAM, Grad-CAM and Grad-CAM++.

2.3 Datasets considered

Most of the studies performed for diagnosis of COVID-19 collects images from public datasets
and make dataset by fusion of 3-classes or 4-classes. In 3-way classification these classes are
COVID-19, normal and pneumonia whereas normal and pneumonia samples are taken form
RSNA pneumonia detection challenge [65] and covid-samples collected from COVID-19
chest Xray-dataset [13]. In 4-way classification pneumonia class is further separated as virus
and bacterial pneumonia taken from chest-Xray-pneumonia dataset [46]. Similarly, for the
purpose of segmentation the available benchmark datasets are JSRT dataset [62], Montgomery
and Shenzhen dataset [28].

2.4 Issues affecting results in literature

After analysing existing literature, we find that despite of having good results there exist
several shortcomings affecting results of existing studies. Major drawbacks of existing studies
are lack of proper pre-processing strategy, size of dataset and weak interpretation of models. In
best of authors knowledge, none of public dataset comprises classes taken under similar
conditions, as COVID-19 samples are taken for one dataset and normal, pneumonia from
another dataset. Making of new dataset by fusion of dissimilar classes from different repos-
itories may give biased results. Firstly, advanced pre-processing strategy is missing or not
described explicitly in almost all the studies. Only few papers have randomly chosen advanced
pre-processing strategy; among one of HE, gamma correction or Total variation filter. Sec-
ondly, majority of initial studies have chosen small subset of classes for exploring deep
learning methodologies but their comparison is invalid. Another drawback regarding these
studies is weak interpretation of models where models make correct classification of sample by
focusing on irrelevant features for classification. This is due to lack of proper pre-processing
and segmentation strategy [17] of models.

Several minor issues that affect results in literature and be advised for proper documentation
to improve quality and clarity of publication. Firstly, specifications of hyperparameters like
batch size, learning rate, optimization algorithm and proper training, testing approach is
missing. In some of publications it was not clearly mentioned how their final model was
selected. Also, COVID-19 is a minority class with a smaller number of samples. Most of
publications used cross-entropy loss without handling class imbalance problem that in terms
discriminate results of minority class. Further, proper validation set and class-wise sensitivity
analysis of models is missing. It is of utmost important to resolve all these minor issues to add
new knowledge in existing state-of-the-art studies.

In this study, exploration and making of advanced pre-processing pipeline by cumulative
analysis of image denoising and image enhancement techniques based on deep learning
architectures. The study focuses on performance analysis by implementation of advanced
image pre-processing combinations for diagnosis of COVID-19 using whole image analysis.
Proposed research work is advantageous as advanced pre-processing of images, in terms
improve interpretability and performance of models. As per literature survey Histogram
equalization, CLAHE and gamma correction [25] are best for enhancement of X-ray images
are tested in combination with denoising approaches. In addition to this, we resolve class
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imbalance issue by weighted cross entropy loss function that improves sensitivity of COVID-
19 diagnosis. All other minor issues regarding training and analysis have been addressed
properly. Aim of this study is to find best individual enhancement technique as well as other
combinations that further improves performance and interpretation of models by considering
these datasets.

3 Materials

In this section, we discuss the making of two benchmark datasets to study the effects of image
enhancement techniques by collecting data samples from different resources. We make two
separate datasets COVIDx and COVIDz by utilizing public CXR datasets that are used in
majority of research studies. The reason for making two separate datasets is to study the effect
of image enhancement approaches on two different types of studies i.e., 3-class classification
and 4-class classification carried out by researchers with dissimilar samples. However, both
datasets use COVID-19 CXR samples from similar repository but by considering different
views of images. The COVIDx dataset comprises four classes namely COVID-19, normal,
virus pneumonia and bacterial pneumonia. In this samples of COVID-19 are collected from
chest Xray-dataset [13] with PA, AP and AP supine view. Another chest-Xray-pneumonia
dataset [46] is used that comprises 3 classes as normal, viral pneumonia and bacterial
pneumonia labelled separately. Due to similarity in COVID-19 and virus pneumonia this
dataset helps to understand the impact of enhancement techniques on COVID-19 pneumonia
when bacterial pneumonia (BP) and viral pneumonia (VP) are included separately. Another
COVIDz dataset make by fusion of three popular publicly available datasets i.e. COVID-19
chest Xray-dataset [13] with only PA view, RSNA (Radiological Society of North America
[65]) and USNLM (U.S. national library of medicine [28]). Both datasets contain different
view of COVID-19 samples. We consider PA view because majority of studies includes only
PA view of samples. This helps to understand the changes in COVID-19 sensitivity by
considering view as variability factor that may impact other classes results. Covid chest xray
dataset is a publicly available database of CXR images collected by Cohen et al. [13] related to
MERS, ARDS, SARS, COVID-19 pneumonia, viral pneumonia etc. from various resources
accessible at different public domains. This dataset comprises findings such as COVID-19,
SARSr-CoV-1 or SARS, ARDS, SARSr-CoV-2 or, Pneumocystis spp. And Streptococcus
spp. with following features: patient ID, sex, age, offset, survival, modality, date, finding,
view, location, filename, URL, doi, license and other notes [13]. RSNA [65] dataset contains
30,000 images, 7500 examinations labelled normal, 15,000 examinations labelled pneumonia
and remaining 7500 examinations contain symptoms other than pneumonia. Also, NIH
CXR14 [28] dataset is used for collecting normal CXR images. Table 3 shows complete
description about making of datasets with sources used for taking CXR images, their respec-
tive class, number of samples present in class and total number of samples.

This study has been carried out under two experiments each using separate dataset COVIDx
and COVIDz. The reason for making two datasets is to analyse the effect of various
combinations of image enhancement techniques on two major types of studies (3-way
classification and 4-way classification). COVIDz dataset helps to add more validity to study
effective analysis of image enhancement pipeline selected and tested during experiment 1 for
diagnosis of COVID-19 pathology containing different view of images.
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4 Proposed research methodology

In following sections, we discuss the methodology adopted for better identification of COVID-
19 CXR samples. In first subsection, we introduce an overview of image denoising and
enhancement frameworks used. In second sub-section, we analyse various combinations of
image enhancement and denoising approaches in search of better pre-processing pipeline for
COVID-19 diagnosis. Following this, a brief discussion about class imbalance, classification
process, classification network architecture and performance metrics is provided.

4.1 Background

In this section, we first produce an overview of how proposed approaches are working for the
sake of better understanding of methodology. Firstly, we give brief description of image
denoising approaches used in combination with image enhancement. Following this, we
particularly give insightful overview of each image enhancement technique with their frame-
work diagrams in Fig. 2.

Table 3 Class summary and data resources related to datasets

Dataset used class # Total Dataset used class # Total

COVIDx
Data

Covid CXR [13] COVID-19 476 476 COVIDz
Data

Covid CXR
[13]

COVID-19 193 193
CXR Pneumonia

[46]
Normal 1583 1663 Pneumonia 38 520

NLM(MC) [28] Normal 80 RSNA [65] Pneumonia 482
CXR Pneumonia

[46]
VP 1493 1493 Normal 443 523
BP 2780 2780 NLM(MC)

[28]
Normal 80

Total COVIDx samples 6412 Total COVIDz samples 1236

Fig. 2 Framework diagrams for image enhancement approaches; where (a) corresponds to Histogram equaliza-
tion, (b) represents CLAHE flowchart, (c) represents Gamma correction flowchart

42660 Multimedia Tools and Applications (2022) 81:42649–42690



4.1.1 Image denoising approaches

Image denoising [47] is one of essential image pre-processing or post-processing step to
eliminate noise or distortions in an image, helpful for further analysis. Typically, traditional
denoising approaches focus on smoothing images by assigning equal weight to all the pixels in
an image. However, a better denoising approach assigns unequal weight to the pixels,
inversely proportional to distance from the central pixel I [Xc, Yc] in image. Specifically,
gaussian filter [47] is a linear smoothing filter that reduces weights assigned to a pixel with
increasing distance from central pixel based on Gaussian function. The input pixel in gaussian
filters is weighted according to Eq. (1),

g x; yð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e−
d2

2σ2 ð1Þ

Where, d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xcð Þ2 þ x−xcð Þ2

q
, corresponds to distance of pixel [x, y] from central

pixel [xc, yc].
On the other hand, Median filter [47] belongs to class of non-linear filter where pixels

inside a selected window are ranked and filtering is performed based on pixel ordering [42].
This involves filtering parameter as size and shape of filtering window rather then weighted
mask. It removes isolated impulsive noise from X-ray images by preserving the edges
opposing to average filtering. Let A[i]i = 0…(n − 1) be ranked array of selected window, then
median filter assigns new pixel value as median of ranked pixel values inside window
computed as A[(n-1)/2].

Adaptive median filter is [47] modified version of median filter where window size is
changed dynamically during operation. This is performed when neighborhood pixels has
reached its maximum size but filtering operation is not applied because of lack in pixel values.
Compared to median filter AMF has higher probability to handle impulse noise. Let Zmin, Zmax,
Zmed represents the minimum, maximum and median gray-scale [42] value in Sxy. Also, Smax

and Zxy represents maximum allowed size of Sxy and gray-scale value at pixel [x, y]. Then
algorithm of AMF works in two levels as:

Algorithm 1: Two levels for adaptive median filter

: A1 = Z – Z , A2 = Z – Z ,

If A1 < 0 and A2 > 0 goto Level B

else increase window size

If window size < S repeat Level A

else output Zxy

Level B: B1 = Z – Z , B2 = Zxy– Z

If B1 < 0 and B2 > 0 output Z

else output Z

Due to capturing of images under different conditions adds uncertainty to the pixel values
present in an image. Image denoising with total variation filter [52] resolves such uncertainty
present at pixel level. Let I be a grayscale image over given bounded set Ω subset of R2 then
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denoised image d approximately matches an observed image y = (y1, y2)∈Ω, is represented
by Eq. (2),

d ¼ arg min
d

∫Ω d−I :lndð Þdyþ ∫Ω
�
w yð Þj∇djdy

� �� �
ð2Þ

Where yð Þ ¼ 1
1þK mod Gσ*∇d

0 , Gaussian Kernel (Gσ) with variance(σ), contrast parameter (K >

0) and a convolution operator (*).

4.1.2 Histogram equalization (HE)

The Histogram equalization [21] approach aims to enhance the quality of image by distributing
gray levels in global information of an image [17]. It enhances quality by changing low
contrast and brightness of dark images by ensuring each level has equal probability to occur.
The information inside image is skewed towards lower grayscale end for a dark image. In
order to make image clearer, it can re-distribute grey levels towards dark end of the histogram.
The function representation for the histogram with intensity of image in range [0, L-1] is
defined by Eq. (3), where nk represents the count of pixels having intensity kth intensity value
(rk). Finally, generated histograms are normalized by total pixels in M by N image by Eq. (4),
representing chance of occurrence of kth intensity level in an image.

h rkð Þ ¼ nk ð3Þ

p rkð Þ ¼ nk
M*N

ð4Þ

4.1.3 Contrast limited adaptive histogram equalization (CLAHE)

An upgraded variant of HE was introduced as Adaptive Histogram Equalization (AHE) [47].
AHE is a local approach that divides entire image into small regions and thus apply HE to
enhance contrast of these small patches separately. However, this local approach is better than
global approach like HE but it considers noise component in an image too. To resolve this
issue, CLAHE [35] was introduced to give more natural appearance to enhanced images. Also,
threshold parameter is used to limit the contrast enhancement in selected regions respectively.
To achieve this, RGB color space is converted to HSV (Hue, saturation and value) i.e., human
sense color space. The value component is only considered by CLAHE without changing
saturation and hue component. Then CLAHE is applied by re-distributing gray-levels to small
patches by user provided threshold limit. Finally, processed images are converted to RGB
color space.

4.1.4 Gamma correction

Typically, image normalization is based on application of linear operations such as addition,
scalar multiplication and subtraction on specific pixel values. However, non-linear operations
are supported by gamma correction [11, 18, 36, 49] on image pixels. GC enhances the image
by changing the value of pixel by a projection relationship of input pixel value with gamma
value as per internal map. If P corresponds to pixel value in range [0,255], Γ represents gamma
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mapping set, x belongs to P corresponds to grayscale pixel value and Ω is angle value. Let xm
be midpoint in range [0,255]. Then, linear mapping from set P to set Ω and set Ω to set Γ is
defined by Eqs. (5), (6) and (7) respectively.

φ : P→Ω;Ω ¼ wjw ¼ φ xð Þf g;φ xð Þ ¼ πx
2xm

ð5Þ

h : Ω→Γ; Γ ¼ γf jγ ¼ h xð Þ
o

ð6Þ

h xð Þ ¼ 1þ f 1 xð Þ
f 1 xð Þ ¼ acos φ xð Þð Þ

�
ð7Þ

Based on above equations, set P is mapped to set Γ values. Let γ (x) = h(x), then
corresponding gamma correction function g(x) gives output pixel vector computed using
Eq. (8). Figure 2 presents the flowchart for each enhancement approaches i.e., HE, CHALE
and gamma correction.

g xð Þ ¼ 255
x

255

� �1=γ xð Þ
ð8Þ

4.2 Image pre-processing pipeline

With advancement in application of deep learning approaches in computer aided diagnosis
(CAD) [45] assists radiologists to diagnose diseases more accurately in early stages. After
the acquisition of samples, image preprocessing is an essential phase that reduces training time
of an algorithm as well as error rate. For image enhancement best suitable techniques for x-ray
images, Histogram equalization, CLAHE and gamma correction have been tested with
Adaptive median filter (AMF), Median filter (MF), total variation filter (TVF) and gaussian
denoising filters. In this study, we analyse the cumulative effects of image denoising and
image enhancement techniques on benchmark datasets used by researchers to study COVID-
19. Initially model having more depth i.e., DenseNet201 is selected to make initial pipeline by
training and testing model on COVIDx dataset containing COVID-19, normal, viral pneumo-
nia and bacterial pneumonia classes. Due to large dataset size and complexity of processing
huge data, initial testing has been carried out on subset of COVIDx dataset comprises of 193
COVID, 213 normal, 116 viral pneumonia and 116 bacterial pneumonia cases to get intuition
of improvements if any. Figure 3a presents the greedy scenario in which eleven combinations
are tested and their corresponding accuracy values obtained are written on each combination.
Also, Fig. 3b presents the improvements in testing accuracy curve with respect to epochs.
These combinations are Histogram equalization, CLAHE, gamma correction, HE + Gamma,
CLAHE + Gamma, AMF + Gamma, TVF + Gamma, TVF + Gaussian + Gamma, TVF +
Median + Gamma, TVF + CLAHE + Gamma and TVF + HE + Gamma. During initial
testing on subset of dataset, gamma correction gain accuracy of 94.21%, TVF + Gamma gain
accuracy score of 95.04% which is higher as compared to original images under similar
learning rate 10−5, batch size as 32, optimizer as Adam and loss function as weighted cross-
entropy loss. Based on results, tick at top head of some model represents best improvement in

42663Multimedia Tools and Applications (2022) 81:42649–42690



accuracy and COVID-19 sensitivity values as compared to others image enhancement com-
binations. Finally, we implemented these combinations on whole COVIDx dataset and came
with improvements as compared to plane images. Gamma correction, TVF + Gamma and
CLAHE achieve more improvements in sensitivity value as compared to other enhancement
techniques. But image denoising with TVF before gamma correction helps to converge top
results faster as compared to CLAHE and HE. Results of various proposed combinations on
whole COVIDx dataset are shown in Table 7. The proposed pipeline is tested on ten CNN
models under 3-way and 4-way classification scenario using two datasets and outperforms
results achieved without image preprocessing pipeline. Finally, best combinations of image
enhancement techniques are compared again with top performing models to come with robust
comparison among various models and enhancement approaches effects. Individually gamma
correction performs best as it improves accuracy score of all classes and application of total
variation denoising approach before gamma correction improves performance and conver-
gence time on benchmark datasets [63, 64]. Also, gamma correction is equally favourable to
all the classes.

The steps involved in the classification process pipeline are shown in Fig. 4 are
explained as: CXR images used in this study are collected from heterogeneous data
sources. These sources may represent heterogeneity in size, acquisition condition,
shape, datatype, range, scanning condition, and postprocessing [43] etc. CXR images
from both datasets are reshaped to 320*320*3, normalized images to ensure sample
mean value to zero and standard deviation value to one [57] and change datatypes from

Fig. 3 Sequence of image enhancement and denoising combinations tested for finding best enhancement
technique

Fig. 4 Proposed image classification pipeline
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uint8/uint16 converted to uniform format float32. Following this image are denoised
and enhanced with various enhancement approaches. Once pre-processing is completed,
images are fed into deep learning models for feature extraction and classification as
shown in Fig. 4. Also, images are resized as per requirement of DL networks. In Fig. 4
red dotted total variation filter and gamma correction achieves better interpretation and
evaluation compared to universal preprocessing in this case.

After number of experiments on the combination of image denoising and image
enhancement techniques [44] we found some useful preprocessing pipelines that improve
accuracy as well as covid-19 sensitivity. Initially total variation filter approach [10] is used
for denoising [30] uncertainty at pixel level. Then, image enhancement technique gamma
correction (GC) is used to enhance contrast value by changing intensity. It helps to decode
and encode luminance to improve accuracy value. The resulting enhanced image acts as
input to the deep learning models for classification of given image one of the classes. Also,
to implement HE and CLAHE, image from RGB color space are converted to HSV color
space. V is value component that is taken into consideration by HE [2] and CLAHE for
contrast enhancement and merged back with H and S channel. Figure 5 shows output
preprocessed images and their corresponding distribution of pixel values after application of
various preprocessing sequences as shown, Raw image, Histogram equalized, CLAHE,
Gamma corrected, HE + Gamma, TVF + Gamma, TVF + HE +Gamma and finally
normalized image of last combination. Even while performing experiments image normal-
ization is performed initially but to show the effects of various enhancement approaches on
real CXR images image normalization is shown last.

Fig. 5 Visualization of effects on image and its pixel distribution after various preprocessing steps
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4.3 Imbalanced learning approach

In medical image analysis key challenge is the presence of class imbalance. The CXR datasets
COVIDx and COVIDz collected for this experimental research study are imbalanced. How-
ever, imbalanced dataset [4] does not ensure better learning of models. So, we used a class
weighted loss-based approach to resolve class imbalance issue. Ideally, training of models
occurs on balanced data that includes equal count of negative as well as positive training
samples that would contribute equally to the loss. Usage of cross-entropy loss function on
imbalanced data authorize models [20] to prioritize learning process of majority class only.
Since, majority of studies on COVID-19 uses CXR dataset collected by Cohen et al. contain-
ing less examples as compared with other pathology datasets considered. Since, Simple cross-
entropy loss for any ith input feature is given as Eq. (9):

Lcross−entropy xið Þ ¼ − yi*log f xið Þð Þ þ 1−yið Þ*log 1− f xið Þð Þð Þ ð9Þ

where, yi is label (0 or 1), xi is input feature and f(xi) is output probability that feature is
positive. For complete training set T average cross-entropy loss with N samples is given as Eq.
(10). To balance the loss, first we calculate contribution frequency of positive and negative i.e.,
freqpos and freqneg by adding individual contribution of training examples for each class using
Eqs. (11) and (12):

Lcross−entropy Tð Þ ¼ −
1

N
∑

positive
examples

log f xið Þð Þ þ ∑
negative
examples

log 1− f xið Þð Þ

0
BB@

1
CCA ð10Þ

freqpos ¼
total positive examples

N
ð11Þ

freqneg ¼
total negative examples

N
ð12Þ

As shown in Fig. 6a and c that positive samples in both datasets corresponding each pathology
contribute significantly lower to the loss than negative ones. However, balancing of data need
equal contribution to loss for positive as well as negative cases of each class. For this we
simply multiply each example in training set by a class specific weighted factor (Wpos and

Fig. 6 Contribution of each class to loss function with and without weighted factor
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Wneg) corresponding to each class, so that each class has same positive and negative contri-
bution. To achieve this by following Eqs. (13) and (14):

Wpos*freqpos ¼ Wneg*freqneg ð13Þ

Wpos ¼ freqneg and Wneg ¼ freqpos ð14Þ

Using above weights, contribution of negative as well as positive examples within each
class is balanced and Fig. 6b and 6d) shows equal contribution to loss function for both
datasets. By using these weights, our improved weighted loss function for each training
example will be given by Eq. (15) as:

Lwcross−entropy xð Þ ¼ − Wpos*y*log f xð Þð Þ þWneg* 1−yð Þ*log 1− f xð Þð Þ� � ð15Þ
Finally, to calculate multilabel loss, simply sum up average loss for each individual class as
shown in Eq. (16) for COVIDx dataset and each one is calculated using Eq. (17). Also, before
taking logs a small value ϵ is added to predicted values to avoid certain numerical error if
predicted value probabilities to be zero. However, Fig. 6 shows the contribution of positive and
negative samples of each class to loss function before and after application of weighted factor.
Usage of this weighted loss function handles class imbalance and have shown improvements
in sensitivity and positive predictive values for each pathology.

L X ; yð Þ ¼ L X ; ycovidð Þ þ L X ; ynormalð Þ þ L X ; ybacteriað Þ þ L X ; yvirusð Þ ð16Þ

L X; ycovidð Þ ¼ −wpos;covidlogP Y ¼ 1jXð Þ if Y ¼ 1
−wneg;covidlogP Y ¼ 0jXð Þ if Y ¼ 0

�
ð17Þ

4.4 Classification process

Based on the number of classes present in COVIDx and COVIDz CXR image datasets we
have 4-way classification as COVID-19 vs Normal vs Viral pneumonia vs Bacterial pneumo-
nia and 3-way classification scenario as COVID-19 vs Normal vs Pneumonia. Independent test
set is used for comparative analysis whereas Model development have been carried out using
Training and validation sets. Tables 4 and 5 clearly depicted that how many CXR images are
distributed into each training, testing and validation sets in COVIDx and COVIDz dataset.
Since, COVID CXR dataset used for proposed study does not previously hold any data for
training and testing purpose. So, we randomly distribute CXR fused datasets into training,

Table 4 Distribution of samples
for 4-way classification in all infec-
tion types

set Normal COVID-19 VP BP Total

Training 1293 353 1228 2348 5222
Validation 150 44 125 190 509
Test 220 79 140 242 681
Total 1663 476 1493 2780 6412
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testing and validation set. Data splitting has been performed on patient level to ensure no data
leakage between the training, validation and testing dataset.

4.5 Classification network architecture

The primary aim of classification network is to categorize CXR images grounded on various
features corresponding to different type of pathology. We implemented various state-of-the-art
(SOTA) deep transfer learning models as a backbone for building new classification network.
Deep learning models require huge volume of data for better training of models. To work with
limited training CXR examinations we apply deep transfer learning-based approaches using
pretrained ImageNet weights. For the purpose of classification we choose ten popular models,
VGG19, InceptionV3, InceptionResNetV2,MobileNet, MobileNetV2, ResNet50,
NASNetMobile, DenseNet121, DenseNet169 and DenseNet201 [10, 23, 32, 54] as baseline
architectures. In Fig. 7 we have shown the classification network architecture that take input
samples from two datasets COVIDx and COVIDz based on different pathological character-
istics. For training the network, data samples from training and validation set are given as input
to pretrained CNN architectures with and without image preprocessing pipeline. Feature
extraction layers convert input images to feature maps after several convolutions, Batch
normalization and pooling operations. On the top of feature extraction layers, we added new
classification layers as flatten layer to convert feature maps into 1D vector followed by dense
layer having 512 neurons, dropout layer with value of 0.5 to avoid overfitting accompanied
with ReLU activation. Finally, dense inference layer with SoftMax activation transforms
feature vectors into probability values between [0,1] corresponding to each class. In addition,

Table 5 Distribution of samples
for 3-way classification in all
infection types

set Normal Pneumonia COVID-19 Total

Training 426 426 146 998
Validation 39 38 16 93
Test 58 56 32 146
Total 523 520 194 1236

Fig. 7 Classification network architecture
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output layer consists of 3 or 4 neurons based on the number of classes in the classification
scenario. In the end we train and finetune the classification network. On given test CXR
sample, these models classify input image into one pathology class with maximum confidence
score. Finally, we visualize learning process by backtracking till last convolutional layer and
extracting feature maps weights to interpret heatmap to know why given sample is classified to
particular class. All these images are processed in 3 channel and resized before training
according to the image size appropriate for various SOTA deep learning approaches.
Minibatch gradient descent and Adam optimizer are used for training and testing. These
baseline architectures use class weighted loss function to handle class imbalance over classi-
fication scenarios.

All these baseline models are variants of CNN architecture and were found extremely
useful in the automated detection of COVID-19 pathology. MobileNet and MobileNetV2 are
CNN architectures developed by Howard et al. in the year 2017 and 2019 for mobile vision
applications. These are lightweight architecture with 17 Mb and 14 Mb of size and consisting
of 80 layers. Both were trained on ImageNet dataset consisting of 1000 classes with suitable
image size (224,224,3). VGG19 architecture was introduced in the 2014 consisting of 19
layers. It has 16 convolution layers, 5 MaxPool, 3 Fully connected and 1 SoftMax layer. It
accepts image in 3 channels (RGB) with shape (224,224). NASNetMobile is another powerful
architecture proven useful for image classification came in year 2018. Experiments are
performed for finding best convolutional layer using CIFAR-10 dataset and then applied this
on ImageNet dataset. It gives 2.4% error rate on CIFAR-10 and achieves 96.2% top-5 and
82.7% top-1 accuracy on ImageNet. Also, (224,224,3) is suitable image shape for this model.
InceptionResNetV2 was developed in year 2016. It focuses more on residuals connection
instead of merge and split approach. Like others it uses 3 channel images with appropriate size
of (299, 299) and has 56 M parameters. In traditional CNN models with L layers, there were
only one connection between two layers with L connections in total. But series of densely
CNN models (DenseNet) connects each layer to all other layers in feed forward manner
resulted in total L(L + 1)/2 connections in total. The network includes L layers, each layer
implements convolution (Conv), ReLU (rectified linear units), pooling, batch normalization
and non-linear transformation. These architectures proposed in the year 2017 applied to
CIFAR-10+, CIFAR-10, CIFAR-100+ and CIFAR-100, SVHN and ImageNet. In Table 6
we have shown some basic features like depth, number of parameters, size of pretrained model
and appropriate image size related to baseline architectures used. In this study, we build new
model by instainting these models using pretrained weights of ImageNet by freezing all the
layers of these base models in beginning and then perform finetuning by at the end. The entire

Table 6 Basic features about deep
learning baseline architectures CNN model Depth Parameters Size (MB) Image size

VGG19 26 144 M 549 [224, 224]
MobileNet 88 4.2 M 16 [224, 224]
MobileNetV2 88 3.5 M 14 [224, 224]
InceptionV3 159 23.8 M 92 [299, 299]
InceptionResNetV2 572 55.9 M 215 [299, 299]
ResNet50 – 25.7 M 98 [224, 224]
NesNetMobile – 5.3 M 23 [224, 224]
DenseNet121 121 8 M 33 [224, 224]
DenseNet169 169 14.3 M 57 [224, 224]
DenseNet201 201 20.2 M 80 [224, 224]
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process is accomplished by two experiments. In experiment 1, classification network is trained
and tested using COVIDx dataset. In experiment 2, classification network is trained and tested
using COVIDz dataset to make one of these possible predictions based on maximum proba-
bility value i.e., a) Normal, b) Pneumonia and c) COVID-19 infection. This entire work has
been carried out using Tensorflow, Keras and scikit-image via NVIDIA Tesla P100 GPU.

4.6 Training and Finetuning

To understand the impact of image enhancement techniques on performance, we consider ten
baseline pretrained models as feature extractor and build new classification architecture by
adding few classification layers on the top of pretrained models as shown in Fig. 7. Two phase
training process is explained as follows:

1. In first phase, above pretrained models are used as backbone with their weights are frozen
by training only fully connected layers on our datasets. Adam is an optimizer used for
training with an initial learning rate of 0.000001 using Minibatch gradient descent having
batch size 32 and model trained for about 30 epochs. Training is carried out using early
stopping strategy with patience value 5 whereas learning rate is reduced by factor 10 if
training loss does not improve. Model having lowest validation loss with enhancement
technique is taken for next stage.

2. In second phase, we perform fine-tuning which involves unfreezing some layers and
retraining with low learning rate. While finetuning, similar Adam optimizer with low
learning rate of 0.000001 is used by unfreezing top 20 layers except batch normalization
layer and trained for about 5 epochs. All other similar hyperparameters of training phase
are used. This considerably improved the accuracy of classifying COVID-19 cases against
others

4.7 Performance metrics

Accuracy, sensitivity (Recall), positive predictive value (PPV) and F1-score are metrics used
for measuring performance of classification models are calculated using Eqs. (18), (19), (20),
(21), (22) and (23). Whereas true positive (TP), false positive (FP), false negative (FN) and
true negative (TN) are calculated using confusion matrix [59, 61]. COVID-19 sensitivity and
COVID-19 PPV are also taken into consideration. For any input image IX, class having
maximum confidence score is considered as final prediction for calculating confusion matrix
and various evaluation measures.

Accuracy ¼ T N þ T Pð Þ
T N þ T P þ FN þ FPð Þ ð18Þ

Sensitivity ¼ T Pð Þ
T P þ FNð Þ � 100 ð19Þ

Postive Prediction PPVð Þ ¼ T Pð Þ
T P þ FPð Þ ð20Þ
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F1 score ¼ 2� PPV � Sensitivity

PPV þ Sensitivity
ð21Þ

Sensitivitycov ¼
T Pcovð Þ

T Pcov þ FNcovð Þ � 100 ð22Þ

Postive Predictioncov ¼ T Pcovð Þ
T Pcov þ FPcovð Þ ð23Þ

5 Results and analysis

In this section, we discuss results achieved after experimentally analysing CXR images using
various image denoising and image enhancement techniques combined with transfer learning
architectures. Most suitable image enhancement approaches Histogram equalization, CLAHE
and gamma correction has been tested individually as well as in combination with image
denoising approaches in a greedy manner. Based on initial processing on subset of COVIDx
dataset, similar combinations of image enhancement and denoising techniques are tested on
whole COVIDx dataset as listed in Table 7. Image enhancement approach having minimum
loss and maximum accuracy is considered for comparison with other deep learning ap-
proaches. For fair and reasonable comparison, we compared performance of proposed pipeline
with ten deep learning models and obtained result confirm improvements as shown in Tables 7,
8 and 9. In Table 7, we present the results obtained by best possible combinations of
enhancement and denoising techniques. From these results, it is clear that individually gamma
correction achieves better accuracy score and validation loss when compared to original, HE
and CLAHE under similar conditions having initial learning rate as 0.000001, optimizer as
Adam, loss function as class weighted loss function and batch size as 32. Further denoising of

Table 7 Comparison of various combinations of image enhancement techniques with DenseNet201 model

Enhancement approach Accuracy (%) Sensitivity (%) Precision (%) F1-score COVID-19
sensitivity
(%)

COVID-19
PPV (%)

Original 92.07 92.07 92.15 92.10 96.20 96.83
HE 91.04 91.04 91.21 91.01 96.20 96.20
CLAHE 92.80 92.80 92.92 92.76 97.47 96.25
Gamma correction 92.95 92.95 93.08 92.43 94.94 97.40
HE + Gamma 91.48 91.48 91.65 91.51 96.20 96.20
CLAHE + Gamma 92.36 92.36 92.45 92.34 100 96.34
TVF+Gamma 93.10 93.10 93.28 93.06 96.20 96.20
AMF+Gamma 88.11 88.11 88.81 88.24 100 90.80
TVF+CLAHE +Gamma 92.22 92.22 92.57 92.03 98.73 97.50
TVF+HE + Gamma 90.31 90.31 90.98 90.50 96.20 97.44
TVF+gaussian + Gamma 90.90 90.90 91.19 90.72 100 96.34
TVF+median+Gamma 89.72 89.72 89.88 89.64 92.48 98.65
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images with Total variation filter before gamma correction achieved higher accuracy, least loss
value and improved COVID-19 sensitivity over gamma correction as shown in Table 7.
Although, gamma correction, TVF + Gamma not only advantageous in accuracy score but
also in time taken by model to converge the best possible results.

In Fig. 8, we have shown graph presenting validation accuracy and validation loss achieved
by DenseNet201 model vs epochs over best combinations considered in study for 35 epochs. It
gives clear intuition that TVF + Gamma correction takes 24 epochs to reach top accuracy of
93.10% whereas Gamma achieve its higher accuracy score after 30 epochs to reach 92.95%
respectively which is considerably better than original as well as other neighbour techniques in
Table 7. However, gamma correction also shows advantage in training better and smother than
HE and CLAHE. Due to more deep architecture of DenseNet201 with TVF + Gamma

Table 9 Comparison of image enhancement techniques for the classification of COVID-19 with top performing
CNN architectures

CNN model Enhancement
technique

Acc.
(%)

Sen.
(%)

PPV
(%)

F1-score
(%)

COVID-19
Sensitivity
(%)

COVID-19
(PPV) (%)

4-way
classification

MobileNet CLAHE 90.60 90.60 90.88 90.52 100 94.05
Gamma 92.51 92.51 92.72 92.51 98.73 96.30

VGG19 CLAHE 91.91 91.91 92.06 91.90 97.47 96.25
Gamma 92.95 92.95 93.09 92.94 96.20 97.44

DenseNet169 CLAHE 92.22 92.22 92.40 92.10 100 96.34
Gamma 91.48 91.48 91.94 91.30 100 96.34

DenseNet201 CLAHE 92.80 92.80 92.92 92.76 97.47 96.25
Gamma 92.95 92.95 93.08 92.43 94.94 97.40

3-way
classification

MobileNet CLAHE 88.36 88.36 88.36 88.36 93.75 93.75
Gamma 89.73 89.73 89.93 89.74 87.50 96.55

VGG19 CLAHE 80.82 80.82 83.57 80.94 100 65.31
Gamma 89.04 89.04 89.29 89.08 93.75 93.75

DenseNet169 CLAHE 88.36 88.36 88.86 88.32 96.88 100
Gamma 88.36 88.36 88.53 88.37 96.88 100

DenseNet201 CLAHE 89.73 89.73 89.81 89.65 100 96.97
Gamma 91.10 91.10 91.10 91.09 100 100

Fig. 8 Visualization of validation accuracy and validation loss vs epochs under various preprocessing combi-
nations by DenseNet201 model
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achieves higher accuracy and lower loss as compared to enhancement techniques. Also,
gamma correction gives comparable accuracy score but denoising using TVF before gamma
reaches top accuracy faster as compared to gamma. So, we consider it as preprocessing
pipeline in next stage to perform model-based comparisons to cross check its effect using
ten state-of-the-art CNN models performance.

In Table 8, we present results that verify optimized image preprocessing pipeline TVF +
Gamma comparing with original images without pre-processing pipeline in 3-way (COVID-19,
normal and pneumonia) classification and 4-way (COVID-19, normal, viral pneumonia and
bacterial pneumonia) classification. The finest results attained by ten CNN architectures each
with technique referred as original and TVF + Gamma is Shown in Table 8. Image preprocessing
pipeline TVF + Gamma used with CNN models outperforms the models experimented with
original images in terms of accuracy as well as sensitivity. Figures 9 and 10, presents accuracy and
COVID-19 sensitivity comparison of all the models with original and TVF + Gamma approach
corresponding to COVIDx and COVIDz dataset. It clearly depicts improvements shown in
accuracy and sensitivity by all models except inception model in experiment 1 and experiment
2. Although, no single model performs well on all datasets. However, MobileNet model
outperforms all other models in experiment 1(4-way classification) using proposed preprocessing
pipeline with accuracy increase of 1.94% in accuracy score followed by DenseNet201 with
accuracy score of 93.10%. Similarly, in experiment 2 (3-way classification) DenseNet201 model
achieved an accuracy score of 91.11% with 1.47% increase in accuracy score.

Fig. 9 Models’ comparison of accuracy and COVID-19 sensitivity with and without TVF + Gamma corre-
sponding to COVIDx dataset

Fig. 10 Models’ comparison of accuracy and COVID-19 sensitivity with and without TVF + Gamma
corresponding to COVIDz dataset
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Further analysis of top performing models with top performing individual as well as hybrid
enhancement techniques have been compared to know more about performance sequence and
effects of these enhancement techniques on various models. Four CNN models, MobileNet,
VGG19, DenseNet169 and DenseNet201 has been selected for comparison with enhancement
techniques shown in Table 9. We selected top performing image preprocessing combinations
as gamma correction, CLAHE and TVF+ Gamma. Each best selected model is tested with
Gamma and CLAHE in both 3-way and 4-way classification and their results are shown in
Table 9. Major focus of Table 9 study is to compare TVF + Gamma with other selected
enhancement approaches with four best performing models. It helps to rank image enhance-
ment techniques more accurately. Results of Tables 8 and 9 shows that among all combina-
tions TVF + Gamma outperforms in all exception in inception-based model. In Fig. 11, we
have shown the comparison of results over original vs CLAHE vs gamma correction and TVF
+ Gamma in both the experiments. Individually gamma correction achieves better overall
sensitivity as compared to HE and CLAHE for classification of COVID-19 both in terms of
time and accuracy. But in some cases, it gains less COVID-19 sensitivity as compared to HE
and CLAHE. So, performing image denoising first using TVF then apply gamma correction
performs better than adaptive median filter with Gamma, HE + Gamma, CLAHE + Gamma,
AMF + Gamma, TVF + gaussian + Gamma and TVF + median + Gamma.

Among all ten deep CNN architecture MobileNet achieves best accuracy score and
outperforms all other models when applied with TVF + Gamma in experiment 1 and
DenseNet201 in experiment 2. In fact, deep CNN models like MobileNet and DenseNet201
are best suitable for classification of COVID-19 due to its similarity with other classes like
viral pneumonia. But usage of image enhancement techniques shows improvements in results
of shallow CNN models also. In Fig. 11 proposed TVF + Gamma has better or comparable
accuracy in MobileNet, VGG19, DenseNet169 DenseNet201 in both 3-way and 4-way
classification. Whereas application of gamma correction helps models to converge faster
towards better results and combining it with TVF improves COVID-19 sensitivity that in
improves overall performance. The finest accuracy is achieved by MobileNet model with
accuracy score of 93.25% and COVID-19 sensitivity score of 98.75% when preprocessing
pipeline used is TVF + Gamma. This is because gamma correction is more favourable to viral
pneumonia and TVF is better for COVID-19 identification. So, combining these improves
accuracy of CNN models. In ranking of enhancement techniques, TVF + Gamma is better

Fig. 11 Accuracy comparison of models with various image enhancement combinations in experiment
1(COVIDx) and experiment 2 (COVIDz)
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than gamma correction which is again better than HE and CLAHE in accuracy as well as time.
These combinations improve performance over original images and can be useful in CAD
systems. Importance of image enhancement and image denoising not only improves perfor-
mance of models but also reduces time required to converge best possible results.

In Fig. 12 we have shown validation accuracy curve with respect to epochs corresponding
to VGG19, MobileNet, DenseNet169 and DenseNet201 models with original and preprocess-
ing pipeline as CLAHE, gamma correction and TVF + Gamma in 4-class classification. Also,
based on principle of class having maximum confidence score as final predicted class, we have
shown resulted confusion matrices of top image enhancement techniques based on
DenseNet201 model and confusion matrix of best performing model MobileNet in 4-class
classification in Fig. 13. In Fig. 13, subfigures a, b, c, d, e are confusion metrics obtained by
DenseNet201 model with and without enhancement combination. We can clearly see im-
provements in confusion metrics with enhancement techniques. Without enhancement

Fig. 12 Visualization of validation accuracy vs epochs of CNN models with preprocessing pipeline as CLAHE,
gamma correction and TVF + Gamma in 4-way classification using COVIDx dataset

Fig. 13 Confusion matrices by DenseNet201 and MobileNet model corresponding to 4-class configurations with
various enhancement techniques. Subplots a, b, c, d, e corresponds to DenseNet201 model for comparison of
image enhancement combinations and subplot f), corresponds to best performing MobileNet model with TVF +
Gamma
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techniques a greater number of samples in other classes are confused with COVID-19 class,
also there exists confusion between bacterial and virus classes. With gamma correction and
TVF + Gamma such confusion is minimized. Moreover, further observations sight that in
experiment 1 viral class miserably confused with bacterial and vice-versa. Subfigure (f)
represent confusion matrix of MobileNet model with TVF + Gamma enhancement.
MobileNet model improves COVID-19 sensitivity as well there is no overlapping of other
classes to COVID-19 class but it has less sensitivity corresponding to virus pneumonia.

5.1 Class-wise sensitivity analysis

Figure 14 presents schematic representation of class-wise sensitivity [11] achieved by various
models with and without image enhancement approaches. It helps in understanding the models
and image enhancement approaches suitability for each of the class. As, none of the model and
image enhancement approach appears equally suitable for all the classes. Although, simple
conclusions can be drawn that can may help in making of models by consideration of all the
classes. It is observed that usage of image enhancement techniques as gamma and TVF +
Gamma improves sensitivity in almost all the cases. Precisely, CLAHE is better for COVID-19
features whereas gamma correction is better for normal, BP and VP classes. Since, application of
denoising with TVF followed by gamma correction improves COVID-19 and BP sensitivity.

Fig. 14 Class-wise sensitivity analysis of various models with respect to image enhancement techniques on
COVIDx dataset
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However, average sensitivity of all the classes is better with TVFwith gamma correction. Finally,
MobileNet with TVF + Gamma achieves higher average sensitivity compared to others.

5.2 Confidence analysis

To evaluate effectiveness of enhancement techniques we compared enhancement techniques
with our DenseNet201 model, in which the confidence threshold Thconf ranges from 0.5 to
0.95. The results obtained on COVIDx dataset as accuracy, recall and COVID-19 sensitivity
based on different enhancement techniques are shown in Fig. 15. From analysis we perceive
that usage of enhancement techniques improves confidence score [18] corresponding to each
class. Figure 15a, b and c reveals the strength of proposed pipeline by achieving more accuracy
and sensitivity with TVF + Gamma at various threshold values. Results shows that even at
higher threshold values 0.95, TVF + Gamma achieves higher accuracy of 92%, recall of 70%
and COVID-19 sensitivity of 92.4% as compared with other enhancement techniques. This

Fig. 15 Comparison of various image enhancement techniques at different threshold values by considering
DenseNet201 model with COVIDx dataset; where (a) corresponds to accuracy comparison, (b) represents
Sensitivity comparison and (c) represents COVID-19 sensitivity comparison
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ensures that proposed pre-processing pipeline is superior than others. Also, gamma correction
achieves higher values but denoising with TVF seems more useful in correct identification of
samples. So, it is strongly recommended to use image enhancement techniques for better pre-
processing before application of deep learning approaches. In Table 10 we have shown some
key points observed after analysing effects of various image enhancement techniques on
performance of the models in terms of accuracy, sensitivity and time.

From global perspective, this research study gives promising results that can improve
performance and interpretability of existing state-of-the-art models. We ensure supremacy of
our proposed pipeline on the basics of learning curves, confusion matrix, class-wise sensitivity,
confidence score analysis and Gradient-CAM visualization maps. We tested our proposed
pipeline with ten deep learning models on two different benchmark datasets. Out of total 20
combinations our proposed pre-processing pipeline wins for 17 times only except inception-
based models. Confusion matrix obtained by our proposed model shows zero overlapping of
other classes with COVID-19 class. Confidence score prediction ensures that proposed
approach predicts classes with higher probability that in terms achieves higher accuracy,
sensitivity and COVID-19 sensitivity as per Section 5.2. Regarding interpretation of CXR
images, our proposed model classify image to COVID-19 class by looking at relevant lung
regions as shown in Section 5.6. All these quantitative and qualitative outputs ensures that
proposed model MobileNet with pre-processing pipeline TVF + Gamma is superior to others.

The reason for the success of MobileNet model is because of its structural characteristics of
depthwise separation convolutions followed by point wise convolutions. It achieves better
results because of better classification ability of COVID-19, normal and BP classes with TVF
+ Gamma whereas for VP it is comparable to others. Because of its higher depth its

Table 10 Comparison of image enhancement methods based on results for effective diagnosis of COVID-19

Technique Accuracy Sensitivity Time

TVF+Gamma Achieves accuracy better
than HE, CLAHE and
gamma correction even
at large threshold values
and having minimal
overlapping with
COVID-19 class.

Achieves more COVID-19
sensitivity and precision
in deep CNN models.

Takes time comparable
to gamma correction
but less than HE and
CLAHE.

Gamma correction Achieves better accuracy
then HE and CLAHE
because of more
improvement in true
positives of virus class.

Sensitivity more than HE
and CLAHE but Less
than TVF+Gamma.

Takes less time to
converge best possible
results.

CLAHE Accuracy more than to
HE but less than Gamma,
TVF+Gamma due to
maximal overlapping
of viral and bacterial
pneumonia.

More COVID-19 sensitivity
in both shallow and deep
CNN models but less
sensitivity of virus class.

Takes more time then
TVF+Gamma and
gamma correction to
converge best possible
result.

Histogram equalization Accuracy less than CLAHE,
Gamma, TVF+Gamma
because of less accuracy
of normal and virus class.

Least sensitive to covid
class than CLAHE but
more than gamma
correction.

Takes more time than
gamma correction but
less than CLAHE.

Original Accuracy is less. Sensitivity is less at higher
threshold values.

Takes more time to
converge best possible
results.
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interpretation is also better as Grad-CAM attention maps shows model focus on more relevant
lung regions. Also, interpretation of DenseNet201 model is comparable to MobileNet as
models having more depth and comparable performance tries to capture more relevant features
for classification. Finally, we compare the results obtained by our best model MobileNet in 4-
way classification and DenseNet201 in 3-way classification using proposed preprocessing
pipeline with various state-of-the-art approaches as shown in Tables 11, 12 and 13. In Table 11
we compared our proposed DenseNet201 with very first COVID CXR classification COVID-
Net [71] model. In Table 12 we further compare proposed MobileNet model with very popular
COVID detection model named COVID-AID [39] and In Table 13 we compared proposed
models with various state-of-the-art approaches.

5.3 Comparison with Covid-net

COVID-Net [71] is one of the first popular and most effective SOTA deep CNN based
learning approach for distinguishing COVID-19 examples from pneumonia and control cases.
So, we compare results achieved by Densenet201 with COVID-Net as described in Table 11.
We used identical dataset to study 3-way classification of COVID-19 vs Normal vs Pneumo-
nia. With similar dataset, DenseNet201 with proposed preprocessing pipeline presented
improved COVID-19 sensitivity and PPV related to COVID-Net with same covid dataset.
In addition, this model uses only 20.2 M parameters and advantageous in terms of stability and
performance whereas COVID-Net uses 116.6 M parameters.

5.4 Comparison with Covid-AID

Covid-AID [39] is another popular AI based detection approach for identification of COVID-19 in
CXR samples. It is state-of-the-art deep CNN architecture that uses DenseNet121 as baseline model
where model weights are initialized via CheXNet application. Covid-AID usages covid-chestxray-
dataset [13] and accomplish classification of COVID-19 vs normal vs viral pneumonia vs bacterial
pneumonia with 90.5% accuracy. With similar dataset, we meaningfully improved the results with
accuracy score of 93.10% in 4-class classification. However, Covid-AID uses only PA view

Table 11 Class wise comparison
of DenseNet201 with COVID-Net Pathology COVID-Net (%) Proposed (%)

Sensitivity PPV Sensitivity PPV

COVID-19 91.0 98.9 100 100
Normal 95.0 90.5 89.66 88.14
Pneumonia 94.0 91.3 89.09 87.50

Table 12 Class wise comparison
of DenseNet201 with Covid-AID Pathology Covid-AID (%) Proposed (%)

Sensitivity PPV Sensitivity PPV

4-class COVID-19 100 93.8 98.73 100
Normal 76.1 98.9 93.64 98.56
VP 87.2 72.1 78.57 90.91
BP 96.1 88.1 99.59 88.28
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samples. Also, Covid-AID combines VP and BP classes to perform 3-way classification. So, our
DenseNet-201 with TVF + Gamma achieved an accuracy score of 99% in similar 3-way
classification. Also, class wise evaluation of DenseNet201 model and Covid-AID over COVID-
19 sensitivity and PPV is shown in Table 12.

5.5 Comparison with the state-of-the-art models

To demonstrate robustness of CXR enhancement on performance of deep learning models, we
make use of different combinations of image denoising and image enhancement techniques as
preprocessing pipeline with ten deep CNN models to facilitate transfer learning. Further to
confirm the effectiveness of our proposed model, we compare performance of model with several
state-of-the-art existing models in similar 3-way and 4-way classification scenarios as shown in
Table 13. Table 13 contains features as the reference considered for comparison, best architecture,
number of classes, number of covid samples for analysis, technique used and performance
measure in terms of overall Accuracy (A), COVID-19 sensitivity (Spcov), F1-score, COVID-19
positive predictive value (precision) as per metrics taken in reference. Proposedmodel outperform
state-of-the art models in terms of COVID-19 sensitivity, F1-score and PPVcov (precision) in 3-
way and 4-way classification because of image enhancement effects. It is advantageous because
of better pre-processing of input samples with TVF + Gamma and gamma correction itself.
Alone, gamma correction improves sensitivity of virus class and normal class and TVF improves
COVID-19 sensitivity as well. Like major studies, our study considers only PA view images of
CXR for COVID-19 analysis in 3-way classification whereas 4-way classification considers PA,
AP and AP supine view of COVID-19 samples. We observed that with PA view sensitivity of
proposed model is 100% but it reduces to 98.72% by considering AP and AP supine view

Table 13 Comparison of proposed model with other state-of-the-art models

Ref. Best model Classes # Of COVID
samples

Technique Performance metrics (%)

Acc. Sencov Other

[67] CapsNet 3 231 – 84 94.57 F1–84.21
[12] VGG16 3 132 Fine tuning 85 100 F1–85
[51] DarkNet 3 127 – 87.02 97.9 F1–87.37
[14] Xception 3 127 Fine tuning – 97 F1cov - 96.9
[33] Xception 3 290 Fine tuning 90.21 89 F1–91
[5] MobileNetV2 3 224 Fine tuning 92.85 98.66 Spcov−96.46
[40] ResNet50 3 184 Fine tuning – 98 Spcov - 93
[71] COVID-Net 3 268 – 93.3 91 PPVcov-98.9
[1] DeTrac 3 105 Fine tuning 93.1 100 Sp - 85.1
[49] Shallow-CNN 3 321 – – 100 PPVcov - 99.38
[54] DenseNet-201 3 683 Fine tuning – 98.93 Sp - 98.77
DenseNet201 with TVF+ Gamma 3 193

(PA view)
Fine tuning 91.10 100 F1–91.09

PPVcov −100
[37] GoogleNet 4 69 Fine tuning 80.6 100 F1–82.32
[38] CovXNet 4 305 – 90.2 95 F1–90.4
[50] ResNet18 4 180 Fine tuning 88.9 92.5 F1–84.4
[24] AlexNet 4 371 Fine tuning 93.42 89.18 Sp - 98.9
[39] DenseNet121 4 155 Fine tuning 90.5 100 F1–92.30
MobileNet with TVF+Gamma 4 476 (PA, AP,

AP Supine)
Fine tuning 93.25 98.72 PPVcov - 100

F1–92.14

Bold signifies the results of proposed model
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samples. Thus, hybrid of both Gamma correction and total variation filter improves overall
performance of models. In 3-way classification, proposed DenseNet201 with TVF + Gamma
outperforms [12, 14, 33, 40, 48, 50, 53, 67] under similar scenario covid vs normal vs pneumonia
in accuracy, sensitivity, F1-score and positive predictive value. Accuracy of these model is less
because of overlapping between COVID-19 and Viral pneumonia due to their similar character-
istics. Success of our proposed DenseNet201 model lies in image pre-processing pipeline as there
is no overlapping between viral pneumonia and COVID-19 pneumonia. Also, proposed model is
less accurate than [1, 5, 71]. As in [5], proposed model compared COVID-19 samples with
normal and bacterial pneumonia samples with more training samples than this study. Accuracy
improves because of less overlapping between bacterial, covid samples and more bacterial
training samples than this study. In [71], study is carried out using large dataset of 13,975 CXR
images comprises a corpus of 268 COVID samples, 5538 pneumonia and 8066 normal cases.
Instead of having such large dataset for better training but study considers only 100 samples from
each class for testing because of more focus on better classification of COVID cases. Accuracy of
normal and pneumonia class this study is 95% and 94%but COVID accuracy is 91%which is less
than our proposedmodel.We believe usage of image preprocessing will further improve accuracy
of pneumonia and normal samples due to large training samples. In [1], study was carried out
using corpus of 105 COVID, 11 SARS and 80 normal samples by using concept of class
decomposition that improves accuracy of this model. Similarly in 4-way classification our
proposed MobileNet with TVF + Gamma model outperforms state-of-the-art models in similar
scenario of covid vs virus vs bacteria vs normal under similar evaluation measures considered in
the study. This study enlightens notable accuracy, COVID-19 sensitivity and PPV boost in model
performance after application of image enhancement and image denoising techniques.

In this study, we gain insight of few observations on the basics of literature review and
performance analysis of various models. Usage of Deep CNN models i.e., DenseNet series and
MobileNet series models give better performance as compared to other models because due to
more depth it is better in distinguishing overlapped features of COVID-19 and virus pneumonia.
DenseNet andMobileNet series models with TVF + Gammamodels has higher confidence score
as output probability and interpretation for COVID-19 pathology class than all other CNN
models. Also, it is better to use weighted class loss function as compared to undersampling or
oversampling of training samples [53]. Also, studies depict that classification accuracy is better in
covid vs bacterial pneumonia than covid vs viral pneumonia due to similarity in covid and viral
pneumonia. But usage of proposed image preprocessing pipeline with deep CNN models
improves performance by distinguishing overlapping in viral pneumonia and covid pneumonia
more accurately. With gamma correction models gains more advantage than CLAHE and HE as
enhancement techniques and improves sensitivity value of all classes even at higher threshold
level. Although, no single model performs well on all datasets but with image preprocessing
pipeline achieves better performance than other state-of-the-art studies. However, results of this
study can be generalizable to even more large datasets for diagnosis of COVID-19 in terms of
time and performance as compared with plain image analysis.

5.6 INSPECTION OF MODEL’S DECISION by grad-CAM

To demonstrate output qualitatively, we visualize learning of proposed model with gradient
weighted class activation mapping (Grad-CAM). Due to very complex architectures of deep
learning models, it is harder to interpret why the model has classified given input to particular
class. Grad-CAM aimed at increasing interpretability by looking at where model has focused
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while classifying given input image to particular class. In Fig. 16, we have shown the effects of
different image enhancement techniques on Grad-CAM attention visualization of correctly
classified samples by DenseNet201, VGG19, MobileNet and denseNet169 models. On given
input test image, we use Grad-CAM technique to build heatmap by extracting class specific
gradients flowing into last convolutional layer corresponding every class showing significant
regions considered by model for predicting certain pathological condition. This is indeed
important to understand whether our model focus on right regions while classifying given
input image so that experts could validate the prediction process. Grad-CAM visualization in
Fig. 16 is shown on two images. In Fig. 16, first row shows effect of various image
enhancement techniques on plain input test image 1 corresponding to that Grad-CAM
visualization has performed. Second and third row shows silancy map corresponding to
image 1 and another considered image 2 by best performing DenseNet201 model trained
using image enhancement techniques shown in first row. Fourth, fifth and sixth row shows

Fig. 16 Effects of different image enhancement techniques on attention visualization by Grad-CAM of correctly
classified COVID-19 CXR images using different models
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heatmap generated by models VGG19, DenseNet169 and MobileNet with image enhancement
techniques used among CLAHE, gamma correction and TVF + Gamma. In saliency map,
Red signifies region of more importance and each Grad-CAM generated image has confidence
score at the top. We observed from the study that application of enhancement techniques helps
model to focus more on lung regions due to changes in the distribution of pixels. Moreover, we
observe that with gamma correction models focus more on the lung regions as marked by
radiologists better than HE and CLAHE. Also, DenseNet201 model gives higher confidence
score to correctly classified images when preprocessing pipeline is Gamma and TVF +
Gamma. Even disadvantage with plain CXR image is that models may consider sometimes
other irrelevant features rather than lungs, so it is better to segment lung regions. Usage of
Gamma and TVF + Gamma not only improves performance of plain images but also
applicable to segmented lung images because it denoises and enhances lung regions for better
analysis. Application of gamma correction improves performance and reduces time of con-
vergence whereas hybrid of TVF + Gamma improves COVID-19 accuracy and confidence
score for classification of given COVID infected image.

5.7 Discussion

This experimental study discusses the importance of image denoising and image enhancement
approaches on the performance of ten deep learning models using two CXR datasets. This
study concludes that deep learning models extract more relevant features if better pre-
processing pipeline is utilized before feature extraction. Proposed study discloses that the
application of image enhancement approach as gamma correction and TVF + Gamma
improves interpretability and performance of state-of-the-art approaches. Individually Gamma
correction is better for BP, VP and normal classes whereas CLAHE is better for identification
of COVID-19 features. Out of 20 trails with 10 CNN feature extractors, our proposed pre-
processing pipeline wins for 17 trails. It minimizes the overlapping of other classes to COVID-
19 class that improves precision and COVID-19 sensitivity. The results of proposed method-
ology indicate, when CXR images are pre-processed with TVF + Gamma and features
extraction is performed using MobileNet model achieves higher accuracy score of 93.25%
followed by DenseNet201 with accuracy score of 93.10%. Proposed model achieves zero
overlapping with 100% precision for COVID-19 class. Also, we perceive that deep CNN
models like MobileNet, DenseNet series have higher sensitivity, accuracy and interpretation
with proposed pre-processing pipeline as compared to other baseline models. Similarly, in our
case deep CNN models like MobileNet and DenseNet201 achieves highest accuracy and
sensitivity value among other models.

5.8 Recommendations for authors

For authors, we recommend preparing their publication atleast by considering the mandatory
suggestions with proper documentation so that their modelling approach results can be
reproduced. Our suggestions are based on the limitations of existing state-of-the-art studies.
Firstly, authors should properly specify their universal pre-processing approach like resizing,
type of normalization, cropping and formatting in sufficient detail. As good quality of data
leads to better interpretation and analysis of the model. Thus, authors need to focus more on
advanced pre-processing techniques in addition to modelling. Regarding pre-processing in
addition to image denoising and enhancement approaches, image segmentation can be
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implemented to extract relevant lung regions for better interpretation of models. Secondly,
COVID-19 dataset constitutes of a smaller number of samples as compared to other classes of
comparison. Thus, it is mandatory to handle class imbalance either by generating synthetic
data or by weighted cross entropy loss for better training of minority class. Proper documen-
tation of training and testing parameters like learning rate, batch size, number of epochs etc. is
required to reproduce results and make models operational in future. Also, hyperparameter
setting should be carefully done by considering validation dataset but test dataset is used for
final evaluation only. Finally, authors should clearly mention how they selected their final
model and how their model performs for each of the class by class-wise sensitivity analysis.

6 Conclusions

This article presents a comparative study of various combinations of image enhancement and
image denoising approaches using ten different state-of-the-art transfer learning models for
automated and early diagnosis of COVID-19. Due to exponential behaviour of COVID-19
epidemic, it completely shattered healthcare sector worldwide because of its unidentified nature
and similarity with other pathology classes in early stages. We believe that timely inference and
correct diagnosis of type of disease can save millions of lives every year. Thus, computer-aided
diagnosis significantly assists radiologists to capture better images and Real time identification of
COVID-19 or pneumonia just after acquisition. Image preprocessing and denoising play very
important role in improving the quality of image that improves performance and reduces the time
required for training models. Image preprocessing improves the diagnostics power of CAD tools
to identify disease in early stagesmore accurately. It will be useful for screening process at airports
for early diagnosis of COVID-19, Pneumonia and others type of disease. After the extensive
number of trials, this study concludes that deep CNNmodels help in the identification of COVID-
19 pathologymore accurately as compared to shallowCNNmodels. Also, series of DenseNet and
MobileNet models have higher potential in detecting abnormalities in chest x-ray images of
COVID-19 among other pathology classes with higher confidence score. In this study, we
conclude that individually gamma correction is best image enhancement technique in terms of
performance as well as time of convergence. But application of TVF along with gamma further
improves accuracy, COVID-19 sensitivity and confidence score of prediction as well. In this
study, our proposed image preprocessing pipeline tested successfully on two datasets with
improvements in accuracy, sensitivity and confidence score better then HE, CLAHE and gamma
correction. This study concludes best model as MobileNet with TVF + Gamma outperforms all
other models and enhancement combinations in terms of accuracy and class wise sensitivity. Our
model improves COVID-19 sensitivity as well as there is no overlapping of other classes to
COVID-19 class. The outcomes of this study can be generalizable with better improvements on
large datasets and applicable to CAD systems. To interpret output qualitatively, we visualize
learning of model with gradient weighted class activation mapping (Grad-CAM). Finally, in
global perspectives after critically analysing the related literature and obtained results, we can say
that application of image enhancement techniques with deep learning models has enormous
improvements in classification of COVID-19 patients against others. In addition, series of deep
CNN models has higher sensitivity to COVID-19 and likely to be more supportive in early
classification of COVID-19 cases among others. In future, we hope to use segmentationmodels to
segment lung regions from large CXR datasets and to train deep CNN models like DenseNet,
GoogleNet, MobileNet and ResNet using proposed image preprocessing pipelines.
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