
AUTHOR'S PROOF

Metadata of the article that will be visualized in OnlineFirst

 
1 Article Title Preprocessing framework for scholarly big data management
2 Article Sub- Title
3 Article Copyright -

Year
The Author(s), under exclusive licence to Springer Science+Business
Media, LLC, part of Springer Nature 2022
(This will be the copyright line in the final PDF)

4 Journal Name Multimedia Tools and Applications
5

Corresponding
Author

Family Name Khan
6 Particle
7 Given Name Samiya
8 Suffix
9 Organization Jamia Millia Islamia

10 Division
11 Address New Delhi, India
12 e-mail samiyashaukat@yahoo.com
13

Author

Family Name Alam
14 Particle
15 Given Name Mansaf
16 Suffix
17 Organization Jamia Millia Islamia
18 Division
19 Address New Delhi, India
20 e-mail malam2@jmi.ac.in
21

Schedule
Received 17 November 2020

22 Revised 3 August 2021
23 Accepted 13 July 2022
24 Abstract Big data technologies have found applications in disparate domains. One of the

largest sources of textual big data is scientific documents and papers. Scholarly
big data has been used in numerous ways to develop innovative applications
such as collaborator discovery, expert finding and research management
systems. With the evolution of machine and deep learning techniques, the
efficacy of such applications has risen manifold. However, the biggest
challenge in the development of deep learning models for scholarly
applications in cloud-based environment is the under-utilization of resources
because of the excessive time required for textual preprocessing. This paper
presents a preprocessing pipeline that uses Spark for data ingestion and Spark
ML for performing preprocessing tasks. The proposed approach is evaluated
with the help of a case study, which uses LSTM-based text summarization to
generate title or summaries from abstracts of scholarly articles. Results indicate



AUTHOR'S PROOF

a substantial reduction in ingestion, preprocessing and cumulative time for the
proposed approach, which shall manifest reduction in development time and
costs as well.

25 Keywords separated
by ' - '

Deep learning applications - Preprocessing pipeline - Scholarly big data -
Scholarly data applications - Spark ML

26 Foot note
information

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications
https://doi.org/10.1007/s11042-022-13513-8

1216: INTELLIGENT AND SUSTAINABLE TECHNIQUES FOR MULTIMEDIA BIG
DATA MANAGEMENT FOR SMART CITIES SERVICES

1
2

1

Preprocessing framework for scholarly big data 2

management 3

Samiya Khan1 · Mansaf Alam1 4

Received: 17 November 2020 / Revised: 3 August 2021 / Accepted: 13 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract 4

Big data technologies have found applications in disparate domains. One of the largest 5

sources of textual big data is scientific documents and papers. Scholarly big data has been 6

used in numerous ways to develop innovative applications such as collaborator discovery, 7

expert finding and research management systems. With the evolution of machine and deep 8

learning techniques, the efficacy of such applications has risen manifold. However, the 9

biggest challenge in the development of deep learning models for scholarly applications in 10

cloud-based environment is the under-utilization of resources because of the excessive time 11

required for textual preprocessing. This paper presents a preprocessing pipeline that uses 12

Spark for data ingestion and Spark ML for performing preprocessing tasks. The proposed 13

approach is evaluated with the help of a case study, which uses LSTM-based text summa- 14

rization to generate title or summaries from abstracts of scholarly articles. Results indicate 15

a substantial reduction in ingestion, preprocessing and cumulative time for the proposed 16

approach, which shall manifest reduction in development time and costs as well. 17

Keywords Deep learning applications · Preprocessing pipeline · Scholarly big data · 18

Scholarly data applications · Spark ML 19

1 Introduction 20

Artificial intelligence has revolutionized many domains by providing a technological plat-

Q1

21

form for development of innovative applications and use cases. Scholarly applications is 22

one such field that makes extensive use of Natural Language Processing (NLP) in the back- 23

end along with machine learning and deep learning to develop innovative applications for 24

� Samiya Khan
samiyashaukat@yahoo.com

Mansaf Alam
malam2@jmi.ac.in

1 Jamia Millia Islamia, New Delhi, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-022-13513-8&domain=pdf
mailto: samiyashaukat@yahoo.com
mailto: malam2@jmi.ac.in


AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

researchers [41]. From recommender systems [3] to text summarization mechanisms [12],25

the implementation of complex analytical techniques on big scholarly data can be used to26

solve different problems to achieve the common benefit of the research community.27

A classic example of this assertion is automatic keyword extraction [29], which extracts28

keywords from scholarly articles using multiple parameters, such as the frequency occur-29

rence of keywords [6], citations [33], author relationships, and others. In addition, research30

paper recommenders [20], venue recommendation systems [35] and analytically-enabled31

research management systems [16] are some other existing applications of big scholarly32

data analytics.33

Big scholarly data comprise of textual and image data. Different applications are34

expected to use big scholarly data in different ways. For instance, if a research article writ-35

ing system offers image caption generation as a service, then the images of the scholarly36

article are used. In this regard, a majority of scholarly applications focus on textual data37

analytics, for which the required text is extracted from a PDF or HTML webpage, cleaned38

using NLP algorithms [7] and used as an input to create diverse machine learning and deep39

learning applications.40

The problem with development of deep learning models for natural language processing-41

based scholarly applications is that the preprocessing stage is extremely resource-intensive,42

and time-consuming. Moreover, with any deep learning application, the accuracy of result43

depends on the amount of data used for training [14]. However, as dataset size increases44

for NLP-based applications, preprocessing stage of the deep learning model development45

becomes extremely resource intensive.46

Considering the complex nature of the application, a model can only be appropriately47

trained on a GPU-enabled system. However, in a Cloud-based development environment,48

such a proposition can prove expensive as the GPU is under-utilized at 0% load during data49

ingestion and preprocessing stages of model development. This does not just increases the50

project development time, but it also elevates project cost. Therefore, there is an need for a51

preprocessing framework that can solve this problem.52

In order to optimize GPU utilization and reduce total development time,53

this paper proposes a preprocessing framework for big scholarly data manage-54

ment, called Preprocessing Pipeline for Scholarly Applications or55

P3SAPP, which focuses on the creation of a data pipeline. This framework uses Spark ML56

for implementing APIs and parallelizing the different stages of data preparation in scholarly57

applications, which can greatly improve programmer productivity and reduce project cost.58

The running of the proposed framework also has high efficiency, in exchange for a minimal59

loss of accuracy.60

The rest of the paper is organized in the following manner: Section 2 reviews related61

literature while Section 3 introduces the proposed framework alongside the baseline frame-62

work that shall be used for theoretical and experimental comparison. Section 4 illustrates the63

methodology. Details regarding implementation and evaluation of the proposed framework64

are provided in Section 5. The results obtained are analyzed and discussed in Section 6.65

Finally, conclusions and future work are synopsized in Section 7.66

2 Related work67

Big scholarly data consists of documents, typically in PDF or HTML format, with a struc-68

ture consisting of several sections, including abstract, keywords, body and references. The69

constituents of these sections are essentially unstructured and consist of text, images and70



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

tables. Different applications make use of data from different or all sections. For instance, 71

to create a citation graph [36], the text in the reference section needs to be scanned. In 72

addition, scholarly data is also generated in the form of user logs. This data can be used 73

for demographic analysis, system statistics and markers related to users and usage. Pig and 74

Hive have been used for such analyses in existing literature [37]. 75

Khan et al. [15] divide big scholarly data applications into five categories based on 76

functionality. These categories include collaborator discovery, research management, expert 77

finding systems, user logs analysis and other recommender systems. All these applications 78

require data to be extracted from PDFs or webpages and bifurcated into sections from which 79

relevant text is chosen for analysis. For example, collaborator discovery and expert finding 80

depend primarily on author information and references. The rest of the textual information 81

can be ignored for such applications. 82

Big scholarly data life cycle can be divided into six phases. The first step is the acqui- 83

sition of scholarly documents in the form of PDFs or web pages [27]. During the second 84

phase, data from these sources are extracted and collated into JSON or XML files. This 85

process is referred to as ’extraction’ [34]. Specific applications require specific textual infor- 86

mation. Moreover, the variations in format and data specified, in a scholarly article, cause 87

repeated and variable occurrence of nulls in the extracted data. Besides, multiple copies and 88

versions of scholarly articles are available on the Internet. As a result, the presence of dupli- 89

cates is highly probable. These preprocessing steps are essential for improving quality and 90

value of scholarly big data regardless of the application. 91

Different applications have different preprocessing requirements. For instance, removal 92

of duplicates while handling author information is more complicated than removing dupli- 93

cates for numeric or textual entries such as DOI and titles. Author disambiguation is an 94

outstanding preprocessing challenge as the currently available method manifests reasonable 95

accuracy [17]. For most research management applications that focus on research arti- 96

cle writing, concept development and references management, preprocessing tasks focus 97

on cleaning text from title, abstract, paper body and/or references [18]. At the end of 98

preprocessing, data is ready to be used as input for the model. 99

Depending on the application, different modeling techniques can be used for design and 100

development of scholarly applications. Due to the textual nature of data, most applications 101

use TF-IDF [5] or PageRank [11] for feature extraction. Common use cases include auto- 102

matic keyword extraction [10] and topic modeling [39]. Recent applications have adopted 103

machine and deep learning techniques for better accuracy. 104

The coverage of this work is limited to deep learning-based applications and the 105

approaches to their implementation. During review, three recent scholarly applications that 106

make use of deep learning were studied. Table 1 provides details about these applications, 107

including implemented functionality and used technologies. All three applications use deep 108

learning techniques on scholarly data. The implementation details of these applications indi- 109

cate the use of conventional or baseline approach [1, 9, 21]. Review [40] suggests that Spark 110

has not been used in any capacity for deep learning applications, particularly in the big 111

scholarly data domain. 112

Literature review also suggests that the five methods, which are most commonly used and 113

required for textual preprocessing include removal of punctuation, short words, stopwords, 114

HTML tags and special characters, in addition to others. Finally, the results generated by 115

the model are summarized and presented in the form of textual data or WordCloud [18] for 116

better visualization. This work focuses on preprocessing techniques for deep learning-based 117

scholarly applications. Therefore, it will not discuss modeling and visualization in detail. 118



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Table 1 Existing deep learning application of big scholarly data

Application Features Preprocessing Modeling

Technique

1. Deep Key-phrase Gen-
eration [21]

Extracts key-phrases
automatically using
deep learning tech-
niques

Lowercasing,
tokenization
and replacing
digits with their
string versions

RNN and Copy-
RNN

2. Keyword extraction
from scholarly documents
using Bi-LSTM-CRF [1]

Solves the key-phrase
extraction problem
by modelling it as a
sequence-labelling
problem.

Abstract/Key-
phrase data pairs
are tokenized.

LSTM-CRF,
CRF, Bi-LSTM,
and LSTM

3. PubMender: A system
for biomedical venue rec-
ommendation [9]

It is a journal recom-
mendation system that
works specifically in
the biomedical domain.

NLTK for word
segmentation

Venue recommendation is
considered a multi-label
classification problem and
CNN is used.

The baseline approach uses a Pandas dataframe to ingest and store data, which is sequen-119

tially cleaned by performing tokenization, conversion to lowercase, and removal of HTML

Q2

120

tags, unwanted characters, stopwords and short words, for each input entry. The output of121

this approach is a Pandas dataframe that has all the input elements in their cleaned form.122

Reference applications [1, 9, 21] make use of the baseline approach (CA). In order to facil-123

itate comparison of the proposed approach (P3SAPP) with the baseline approach (CA),124

Table 2, provides the algorithm of the same.125

Table 2 Algorithm for CA

Input: Data files

Output: Pandas dataframe with extracted

and cleaned text

BEGIN

1. Initialize a Pandas dataframe, data.

2. For each directory

3. For each file

4. Read file into a dataframe

5. Select data to be extracted

6. Append the Pandas dataframe

data with selected data

7. END For

8. END For

9. Remove NULL valued rows

10. Remove duplicates

11. For all rows in the dataframe

12. Perform text cleaning

13. END For

14. Remove NULL valued rows

END



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Steps 2-8 perform ingestion and time corresponding to their execution is considered as 126

ingestion time. Steps 9-10 perform pre-cleaning and time corresponding to their execution 127

is considered as pre-cleaning time. Steps 11-13 perform cleaning and time corresponding to 128

their execution is considered as cleaning time for CA. Step 14 performs post-cleaning. The 129

post-cleaning times are correspondingly determined. The total preprocessing time for CA 130

is determined by the execution time of steps 2-14. Theoretically, the algorithmic time com- 131

plexity for conventional approach is O(n) because every element to the concerned column 132

will be accessed and processed. It is noteworthy that n is the total number of elements in 133

the column concerned. 134

3 Proposed framework 135

Preprocessing is one of the most crucial stages of the data lifecycle, which needs to be 136

accurate as well as cost and time effective for development of sustainable applications. This 137

section provides an overview of the preprocessing approach and describes the methodology 138

used by the proposed approach to solve the problem of an excessively time-consuming 139

preprocessing phase in deep learning – based scholarly applications. 140

Data preprocessing for deep learning–based scholarly applications involves three stages. 141

Firstly, data from data files needs to be ingested into a dataframe. This dataframe is then 142

prepared for text cleaning by filtering out unwanted elements such as null values and dupli- 143

cates. This stage is referred to as pre-cleaning. Pre-cleaned data is fed to the cleaning stage, 144

which outputs individually processed elements in the form of a dataframe. This dataframe 145

is then fed to the post-cleaning stage for finalization of the preprocessing results. This 146

stage again identifies nulls and removes them. This step is required because cleaning stage 147

may also have introduced nulls, which need to be tackled. This work proposes a black-box 148

approach that takes data files as input and provides Pandas dataframe as output. Therefore, 149

if the cleaning stage provides output in any other dataframe format, its conversion to Pandas 150

dataframe shall be performed in the post-cleaning stage. 151

The data lifecycle for any deep learning-based application includes four phases namely, 152

data ingestion, data preprocessing, model training and model inference. The proposed 153

framework identifies parallelizable phases of scholarly data lifecycle. These phases are fine- 154

grained to create a data pipeline, which is escalated to Spark for reducing the total execution 155

time of preprocessing. This research paper focuses on the preprocessing stage, which can 156

be further divided into three sub-phases namely, pre-cleaning, cleaning and post-cleaning. 157

The proposed framework identified cleaning as a potentially parallelizable phase and 158

escalated the same to Spark. The pre-cleaning phase needs to scan through the dataframe to 159

identify duplicates and nulls for removal. Therefore, a sequential operation can be seen as 160

uncomplicated and beneficial. On the other hand, the post-cleaning stage involves removal 161

of nulls and conversion of the dataframe to a standard Pandas dataframe. The conversion part 162

of this operation takes much more time than null removal. However, the dataframe format 163

conversion cannot be parallelized because this framework directly uses the library function 164

available for this purpose. The algorithm for the proposed approach is provided in Table 3. 165

The use of a distributed technology like Spark reduces the data ingestion time in view 166

of the fact that data files are split and read. On the contrary, standard technology reads 167

files sequentially for creation of dataframe. As a result, major benefits can be reaped in 168

the data ingestion phase of the scholarly data lifecycle as well. The model training and 169

inference stages of the scholarly data lifecycle remain untouched and have not been altered 170



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Table 3 Algorithm for P3SAPP

Input: Data files

Output: Pandas dataframe with extracted

and cleaned text

BEGIN

1. Initialize a Spark dataframe, data.

2. For each directory

3. For each file

4. Read file data into a dataframe

5. Select data to be extracted

6. Perform union between Spark

dataframe data and selected data

7. END For

8. END For

9. Remove NULL valued rows

10. Remove duplicates

11. Define different stages of preprocessing APIs

12. Initialize Spark ML Pipeline for

preprocessing

13. Fit the data on Pipeline

14. Transform data using Pipeline

15. Convert Spark dataframe to Pandas dataframe

16. Remove NULL valued rowsEND

END

as part of this framework. It is noteworthy that the model training and inference stages171

are dependent on the application being developed. Therefore, application-specific model172

escalation to Spark for reduction in model development time can be attempted.173

4 Methodology174

The proposed framework uses a big data technology, Spark [40], for ingesting data and175

parallelizing specific phases of preprocessing stage, reducing the preprocessing time, which176

in turn reduces the total execution time. This reduction has a direct impact on the total177

time for which a Cloud-based GPU instance shall be required, correspondingly reducing the178

development time, computing cost and the overall project cost.179

The overall framework can be broken down into four stages, out of which P3SAPP alters180

data ingestion and preprocessing stages. Steps 2-8 perform ingestion and time correspond-181

ing to their execution is considered as ingestion time. Steps 9-10 perform pre-cleaning and182

time corresponding to their execution is considered as pre-cleaning time. Step 14 performs183

cleaning for P3SAPP and its execution time corresponds for P3SAPP’s cleaning time. Steps184

15-16 perform the same for P3SAPP. The post-cleaning times are correspondingly deter-185

mined. Execution time for steps 2-16 is used to determine preprocessing time for P3SAPP.186

Theoretically, the algorithmic time complexity for the P3SAPP approach is O(n/k) where187

k is the number of nodes in the cluster if Spark is operating on cluster mode or the number188

of cores used to parallelize the job, if Spark is operating on local [*] mode. Typically, in189



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

local mode mode, the driver runs locally. However, in cluster mode, the driver runs on one 190

of the worker nodes, which form the cluster. 191

4.1 Data ingestion 192

Data ingestion is the first stage of model development for any machine learning or deep 193

learning application. As part of this stage, data is ingested into the system for further pro- 194

cessing. Irrespective of the format of base dataset, this approach proposes ingestion of data 195

into a PySpark dataframe [22]. Since the raw data from a scholarly document is structured in 196

the sense that it can be ingested in the form of rows and columns, Spark SQL [23] has been 197

selected as the base technology for operating with data inside Spark. Spark SQL provides 198

a dataframe interface, which is capable of operating on different data formats, including 199

JSON, ORC, Parquet and others [2]. Besides, Spark also provides generic data loading and 200

saving methods, in which developers can specify their own working formats. This allows the 201

flexibility to work with different formats using the same base technology. As a result, this 202

framework can be used for generic purposes. The advantage of using a Spark dataframe is 203

that relational transformation can be performed on data along with the provision to register 204

a dataframe as a temporary view. Ingestion of data into a Spark dataframe is more efficient 205

than the ingestion in Pandas [4]. 206

4.2 Data preprocessing 207

For scholarly applications, the ingested data values are typically textual in nature. This text 208

needs to be cleaned before it can be sent for further processing. On the basis of literature 209

review, it has been deduced that commonly required text cleaning tasks include: (1) tok- 210

enize text, (2) convert text to lower case, (3) remove HTML tags, (4) remove unwanted 211

characters, (5) remove stopwords and (6) remove short words. The Spark ML Feature pack- 212

age provides some APIs that are built on top of dataframes for feature transformation. 213

For text preprocessing, the available APIs includes Tokenizer1, for tokenizing text and 214

StopWordsRemover2, for removing stopwords. However, the rest of the APIs are not 215

present and have been implemented in this work. 216

It is proposed that the APIs must be used to create a Spark ML Pipeline [24] so that 217

Spark can perform the pipelined tasks in a parallel fashion, to reduce the time required. 218

Typically, Spark ML Pipeline consists of transformers and estimators. P3SAPP proposes to 219

use Pipelines for chaining multiple transformer APIs to specify a preprocessing workflow. 220

On the basis of the preprocessing requirements, different transformer APIs can be chosen 221

and chained in the pipeline for faster preprocessing. Finally, the resulting Spark dataframe 222

is transformed into a Pandas dataframe, which can be fed to the model training sub-system. 223

This sub-step is in line with the black box model [25]. The proposed approach does the 224

same as the conventional approach, which takes raw data as the input, then generates Pandas 225

frame as the output for subsequent model development. It is important to mention that future 226

work intends to escalate model training and inference to Spark as well. Therefore, Spark 227

ML is used so that this framework can be improved as it is for future work. 228

– ConvertToLower 229

1https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/feature/Tokenizer.html
2https://spark.apache.org/docs/latest/ml-features.html#stopwordsremover

https://spark.apache.org/docs/latest/api/scala/org/apache/spark/ml/feature/Tokenizer.html
 https://spark.apache.org/docs/latest/ml-features.html#stopwordsremover


AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

This API performs case conversion of all the row entries for the column provided230

as input. The case of all the alphabets in the entries is changed to lowercase. This231

API is essential in view of the fact that most NLP tasks require matching, similarity232

identification or manipulation based on identification of alphabets, words or strings.233

The use of such an API reduces programming effort by bringing all the values on the234

same level of casing.235

– RemoveHTMLTags236

Considering that the primary source of all scholarly data is the web and in most237

scenarios, it is required to ingest data using a crawler, textual data is typically retrieved238

as HTML content with tags. Although, this may or may not be true for all entries, it can239

be taken as a mandatory text-cleaning step before any analytical task can be performed.240

– RemoveUnwantedCharacters241

Once all the text is in lowercase and devoid of all tags, string-based manipulations242

can be performed. Common cleaning tasks require removal of the following characters243

or textual elements:244

– Punctuation245

– Text between parentheses246

– Apostrophes247

– Numbers and any special characters248

– Perform contraction mapping249

This API performs textual cleaning by removing all the above-mentioned tex-250

tual elements and outputs strings that have relevant words and phrases for advanced251

processing.252

– RemoveShortWords253

Some words such as abbreviations or conjunctions that are not typically removed254

using other APIs can be identified and removed on the basis of their word length.255

Therefore, this API cleans the text to ensure that smaller words such as abbreviations or256

variable names, which are comparatively insignificant information, can be removed. As257

part of this API, the user is expected to provide another input named threshold, which258

determines the maximum number of characters that a word should have for it to be con-259

sidered for removal. Therefore, this API removes all words that are equal to or less than260

the threshold value in length.261

4.3 Model training and inference262

The model shall be developed on the basis of the required application and trained using the263

generated Pandas dataframe. The trained model can then be inferred to deduce the required264

results.265

5 Evaluation266

In order to test the feasibility of the proposed approach (P3SAPP and quantify its benefits267

in terms of time and cost, title or summary generation is chosen as the use case. The primary268

reason for choosing this use case is that it requires multi-level textual preprocessing. More-269

over, title or summary generation from abstracts for scholarly articles is an application that270

can be used in many different ways, which include article review management system that271

can generate summary of received articles to facilitate editorial decision on a manuscript.272



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Moreover, research article writing applications that can automatically suggest appropriate 273

titles for a scholarly article on the basis of provided abstract, can also be a target application. 274

5.1 Ingestion phase 275

Data, which is available in the form of JSON files, is ingested into Spark dataframe using 276

API provided for the same. It is important to note that only data corresponding to titles and 277

abstracts is ingested. 278

5.2 Preprocessing phase 279

The preprocessing stage is divided into three sub-stages namely, pre-cleaning, cleaning 280

and post-cleaning. For the conventional approach, the three stages perform the following 281

functions: 282

– The pre-cleaning stage removes nulls and duplicates. 283

– The cleaning stage performs different set of operations on titles and abstracts. 284

For abstracts, text is converted to lowercase and HTML tags, unwanted charac- 285

ters, stopwords and short words are removed. On the other hand, for abstracts, text 286

is converted to lowercase and HTML tags, unwanted characters and short words 287

are removed. The implemented APIs - ConvertToLower, RemoveHTMLTags, 288

RemoveUnwantedCharacters and RemoveShortWords were used. Although, 289

StopWordsRemover is a generic API available for stopwords removal, the use case 290

- specific implementation for the same was also done. 291

– The cleaning stage may introduce nulls. Therefore, the post cleaning stage again checks 292

for any nulls and removes them. 293

At the end of the post-cleaning stage, the Pandas dataframe is ready to be imported into 294

the model training module. The proposed approach performs the same set of steps for the 295

three different stages of preprocessing. However, all the transformational operations are 296

performed on Spark dataframe and it is converted to a Pandas dataframe during the post- 297

cleaning stage. The preprocessing workflows required for abstracts and titles are different 298

and shown in Figs. 1 and 2. Since, the abstract will be used as feature for training the model, 299

it must be completely clean. Therefore, the cleaning tasks performed for abstracts include: 300

– Convert all the text to lowercase. 301

– Remove all HTML tags if any. 302

– Remove all unwanted characters. 303

Fig. 1 Preprocessing pipeline for cleaning abstracts



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Fig. 2 Preprocessing pipeline for cleaning titles

– Remove stopwords.304

– Remove short words.305

On the other hand, title is the target for the model and thus, the cleaning tasks required306

include:307

– Convert all the text to lowercase.308

– Remove all HTML tags if any.309

– Remove all unwanted characters.310

– Remove short words.311

For the purpose of implementing the chosen case study, the threshold value for short312

words removal is fixed at threshold = 1. This will remove words that are 1-character in313

length, keeping all other words to ensure maximum information is used for summary gen-314

eration. This value can be increased depending upon the use case. The respective APIs are315

called to define Spark ML pipelines. The pipelines are fitted to data and the input dataframe316

is transformed using this pipeline.317

5.3 Model training and inference phase318

The chosen case study implements text summarization for scholarly articles. There are319

two types of text summarization methods namely, abstractive text summarization [34] and320

extractive text summarization [35]. Extractive text summarization identifies and extracts321

sentences, phrases and words from the original text, while abstractive text generates new322

sentences that summarize the original text. The problem of title generation from abstract of323

scholarly article requires abstractive text summarization.324

Text is sequential information and requires seq2seq modeling [36] where the input325

sequence is a long text while the output sequence is its summary or short text. Therefore,326

generating title from abstract of a scholarly article is a many-to-many seq2seq problem. The327

seq2seq model is composed of two components namely, encoder and decoder. These com-328

ponents are implemented using variants of Recurrent Neural Networks (RNN) [37] such as329

Long Short Term Memory (LSTM) [38] or Gated Recurrent Neural Network (GRU) [39].330

The reason for this assertion is that RNNs are better capable of handling the vanishing gra-331

dient problem. As a result, they can capture long-term dependencies more efficiently. The332

setting up of the encoder and decoder is divided into two phases namely training phase and333

inference phase. The details of implementation are as follows:334



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

– Training 335

In the training phase, the encoder and decoder are set up. The model is trained to 336

make a prediction of the target sequence offset per time-step. Therefore, at each time- 337

step, the encoder LSTM processes the input sequence to feed one word into the encoder. 338

The encoder’s job is to comprehend and learn the input sequence’s contextual infor- 339

mation. The encoder architecture is illustrated in Fig. 3. It is important to note that hi 340

and ci are hidden and cell states respectively. Since, encoder and decoder are different 341

stages, the hidden and cell states are fed to the decoder for initialization. 342

It is the decoder’s job to read target sequence and make predictions on the basis of 343

sequence offset per time-step. Therefore, every next word is predicted using the previ- 344

ous word. The decoder architecture is illustrated in Fig. 4. Since the target sequence’s 345

first word is unknown, the first word passed to the decoder is < start > token and the 346

< end > token marks the end of sentence. 347

In order to build a model, a 3-layer stacked LSTM is used for encoder. Using a 348

stacked LSTM ensures better sequence representation. The model is instructed to stop 349

early when the validation loss begins to increase. This is performed to optimize the 350

number of epochs executed for model building. 351

– Inference 352

The encoder and decoder of LSTM are setup for the inference stage. Figure 5 illus- 353

trates the model inference architecture. The steps for model inference are provided in 354

Table 4. 355

There are certain limitations of this training architecture. The job of an encoder is to 356

convert the complete input sequence into a vector of fixed length. This approach works well 357

for short sequences. However, when dealing with long sequences, the model may suffer 358

from inability to memorize the input sequence into a fixed length vector. In order to solve 359

this problem, attention mechanism [40], which modifies the approach in the sense that the 360

model is now attentive to important sub-sequences in the input focusing on the whole input 361

sequence. 362

Fig. 3 Training phase: LSTM encoder architecture



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Fig. 4 Training phase: LSTM decoder architecture

As seen in Figs. 3 and 4, the encoder generates a hidden state hi for every j time-step and363

decoder generates the hidden state si for every i time-step. The alignment of the source word364

(alignment score or eij) with the target word is calculated using the score function, which is365

given by (1):366

eij = score(si, hi) (1)

There are many types of score function such as dot product, additive and generic score367

function. Once the alignment score is calculated, the softmax function is used for normal-368

izing the scores and getting attention weights. (2) describes the mathematical computation369

for attention weights (aij).370

aij = eeij

Tx∑

k=1

eeik (2)

A linear sum of products is computed with attention weights and encoder’s hidden states371

to determine attended context vector (Ci), which is given by (3).372

Ci =
Tx∑

j=1

aijhj (3)

The attended hidden vector (Si) is computed by concatenating the attended context vector373

and decoder’s target hidden state for time-step i and is given by (4).374

Si = concatenate([Si, Ci]) (4)

Fig. 5 Inference phase architecture



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Table 4 Algorithm for inference phase

Input: < start > token

Output: Generated text string

BEGIN

1. The entire input sequence is encoded. The generated internal states are fed to the decoder for

initialization.

2. The < start > token is given as input.

3. The decoder is run for one time-step.

4. The next word is determined with probability of occurrence. The word with the highest probability

is chosen.

5. The generated word is passed as input to the decoder for next time-step. The internal states are also

updated according to the time-step.

6. Steps 3-5 are repeated until maximum limit of word generation is reached or < end > is generated.

END

The attended hidden vector Si is given to the dense layer for computation of yi, which is 375

given by (5). 376

yi = dense(Si) (5)

The implementation of text summarization model is inspired by Pai’s Keras implementa- 377

tion [41] for text summarization. Since Keras does not have an inbuilt attention mechanism, 378

Ganegedara’s implementation [42] of Bahdanau attention mechanism [40] has been used 379

for the case study. 380

5.4 Experimental setup 381

The development and testing environment makes use of a GPU of the following configura- 382

tion: Tesla K80 – 12 GB Memory and 61 GB RAM – 100 GB SSD. The CPU configuration 383

used is Intel Xeon with 2 cores, 8 GB Memory and 200 GB SSD. FloydHub was used to 384

provision the requires resources from a Cloud-based environment. Spark version v2.4.4 in 385

local [*] mode was used for all experimentation purposes. 386

5.5 Dataset 387

In order to implement a deep learning model for text summarization, a dataset with titles 388

and abstracts was chosen. For this contribution, the CORE3 dataset with the schema shown 389

below was selected because it is open access. The full dataset is a zipped file of 330 GB size. 390

The unzipped version expands to 1.44 TB. It includes 123M metadata items with 85.6M 391

items containing abstracts. 392

The complete dataset includes 2085 JSON files of variable size. For the purpose of this 393

research, five subsets were created. The sizes of the datasets used for the five use cases are 394

4.18 GB, 8.54 GB, 13.34 GB, 18.23 GB and 23.58 GB. The files are selected in such a 395

manner that datasets are composed of different number of files, with each file variably sized, 396

ranging from sizes of the order of KB to GB. Moreover, an incremental approach is used 397

3https://core.ac.uk/services/dataset/

https://core.ac.uk/services/dataset/


AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

for increasing the dataset size because a completely changed dataset may induce a changed398

behaviour from the system.399

5.6 Results400

The testing and evaluation of the P3SAPP intends to capture the variations in execution401

time and accuracy for both the approaches. Finally, the obtained results are used to estimate402

the impact of P3SAPP on the cost of the project.403

5.6.1 Execution time404

The total time required for execution of a deep learning application is given by:405

T = ti + tpp + (n ∗ tmt ) + tmi (6)

The variables used in (6) are as follows:406

T = Total execution time407

ti = Data ingestion time408

tpp = Preprocessing time409

n = Number of epochs410

tmt = Model training time411

tmi = Model inference time412

In all experiments, value of tmi for generating a single summary was approximately the413

same, with the following value: tmi ∼ 2seconds. Therefore, the value of tmi is negligible414

in comparison to ti, tpp and tmt. It is for this reason that the value of tmi is ignored for total415

time computation and cost analysis. Besides this, cumulative time (tc) is given by:416

tc = ti + tpp (7)

Thus, the revised equation is follows:417

T = tc + (n ∗ tmt ) (8)

The proposed approach reduces cumulative time (tc); the results for which are provided418

in the sections given below.419

– Ingestion Time420

Ingestion time is defined as the time to ingest data from multiple JSON files into421

a Spark dataframe. The values of ingestion time determined in the performed experi-422

ments are given in Table 5. The results indicate a consistent reduction in ingestion time423

for variable dataset sizes. These results can consequently be inferred from the graphical424

illustration of the results. Figure 6 illustrates ingestion time variations with respect to425

dataset size. While the conventional approach shows staggering growth with ingestion426

time shooting up for higher dataset sizes, P3SAPP manifests a slower increase in inges-427

tion time with increase in dataset size. Moreover,ingestion time is reduced by more than428

99% for datasets larger than 5 GB.429

– Preprocessing time430

Preprocessing time is the total time required by the system to clean ingested data.431

The total preprocessing time is derived from (4) and computed using (9). The val-432

ues of pre-cleaning, cleaning, post-cleaning and total preprocessing time determined433

in the performed experiments are given in Table 6. Fig. 7 illustrates the trends for434



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Table 5 Comparison of Ingestion Time for CA and P3SAPP

Dataset ID Dataset Size Ingestion Time

(GB) CA P3SAPP Reduction (%)

1 4.18 433.631 13.076 96.984

2 8.54 3542.393 26.253 99.259

3 13.34 8701.101 79.843 99.082

4 18.23 17139.434 93.637 99.454

5 23.58 32698.916 104.055 99.682

preprocessing times obtained for conventional and proposed approaches. 435

tpp = tprc + tc + tpoc (9)

The variables used in (9) are as follows: 436

tpp = Total preprocessing time 437

tprc = Pre-cleaning time 438

tc = Cleaning time 439

tpoc = Post- cleaning time 440

The rise in preprocessing time for conventional approach is steeper than the same 441

obtained for the proposed approach, exhibiting an average reduction of approximately

Q3

442

40%. It is important to note that cleaning stage takes a large amount of time for 443

conventional approach. On the other hand, conversion of Spark dataframe to Pandas 444

dataframe in the post-cleaning stage consumes most of the total preprocessing time for 445

the proposed approach. 446

– Cumulative time 447

Fig. 6 Comparative analysis of ingestion time



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Ta
bl

e
6

C
om

pa
ri

so
n

of
pr

ep
ro

ce
ss

in
g

tim
e

fo
r

ca
an

d
P3

SA
PP

D
at

as
et

ID
D

at
as

et
Si

ze
Pr

e-
C

le
an

in
g

(i
n

se
co

nd
s)

C
le

an
in

g
(i

n
se

co
nd

s)
Po

st
-C

le
an

in
g

(i
n

se
co

nd
s)

To
ta

lP
re

pr
oc

es
si

ng
T

im
e

(i
n

se
co

nd
s)

(G
B

)
C

A
P3

SA
PP

C
A

P3
SA

PP
C

A
P3

SA
PP

C
A

P3
SA

PP
R

ed
uc

tio
n

(%
)

1
4.

18
0.

16
5

0.
00

9
15

4.
39

4
0.

16
1

0.
11

8
89

.3
1

15
4.

67
9

89
.4

85
42

.1
48

2
8.

54
0.

27
3

0.
00

8
23

2.
22

3
0.

15
4

0.
24

7
14

0.
44

2
23

2.
74

5
14

0.
60

9
39

.5
89

3
13

.3
4

0.
52

8
0.

00
8

45
7.

76
8

0.
17

2
0.

45
2

26
2.

30
7

45
8.

94
26

2.
49

2
42

.8

4
18

.2
3

0.
81

1
0.

01
7

62
8.

46
4

0.
20

6
0.

63
5

35
1.

62
62

9.
91

3
35

1.
84

8
44

.1
43

5
23

.5
8

1.
06

7
0.

01
7

86
2.

45
3

0.
25

2
0.

88
7

47
7.

51
86

4.
40

9
47

7.
78

4
44

.7
27



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Fig. 7 Comparative analysis of preprocessing time

Cumulative time is sum of ingestion and preprocessing times and is calculated using 448

(2). The trend for cumulative time obtained using conventional approach exhibits stag- 449

gering growth while the proposed approach manifests a very slow escalation. The 450

reduction in cumulative time is increasing with increase in dataset size, making this 451

approach more beneficial for larger datasets. The values of cumulative time determined 452

in the performed experiments are given in Table 7. Figure 8 illustrates variations in 453

cumulative time with rise in dataset size. 454

5.6.2 Accuracy 455

The accuracy for the proposed approach, P3SAPP, is determined by the percentage of 456

matching records in the Pandas dataframes generated for conventional (CA) and proposed 457

approaches (P3SAPP). The extracted records in the form of a Pandas dataframe for both the 458

approaches were compared to determine the matching records and consequently, the per- 459

centage of matching records. The results obtained for accuracy are provided in Tables 8 and 460

Table 7 Comparison of cumulative time for CA and P3SAPP

Dataset ID Dataset Size Total Time

(GB) CA P3SAPP Reduction (%)

1 4.18 588.31 102.561 82.567

2 8.54 3775.138 166.862 95.58

3 13.34 9160.041 342.335 96.263

4 18.23 17769.347 445.485 97.493

5 23.58 33563.325 581.839 98.266



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Fig. 8 Comparative analysis of cumulative time

9. The average accuracy for titles was determined to be 96.595%. On the other hand, the461

average accuracy for abstracts was found to be 97.929%.462

5.6.3 Cost benefit analysis463

Cloud-based services like AWS4, GCP5 and FloydHub6 provision Platform-as-a-Service464

(PaaS), on hourly expenditure. Therefore, the total cost can be estimated on the basis of the465

number of hours a job will take to complete. The total time for conventional and proposed466

approach can be computed using (8). For cost benefit evaluation, the number of epochs is467

fixed as 10, 25 and 50.468

Cost benefit is determined by converting total time in hours and multiplying the value469

with hourly cost. The formula for cost evaluation is given by,470

C = x ∗ T (10)

In (10), C is the total cost of execution and x is hourly cost. Using (10), cost benefit is471

given by,472

CB = x ∗ (Tca − Tpa)

x ∗ Tca

∗ 100 (11)

CB = Tca − Tpa

Tca

∗ 100 (12)

In (12), CB is Cost Benefit, (Tca) is total time taken for conventional approach (CA) and473

(Tpa) is total time taken for proposed approach. The results of the computation performed474

for determination of T and CB are provided in Table 10. Results indicate an escalation in475

4https://aws.amazon.com/emr/features/spark/
5https://Cloud.google.com/dataproc/
6https://www.floydhub.com/product/build

https://aws.amazon.com/emr/features/spark/
https://Cloud.google.com/dataproc/
https://www.floydhub.com/product/build


AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Table 8 Accuracy for titles

Dataset ID Conventional Proposed Approach Matching Records Percentage (%)

Approach (CA) (P3SAPP)

1 88709 88709 86935 98

2 132683 132683 128924 97.167

3 256362 256362 248950 97.109

4 345169 345169 334881 97.019

5 480712 480712 450333 93.68

cost benefit with increase in dataset size. However, as the number of epochs increase, the 476

corresponding cost benefit is lowered, as is evident from Fig. 9. 477

It can be deduced from the results provided in Table 10 and graphical illustration shown 478

in Fig. 9, that cost is minimal for larger datasets and higher epochs. This is relevant with 479

regard to the scalability requirement of big data systems. As dataset size and number of 480

epochs chosen for model development increase, optimum cost benefit can be expected
Q4

481

(Figs. 10 and 11). 482

6 Discussion 483

Evidently, the ratio of time saving and MTT/epoch increases exponentially with escalation 484

in dataset size (as shown in Fig. 12). Moreover, for Dataset ID = 5, this value is as high 485

as 7.9, which means the time savings provided by the proposed approach is equal to the 486

time taken by 7.9 epochs. The significance of this value can translate into major time and 487

cost savings for projects that work with larger datasets. Results indicate that cost benefit is 488

expected to escalate with increase in dataset size for a fixed number of epochs. Although, 489

the proposed approach records high accuracy in terms of matching records produced by 490

the two approaches, it is noteworthy that accuracy reduces for larger datasets, but remains 491

more than 93%. The reason for non-matches between records from the two dataframes can 492

be attributed to the difference in ingestion methods. Reduction in this parameter and the 493

impact in variations in matching records on the generated model shall be studied as future

Q5

494

work (Table 11). 495

Another important point to note is that the proposed approach has been implemented 496

and tested with Spark on local [*] mode, which means that Spark is running locally and the 497

different worker threads are working on the different logical cores on the machine. Spark 498

Table 9 Accuracy for abstracts

Dataset ID Conventional Proposed Approach Matching Records Percentage (%)

Approach (CA) (P3SAPP)

1 88709 88709 88282 99.519

2 132683 132683 129179 97.359

3 256362 256362 251572 98.131

4 345169 345169 339541 98.369

5 480712 480712 462766 96.267



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Ta
bl

e
10

C
os

tb
en

ef
it

an
al

ys
is

D
at

as
et

ID
C

um
ul

at
iv

e
T

im
e

(s
ec

s)
M

T
T

pe
r

ep
oc

h
To

ta
lT

im
e

fo
r

10
ep

oc
hs

(h
rs

)
To

ta
lT

im
e

fo
r

25
ep

oc
hs

(h
rs

)
To

ta
lT

im
e

fo
r

25
ep

oc
hs

(h
rs

)

C
A

P3
SA

PP
(s

ec
s)

C
A

P3
SA

PP
C

os
tB

en
ef

it
(%

)
C

A
P3

SA
PP

C
os

tB
en

ef
it

(%
)

C
A

P3
SA

PP
C

os
tB

en
ef

it
(%

)

1
58

8.
31

10
2.

56
1

11
32

3.
31

3.
17

3
4.

07
9

8.
02

4
7.

89
1.

68
1

15
.8

86
15

.7
51

0.
84

9

2
37

75
.1

38
16

6.
86

2
16

98
5.

76
5

4.
76

3
17

.3
85

12
.8

4
11

.8
38

7.
80

5
24

.6
32

23
.6

3
4.

04
9

3
91

60
.0

41
34

2.
33

5
31

66
11

.3
39

8.
88

9
21

.6
01

24
.5

3
22

.0
81

9.
98

5
46

.5
17

44
.0

67
5.

26
5

4
17

76
9.

34
7

44
5.

48
5

40
70

16
.2

41
11

.4
29

29
.6

29
33

.1
2

28
.3

88
14

.4
95

61
.4

64
56

.6
51

7.
82

9

5
33

56
3.

32
5

58
1.

83
9

41
70

20
.9

06
11

.7
45

43
.8

21
39

.4
4

29
.1

2
26

.1
66

67
.2

4
58

.0
78

13
.6

25



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Fig. 9 Epoch-wise cost benefit comparison

(a) (b)

Fig. 10 Trend-line graphs for preprocessing results

Fig. 11 Summary of results for execution time



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Ta
bl

e
11

R
ed

uc
tio

n
in

pr
ep

ro
ce

ss
in

g
tim

e
in

te
rm

s
of

M
T

T
pe

r
ep

oc
h

D
at

as
et

ID
D

at
as

et
Si

ze
N

um
be

r
of

N
um

be
r

of
M

T
T

pe
r

ep
oc

h
T

im
e

Sa
vi

ng
R

at
io

of
T

im
e

Sa
vi

ng

(G
B

)
T

ra
in

in
g

R
ec

or
ds

V
al

id
at

io
n

R
ec

or
ds

(s
ec

s)
(s

ec
)

an
d

M
T

T
pe

r
ep

oc
h

1
4.

18
70

50
5

78
34

11
32

48
5.

74
9

0.
42

9

2
8.

54
10

43
68

11
59

7
16

98
36

08
.2

96
2.

12
5

3
13

.3
4

20
09

08
22

32
7

31
66

91
60

.0
41

2.
89

3

4
18

.2
3

27
05

14
30

02
3

40
70

17
32

3.
86

2
4.

25
6

5
23

.5
8

38
30

02
42

53
6

41
70

32
98

1.
48

6
7.

90
9



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

Fig. 12 Ratio of time saving and MTT/Epoch

can be moved to a full-fledged cluster to get enhanced results. Although, this work does not 499

present any such results and shall be performed in the future. Moreover, escalating the deep 500

learning model to Spark can also be explored in the future to reduce development time and 501

costs, further. As it can be seen in Table 6, the variations in the total preprocessing time 502

arises due the post cleaning time in the conversion of Spark dataframe to Pandas dataframe. 503

Escalation of model to Spark shall remove this aspect of the proposed approach. There- 504

fore, for a given configuration of Spark, the preprocessing time, in such a scenario, will be 505

constant (Fig. 12).
Q6

506

7 Conclusion 507

This work proposes a framework that modifies the preprocessing stages of deep learn- 508

ing model development. Preprocessing, particularly for scholarly applications, is highly 509

resource intensive. As a result, for application development that uses Cloud provisioned 510

platforms and infrastructure, most of the time is wasted, as GPU remains underutilized dur- 511

ing this time. Reducing the preprocessing time reduces the time of underutilization and 512

overall cost of the project. The proposed approach provides more than 90% reduction in total 513

preprocessing time, which includes ingestion and preprocessing time, for datasets larger 514

than 5 GB. Besides this, the cost saving are dependent on the number of epochs and size 515

of datasets. Cost savings are highest for lesser epochs and large datasets. It is important 516

to note that both cost saving and reductions in cumulative time increase with increase in 517

dataset size, making this approach highly relevant for big datasets. This shall also improve 518

the accuracy of the developed deep learning model. 519

This work uses text summarization as a case study for framework evaluation. It may be 520

tested for other NLP-based scholarly applications in the future to prove the generic validity 521

of the framework. The accuracy of the approach in terms of matching records obtained when 522

compared to conventional approach is more than 90% for datasets larger than 5 GB. The 523

cause of mismatches is rooted in differences in ingestion. Further investigations to improve 524

results for this aspect of the approach shall be attempted in the future. As part of this work, 525

four APIs were implemented for enhancing the Spark ML feature class. More APIs can 526

be identified and implemented in the future. The proposed model has used Spark on local 527



AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

[*] model, which parallelizes different threads on different logical cores. Higher levels of528

parallelization can be investigated in future work. Moreover, escalation of the deep learning529

model to Spark will also be explored in the future.530

References531

1. Alzaidy R, Caragea C, Giles CL (2019) Bi-LSTM-CRF sequence labeling for keyphrase extraction532
from scholarly documents. In: In the world wide web conference, ACM, pp 2551–2557533

2. Armbrust M, Xin RS, Lian C, Huai Y, Liu D, Bradley JK, Meng X, Kaftan T, Frankliny534
MJ, Ghodsi A, Zaharia M (2015) Spark SQL: Relational data processing in spark. In: Proceed-535
ings of the ACM SIGMOD international conference on management of data, pp 1383–1394.536
https://doi.org/10.1145/2723372.2742797537

3. Beel J, Gipp B, Langer S, Breitinger C (2015) Research-paper recommender systems: a literature survey538
.Int J Digit Libr539

4. Chen DY (2017) Pandas for everyone:Python data analysis. Addison-Wesley Professional540
5. Chen J, Zhuge H (2019) Automatic generation of related work through summarizing citations. Concurr541

Comput, 31, 3. https://doi.org/10.1002/cpe.4261542
6. Duari S, Bhatnagar V (2019) sCAKE: Semantic connectivity aware keyword extraction. Inf Sci (Ny)543

477:100–117544
7. Eisenstein J (2019) Introduction to natural language processing. MIT Press545
8. Fang C, Mu D, Deng Z, Wu Z (2017) Word-sentence co-ranking for automatic extractive text546

summarization. Expert Syst Appl 72:189–195547
9. Feng X, Zhang H, Ren Y, Shang P, Zhu Y, Liang Y, Xu D (2019) The deep Learning–Based548

recommender system “Pubmender” for choosing a biomedical publication venue: Development and
Q7

549
validation study. J Med Internet Res 21(5):e12957550

10. Florescu C, Caragea C (2017) Positionrank: an unsupervised approach to keyphrase extraction from551
scholarly documents. In: Proceedings of the 55th annual meeting of the association for computational552
linguistics, pp 1105–1115553

11. Frank MR, Wang D, Cebrian M, Rahwan I (2019) The evolution of citation graphs in artificial554
intelligence research. Nat Mach Intell 1(2):79555

12. Gandomi A, Haider M (2015) Beyond the hype big data concepts, methods, and analytics. Int J Inf556
Manage 35(2):137–144557

13. Ganegedara T (2019) Keras layer implementation of Attention558
14. Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, Tulloch A, Jia Y, Kaim-559

ing H (2017) Accurate, large minibatch SGD: Training ImageNet in 1 Hour, Retrieved from.560
arXiv:1706.02677561

15. Khan S, Liu X, Shakil KA, Alam M (2017) A survey on scholarly data: From big data perspective. Inf.562
Process. Manag 53(4):923–944. https://doi.org/10.1016/j.ipm.2017.03.006563

16. Khan S, Shakil KA, Alam M (2016) Educational intelligence: Applying cloud-based big data analytics564
to the indian education sector. Proc 2016 2nd Int Conf Contemp Comput Informatics, IC3I 2016 pp 29–565
34. https://doi.org/10.1109/IC3I.2016.7917930566

17. Kim J, Diesner J, Kim H, Aleyasen A, Kim HM (2015) Why name ambiguity resolution matters for567
scholarly big data research, Proc -2014. IEEE Int. Conf. Big Data, IEEE Big Data 2014, pp 1–6.568
https://doi.org/10.1109/BigData.2014.7004345569

18. Liu J, Tang T, Wang W, Xu B, Kong X, Xia F (2018) A survey of scholarly data visualization. IEEE570
Access 6, pp 19205–19221. https://doi.org/10.1109/ACCESS.2018.2815030571

19. Liu P, Qiu X, Xuanjing H (2016) Recurrent neural network for text classification with multi-task572
learning. IJCAI Int Jt Conf Artif Intell 2016-Janua, pp 2873–2879573

20. Maake BM, Ojo SO, Zuva T (2019) A survey on data mining techniques in research paper recommender574
systems. In: Research data access and management in modern libraries. IGI Global, pp 119–143575

21. Meng R, Zhao S, Han S, He D, Brusilovsky P, Chi Y (2017) Deep keyphrase generation.576
ACL 201 - 55th, Annu Meet Assoc Comput Linguist Proc Conf, (Long Pap. 1), pp 582–592.577
https://doi.org/10.18653/v1/P17-1054578

22. Mishra RK, Raman SR (2019) PySpark SQL recipes. Apress579
23. Pérez J, Arenas M, Gutierrez C (2009) Semantics and complexity of SPARQL. ACM Trans Database580

Syst 34(3):1–45581

https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1002/cpe.4261
http://arxiv.org/abs/1706.02677
https://doi.org/10.1016/j.ipm.2017.03.006
https://doi.org/10.1109/IC3I.2016.7917930
https://doi.org/10.1109/BigData.2014.7004345
https://doi.org/10.1109/ACCESS.2018.2815030
https://doi.org/10.18653/v1/P17-1054


AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

UNCORRECTED
PROOF

Multimedia Tools and Applications

24. Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D, Xin D (2016) Mllib: Machine learning 582
in apache spark. J Mach Learn Res 17(1):1235–1241 583

25. Tiwana A (2004) Beyond the black box: knowledge overlaps in software outsourcing. Ieee Software 584
21(5):51–58 585

26. Nallapati R, Zhou B, Santos CD, Gulçehre Ç, Xiang B (2016) Abstractive text summarization using 586
sequence-to-sequence RNNs and beyond. CoNLL 2016 - 20th SIGNLL Conf Comput Nat Lang Learn 587
Proc, pp 280–290. https://doi.org/10.18653/v1/k16-1028 588

27. Ororbia AG, Wu J, Khabsa M, Williams K, Giles CL (2015) Big scholarly data in citeseerx: Information 589
extraction from the web. WWW 2015 Companion - Proc. 24th, Int Conf World Wide Web, pp 597–602. 590
https://doi.org/10.1145/2740908.2741736 591

28. Pai A (2019) How-to-build-own-text-summarizer-using-deep-learning. Retrieved from. https://github. 592
com/aravindpai/How-to-build-own-text-summarizer-using-deep-learning/blob/master/How to build 593
own text summarizer using deep learning.ipynb 594

29. Siddiqi S, Sharan A (2015) Keyword and keyphrase extraction techniques: A literature review. Int J 595
Comput Appl 109(2):18–23. https://doi.org/10.5120/19161-0607 596

30. Tai KS, Socher R, Manning CD (2015) Improved semantic representations from tree-structured 597
long short-Term memory networks. ACL-IJCNLP 2015 - 53rd Annu Meet Assoc Comput Lin- 598
guist 7th Int Jt Conf Nat Lang Process Asian Fed Nat Lang Process Proc Conf 1:1556–1566. 599
https://doi.org/10.3115/v1/p15-1150 600

31. Tang D, Qin B, Liu T (2015) Document modeling with gated recurrent neural network for senti- 601
ment classification. In: Proceedings of the 2015 conference on empirical methods in natural language 602
processing, pp 1422–1432 603

32. Tanijiri J, Ohta M, Takasu A, Adachi J (2016) Important Word Organization for Support of Browsing 604
Scholarly Papers Using Author keywords. In: Proceedings of the 2016 ACM Symposium on document 605
engineering. ACM, pp 135–138 606

33. Tkaczyk D, Szostek P, Fedoryszak M, Dendek PJ, Bolikowski Ł (2015) CERMINE: automatic 607
extraction of structured metadata from scientific literature. Int J Doc Anal Recognit 18(4):317–335 608

34. Tuarob S, Bhatia S, Mitra P, Giles CL (2013) Automatic detection of pseudocodes in scholarly 609
documents using machine learning, Proc Int Conf Doc Anal Recognition, ICDAR, pp 738–742. 610
https://doi.org/10.1109/ICDAR.2013.151 611

35. Wang D, Liang Y, Xu D, Feng X, Guan R (2018) A content-based recommender system for computer 612
science publications. Knowledge-Based Syst 157:1–9 613

36. West JD, Wesley-Smith I, Bergstrom CT (2016) A recommendation system based on hier- 614
archical clustering of an article-level citation network. IEEE Trans Big Data 2(2):113–123. 615
https://doi.org/10.1109/tbdata.2016.2541167 616

37. Wu Z, Wu J, Khabsa M, Williams K, Chen HH, Huang W, Tuarob S, Choudhury SR, Ororbia A, Mitra 617
P, Giles CL (2014) Towards building a scholarly big data platform: Challenges, lessons and opportuni- 618
ties. Proc ACM/IEEE Jt Conf Digit Libr, pp 117–126. https://doi.org/10.1109/JCDL.2014.6970157 619

38. Yang Z, Yang D, Dyer C, He X, Smola A, Hovy E (2016) Hierarchical attention networks for document 620
classification. In: Proceedings of the 2016 conference of the north american chapter of the association 621
for computational linguistic, pp 1480–1489 622

39. Yu D, Wang W, Zhang S, Zhang W, Liu R (2017) Hybrid self-optimized clustering model based on

Q8

623
citation links and textual features to detect research topics. PLoS One 12(10):e0187164 624

40. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: Cluster computing with 625
working sets. HotCloud 10 10:95 626

41. Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Inf Fusion 42:146–157 627
42. Zhou Y, Liu C, Yan P (2016) Modelling sentence pairs with tree-structured attentive encoder. COLING 628

2016 - 26th, Int Conf Comput Linguist Proc COLING 2016 Tech Pap, pp 2912–2922 629

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps 630
and institutional affiliations. 631

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with 632
the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article 633
is solely governed by the terms of such publishing agreement and applicable law. 634

https://doi.org/10.18653/v1/k16-1028
https://doi.org/10.1145/2740908.2741736
https://github.com/aravindpai/How-to-build-own-text-summarizer-using-deep-learning/blob/master/How_to_build_own_text_summarizer_using_deep_learning.ipynb
https://github.com/aravindpai/How-to-build-own-text-summarizer-using-deep-learning/blob/master/How_to_build_own_text_summarizer_using_deep_learning.ipynb
https://github.com/aravindpai/How-to-build-own-text-summarizer-using-deep-learning/blob/master/How_to_build_own_text_summarizer_using_deep_learning.ipynb
https://doi.org/10.5120/19161-0607
https://doi.org/10.3115/v1/p15-1150
https://doi.org/10.1109/ICDAR.2013.151
https://doi.org/10.1109/tbdata.2016.2541167
https://doi.org/10.1109/JCDL.2014.6970157


AUTHOR'S PROOF
JrnlID 11042 ArtID 13513 Proof#1 - 30/07/2022

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES:

Q1. City has been provided in affiliation please check if it is correct.
Q2. Please check all tables if captured and presented correctly.
Q3. Please provide significance for bold entries found in Tables 5, 6, 7

and 10. Otherwise, please remove emphasis.
Q4. Missing citation for Figures 10 and 11 were inserted here. Please

check if appropriate. Otherwise, please provide citation for Figures
10 and 11. Note that the order of main citations of figures in the text
must be sequential.

Q5. Citation for Table 11 was inserted here. Please check if appropriate.
Otherwise, please provide citation for Table 11. Note that the order
of main citations of tables in the text must be sequential.

Q6. Dummy citation for Figure 12 was inserted here. Please check if
appropriate. Otherwise, please provide citation for Figure 12. Note
that the order of main citations of figures in the text must be
sequential.

Q7. Please check if the page range provided in reference 9 is correct.
Q8. Please check if the page range provided here is correct.


	Preprocessing framework for scholarly big data management
	Abstract
	Introduction
	Related work
	Proposed framework
	Methodology
	Data ingestion
	Data preprocessing
	Model training and inference

	Evaluation
	Ingestion phase
	Preprocessing phase
	Model training and inference phase
	Experimental setup
	Dataset
	Results
	Execution time
	Accuracy
	Cost benefit analysis


	Discussion
	Conclusion
	References


