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Abstract
Computer vision has established a foothold in the online fashion retail industry. Main prod-
uct detection is a crucial step of vision-based fashion product feed parsing pipelines, focused
on identifying the bounding boxes that contain the product being sold in the gallery of
images of the product page. The current state-of-the-art approach does not leverage the rela-
tions between regions in the image, and treats images of the same product independently,
therefore not fully exploiting visual and product contextual information. In this paper, we
propose a model that incorporates Graph Convolutional Networks (GCN) that jointly repre-
sent all detected bounding boxes in the gallery as nodes. We show that the proposed method
is better than the state-of-the-art, especially, when we consider the scenario where title-
input is missing at inference time and for cross-dataset evaluation, our method outperforms
previous approaches by a large margin.
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1 Introduction

The e-commerce market is growing every year, and it is estimated that by 2021 it will make
for almost 18% of the total global retail sales [1]. As a consequence, investment in AI tech-
nology for fashion that improves the online consumer experience is also increasing [27].
A common problem that AI services companies operating in the fashion industry have, is
accurately parsing the feeds with hundreds of thousands of products that the different clients
provide as input. Although this task may seem simple at first glance, different patterns of
language usage and search engine optimization (SEO) strategies by the merchants (each
client can aggregate tens or hundreds of different merchants), combined with visual ambi-
guity in the images, make achieving industry-grade accuracy very hard. These product feeds
often contain fashion products with multiple images depicting a model wearing a complete
outfit, and the associated text data like product title, description or category information.

More precisely, the task of main product detection consists in finding all bounding boxes
that contain the product being sold for an input which consists of possibly multiple gallery
images combined with a product title (see Fig. 1). Finding the main product is a crucial
step in many computer vision-based fashion product processing pipelines, as all informa-
tion derived from the computer vision models that analyze the images will be inaccurate
otherwise. Two examples of downstream consequences are wrong category inference and
visual search mismatches (e.g. showing a sweater product page when the query image is
a skirt). The problem of multi-modal main product detection was defined in [26], and is
related to visual grounding: a text query (i.e. product title) must be associated with cor-
responding parts (i.e. bounding box) in a set of gallery images. In their work, they use a
contrastive loss in order to learn the representation of positive and negative image-text pairs
and treat each bounding box independently, discarding the information of other bounding
boxes that belong to the same product. Therefore, the model does not take similarities and
dissimilarities between the bounding boxes into account neither during training nor during
evaluation. In addition, we introduce the more challenging problem of gallery-only main
product detection, where at inference time the system has no access to the product title and
has to detect the main product only based on the visual information. Although not very
common, this setting arises in cases of uninformative product titles, different languages or

Fig. 1 Fashion e-commerce sites usually showcase products with a descriptive title and a gallery of images.
However, different merchants have different picture and title styles, making it difficult to define generic rules
to determine which of the items displayed in the pictures is the one being sold. Therefore, algorithms that
can learn this relation are of utmost interest since they would greatly reduce annotation cost
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malformed product feeds, and can lead to costly catastrophic failures if the model cannot
recover from it.

In our approach, we represent bounding boxes as nodes in a densely connected graph, in
which message propagation is realized between all neighbor nodes. In that way, we learn
the relation between the images that belong to the same product, exploiting the context
provided by all bounding boxes for the prediction (see Fig. 2). Our model is inspired by the
one proposed in [24] for visual question answering. In extensive experiments, we show that
taking the context into account leads to improved performance. Especially when considering
cross-dataset evaluation where we report a gain of 6-12 points and for the Gallery-only
Main Product Detection scenario where the text input is missing, where we show that using
graphs can result in a gain of up to 50 points when comparing to the same network without
graphs.

This paper is organized as follows, in Section 2, we introduce the related works that
focus on main product detection and incorporate graph convolutional networks for fashion
applications. In Section 3, we explain our approach and the components of the proposed
model in detail. In Section 4, we describe the experiments that we conduct on the datasets
and the results obtained. Finally, in Section 5, we summarize our work and draw our main
conclusions.

2 Related work

The irruption of computer vision and deep learning in the fashion industry has led to many
new tasks being proposed to the academic community, such as garment landmark detec-
tion [22, 30], fashion attribute recognition [11, 21], exact product retrieval [2, 12, 17] and
compatibility prediction [7, 28]. In this section we review some works most related to ours,
namely the ones that use graph convolutional networks or multi-modal embedding learning
for fashion-related tasks.

GraphNetworks for Fashion The interest in combining convolutional networks with graph
structured data became popular with spectral graph networks proposed in [4] and extended
by [16] and [9]. Velivckovic et al. [29] proposed graph attention networks to exploit masked
self-attentional layers to improve the previous methods. Therefore, after the graph networks
became popular, new papers emerged which exploit them for traditional computer vision

Fig. 2 Bounding boxes detected in all images of a product are used as nodes in a graph neural network. In
this example, inter-image relations are considered for main product detection (jeans)
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tasks such as image classification [6, 20], image segmentation [33], action recognition [5,
32], anomaly detection [34] etc. There are also several works using architectures that include
graph neural networks for fashion. Cucurull et al. [7] propose an apparel compatibility pre-
diction model where clothing items and their pairwise compatibility are represented as a
graph, in which vertices are the clothing items and edges connect the items that are com-
patible. They exploit a graph neural network to predict edge connections in order to find
out whether two items are compatible or not. Cui et al. [8] also propose a model for com-
patibility prediction with an attention mechanism. In another work [17], the authors use a
graph neural network to learn similarities between a query and catalog image in multiple
scales, and the similarities are represented by the nodes of a graph that is densely connected.
To the best of our knowledge, graph neural networks have not been used for main product
detection before.

Visual-semantic joint embedding for fashion Paired text-image data is very common
in the online fashion retail industry, and it has been naturally leveraged to train visual-
semantic joint embedding networks. Han et al. [13] propose a concept discovery framework,
which automatically identifies attributes derived by jointly modeling image and text. Han
et al. [14], employs a bi-LSTM model to jointly learn compatibility relationships among
fashion items and a visual-semantic embedding in an end-to-end framework in order to
predict compatibility of fashion items and to recommend a fashion item that matches the
style of an existing set. Li et al. [18], propose a CNN-RNN model to predict the pop-
ularity of a fashion set by fusing text and image features. Liao et al. [19], map fashion
features and embeddings of product titles into a joint space in order to obtain meaning-
ful representations and semantic affinities among fashion items. Transformer models have
been shown to achieve excellent results in Natural Language Processing, thanks to the
abundance of training data. In [3], a large dataset of product title-image pairs is used to
train a transformer-based visual semantic embedding, which achieves excellent results at
cross-modal retrieval.

Main product detection As mentioned in the previous section, main product detection is a
new computer vision task, proposed in [26]. Their proposed model has 3 main components
which are the contrastive loss, the classification losses, and the word2vec model [23] that
extracts the product title embeddings. The contrastive loss is used for positive and negative
image-text pairs. Auxiliary classification losses for image and text are used to improve
training stability and performance. To train a word2vec model, they concatenate all the
available text fields in their feeds, then compute 100-dimensional descriptors for each word
appearing more than 5 times. Finally, they average the descriptors to get the product title
embeddings. They treat each image independently during training and evaluation, which
means that they do not take the relation between images that belong to a same product into
account. For the rest of the paper, we will denominate this paper as Contrastive model.

3 Method

Main product detection deals with associating correct parts of images (bounding boxes) with
the given product title. As discussed before, prior work [26] considers the bounding boxes
separately to decide on which of them correspondent to the product title. However, it is likely
that a good view of the product in one gallery image should be able to help the algorithm
identify the main product in other images where it is featured less prominently. Therefore,
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Fig. 3 The architecture of the model. The image features for bounding boxes from all product images are
concatenated with the product title embedding. These are then used as nodes of the graph. The probability
that they are the main product is estimated for each one. We also display the other variants of our model in
Fig. 4

we take a more holistic view to the problem and we want the algorithm to consider all parts
in all the gallery images simultaneously.

Figure 3 shows the architecture of our proposed model, which consists of five parts:
image model, BERT (text) model [10], context module, feature updater and node classi-
fier. The input for the BERT model are product titles, while the input for the image model
are image crops corresponding to the bounding boxes. The graph in the context module is
densely connected, and the nodes represent the bounding boxes found in the product gallery
images. Let G = {V,E, A} be an undirected graph with self-loops, where E and V ∈ R

N×d

represent the edges and nodes respectively, and A ∈ R
N×N the corresponding adjacency

matrix. N and d are number of nodes and dimension of node features respectively. The idea
is to learn the relations between the nodes (bounding boxes) given the title and help classify
them correctly.

Image model The Image model is a ResNet-34 [15] convolutional neural network that
extracts features for each given bounding box. Activations from layer4 are average pooled
(512 dimensions) and fed to the next stage of the architecture. The model is initialized with
pre-trained ImageNet weights.

BERT model In order to extract sentence embeddings for each title, we use a pre-trained
BERT model [10]. For the dataset with the product titles in English, we use the bert-base-
uncased BERT model, and for the one with the product titles in Turkish we use the bert-
multilingual-cased1 model. We apply the BERT tokenizer which splits strings in sub-word
token strings that convert them to indexes according to mappings in its vocabulary. The
model outputs an embedding for each token. To extract the sentence embeddings, we use the
average max pooling method (i.e. concatenation of average pooled and max pooled tokens
into one vector). Since the dimensionality of the BERT models is 768, after concatenation
it doubles in size and becomes 1536, so we add an extra fully connected layer to reduce the
dimensionality to 512.

Context module The main novelty of our work is the introduction of the graph network
within the context module. The graph network models the interaction between the various

1https://github.com/google-research/bert
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items shown in the image gallery and the product title (see Fig. 4). Since the proposed
graph topology is densely connected, the message passing between the nodes cannot be a
simple sum of neighbor node features, as it will make all node features equal in the next
layer. Therefore, we use the graph learner architecture proposed in [24], that learns the
adjacency matrix for the message passing. As mentioned before, one node corresponds to
each bounding box, and the edges connect every pair of nodes. We build the node features
by concatenating bounding box and title embeddings, represented as [fn, t] for bounding
box feature fn and the title embedding t , and input them to the graph learner F , which
consists of two fully connected layers with ReLU activation:

en = F([fn, t]) (1)

The dimensionality of [fn, t] is 1024 (512 + 512), but it is reduced back to 512 after the first
layer. All N output features en are stacked into a matrix E ∈ R

N×P , where P is the dimen-
sion of the concatenated features, we compute the adjacency matrix with the following
equation:

A = EET (2)

which is defined as a fully connected adjacency matrix. This is not a problem computation-
ally, since the number of nodes per product is low in our problem (we will show the statistics
in the datasets section). The adjacency matrix is then used for message passing before the
node feature update:

Ê = AE (3)

Fig. 4 The context modules of baseline and variants of our model. (a) In the no-graph model (NG) there is no
graph to represent the bounding boxes as nodes as there is no interaction between the boxes. (b) In the ICFS
(Instance Coupled Feature Similarity) we represent each product image as a graph. (c) In the PCFS (Product
Coupled Feature Similarity) graph model, the same features are used to get the adjacency matrix and updated
features. (d) The PDFS (Product Decoupled Feature Similarity) graph model, decouples the update of node
feature and calculation of adjacency matrix
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We denominate this model as Coupled Feature Similarity (CFS). In CFS, E is used for
obtaining the adjacency matrix and also as input features (Ê) for the graph. Therefore,
calculation of the adjacency and node feature update are coupled. However, we observed
that using the same features E for these two purposes (i.e. pairwise similarity and node
representation) may be limiting, so we propose to increase the flexibility of the model by
allowing it to decouple them and learn specific representations for each of those purposes.
Therefore, we test a variant of our model in which, instead of obtaining the adjacency matrix
as a product of E and ET , an additional fully connected layer (head) after the context
module is used to obtain the matrix D ∈ R

N×D (see Fig. 3), which is subsequently used for
message passing:

en, dn = F([fn, t])
A = DDT

Ê = AE (4)

As before, all output features dn are stacked into a matrix D. This formulation allows us
to directly learn the adjacency matrix instead of extracting it from the node features. Since
this model decouples the update of node feature and calculation of adjacency matrix, we
denominate it as Decoupled Feature Similarity (DFS).

The baseline and variants of our model are displayed in Fig. 4. As can be seen, we
consider two setups for the CFS models: Instance Coupled Feature Similarity (ICFS) and
Product Coupled Feature Similarity (PCFS). In the ICFS, we represent each product image
as a graph. Because of this, and in contrast with the baseline NG model, it is allowed to
take into account the context provided by the negative bounding boxes in the same image
during training and evaluation. However, it does not fully exploit the relation between all
bounding boxes since they are not densely connected as in the PCFS model. We do consider
the connections between all bounding boxes in all images in the PCFS model.

Feature updater The feature updater part consists of one fully connected layer and a leaky
ReLU activation. We have also added these layers to the no-graph baseline model (NG)
to allow for a fair comparison with the graph-based models (to ensure that they have a
comparable capacity as our proposed methods).

Node classifier The input of the node classifier is the concatenation of the original BERT
embeddings and the output node features. It consists of a single fully connected layer to
reduce the dimensionality to 2 (node active or inactive), and it is followed by the binary
cross entropy loss during training.

4 Experiments

4.1 Datasets

We evaluated the proposed methods on two datasets whose statistics can be seen in Tables 1
and 2. We crawled each of the datasets from a different e-commerce website. We collected
information related to title, description, attribute information and product images, on which
we ran a fashion product detector to get bounding boxes. Finally, we used human annotators
to label the ground truth main bounding boxes for each product gallery. We split the datasets
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Table 1 Dataset statistics

Datasets Lang. Categories Images/ BBs/

product image

accessory bags bottom swim one-piece outerwear shoes sweaters top

1 English 236 440 4711 - 1820 2972 441 2474 6424 4.40 2.40

2 Turkish 2220 556 5183 811 1263 1190 1244 3521 6290 2.46 2.73

BBs denotes bounding boxes

and allocate 75%, 5%, 20% for training, validation and test sets respectively. Some example
products can be seen in Fig. 5.

As an extra experiment, we evaluate our models on the main bounding box detection
dataset (MBBDD) which was made public by [26]. Due to the significant amount of time
has passed by since the dataset was first made public, we were able to recover only a subset
of the dataset. Out of total 458,700, we retrieved 91,550 products. The number of images per
product is 1 and the number of bounding boxes per image is 2.37. We use 77,820 products
for the training and validation and the rest of them as a test set. Instead of using bounding
box proposals, we use the same fashion product detector that we used for our datasets to get
bounding boxes. The rest of the details about the dataset can be found in [26].

4.2 Evaluationmetrics

We consider the product accuracy for a single product to be 1 if all positive (product being
sold) and negative (other parts of the outfit) bounding boxes are classified correctly, and 0
otherwise. Then, all scores for all test images are averaged to get the final score. We deem
the product accuracy metric to be the most important indicator for a main product detec-
tion system. As we explained before, one wrong bounding box classification might cause
visual search mismatches in queries related to the product. Therefore, it is crucial to clas-
sify all bounding boxes of a product correctly to avoid such problems. We also consider the
precision@1, recall@1 and mAP metrics. For the graph based models, we use the classifi-
cation scores to rank the nodes of a product. For the contrastive model, we use the distances
between image features and title embeddings.

4.3 Network training

We implemented our architecture using the PyTorch framework [25] and Deep Graph
Library [31]. The Adam optimizer is chosen for the training. We use learning rate 10−4 and
3×10−6 for the image and BERTmodels respectively. For the remaining parts of the model,

Table 2 Number of images with M bounding boxes

Datasets M =1 M =2 M =3 M =4 M =5 M =6 M=7 M =8 M =9 M =10 M >10

1 Per image 33747 17590 10945 16111 5750 1410 283 32 8 3 1

Per product 1118 992 1085 1578 977 790 738 878 974 1038 9350

2 Per image 17334 12170 6955 10360 4841 1985 660 264 92 44 92

Per product 1980 4849 1507 1439 591 1386 865 2052 1057 1263 5289
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the learning rate is 10−4. The batch size is 6 and each batch sample is a graph of nodes that
represent the bounding boxes that belong to the same products. In all experiments, we train
the models for 25 epochs, and the snapshot that yields the best accuracy on the validation set
is evaluated on the test set for the reported results. For the contrastive model, we use a batch
size of 32 and train for 35 epochs. This was done to obtain competitive results compared to
our methods. In the evaluation, we choose a node as a positive node if the probability of the
final score is higher than 0.5. For [26], we set the margin hyper-parameter of the contrastive
loss to 0.5 for training. During evaluation, we accept as main product the detections that

Fig. 5 Some multi-language example products from the dataset. The main bounding boxes are
drawn in green. The titles of the products are: Checked wrap skirt, Kadın gömlek(Woman shirt)
and Triko bere(Knit beanie) respectively. All the bounding boxes are computed with a fashion
product detector pre-training
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have a cosine distance lower than 0.1 with the product title embedding. Both values were
selected by cross-validation.

4.4 Comparison with the baselinemodels

In the initial experiments, we compare the proposed approach with a no-graph (NG) model,
which contains the same layers as the proposed model (see Figs. 3 and 4). The only dif-
ference is that the adjacency matrix is not used, as there is no node feature update step in
the NG model. Therefore, bounding boxes cannot interact, and each decision is computed
independently of the others.

Our second baseline model is the Contrastive model [26], where the authors propose
to map the image and text embeddings into a common space, and reduce the distances
between positive bounding boxes and their titles with a contrastive loss, as well as includ-
ing additional auxiliary losses for bounding box and text classification. To make the models
comparable, we make sure that the image and text branches have the same architectures, we
include the extra fully connected layers in the other parts of the model, and remove every
loss apart from the contrastive loss. Since we cannot concatenate features and embeddings
as we do in our proposed model, we create two branches for image features and text embed-
dings after the image and BERT models (see Fig. 6). Then, we compare our graph-based
approaches: ICFS, PCFS nad PDFS. To make the comparison fair with the other graph-
based models, we evaluate the ICFS model by checking the image score (which is 1 if all
bounding boxes of an image are classified correctly 0 otherwise) and assigning 1 to the
product accuracy if all image scores are 1.

The results are summarized in Table 3. We first focus on the in-dataset evaluation, refer-
ring to the results where train and test set originate from the same dataset. As can be seen,
the graph-based methods outperform the baselines in the product accuracy metric by a sig-
nificant margin. Especially, our PDFS model manages to obtain good results in the product
accuracy metric, outperforming the other graph-based methods and the NG baseline. Since
the average graph size is bigger for dataset 1 (see Tables 1 and 2), the gain with the graph-
based models is higher for the dataset 1. Precision@1 and recall@1 metrics yielded by the
graph-based and baseline models are comparable, because it is relatively easy task to sort
the bounding boxes by similarity since the number of nodes per product is low. However,

Fig. 6 The architecture of the contrastive model
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Table 3 Performance comparison of the baselines and graph-based approaches

Train Test Models P@1 R@1 mAP Prod. acc.

1 1 Contrastive 98.7 32.2 99.1 81.0

NG 99.3 32.4 99.5 87.1

ICFS 99.3 32.4 99.5 88.1

PCFS 98.6 31.6 99.1 87.6

PDFS 99.1 32.1 99.4 89.1

2 Contrastive 97.1 44.8 98.1 84.3

NG 98.1 45.2 98.4 84.7

ICFS 97.7 45.0 98.1 87.8

PCFS 96.5 44.7 97.6 87.1

PDFS 97.7 45.1 98.5 90.3

2 1 Contrastive 92.7 30.5 93.4 41.1

NG 95.4 31.0 93.9 43.2

ICFS 96.0 31.1 94.7 53.7

PCFS 96.1 31.4 95.8 51.0

PDFS 93.1 30.4 94.5 55.7

2 Contrastive 99.2 45.8 99.4 92.0

NG 99.6 46.0 99.6 94.7

ICFS 99.7 46.1 99.6 94.5

PCFS 99.5 46.0 99.6 94.9

PDFS 99.5 46.0 99.6 95.6

in most of the metrics, our graph-based models obtain better scores. The change in per-
formance with the graph size is further analyzed in Fig. 7a. All the graphs whose size is
bigger than 20, are represented as their size is 20 in the figure. As expected, graph-based
approaches can handle larger graphs better than the non-graph based approaches, since it
gets harder to classify all the nodes correctly when the number of nodes increases in the
absence of context.

We also do cross-dataset evaluation to assess the generalization ability of the models.
For the cross-dataset evaluation, we translate the titles from English to Turkish and from
Turkish to English by using a Google Translator API. In this case the gains because of the
graph-model are more pronounced, especially when evaluating the model trained on dataset
2 on dataset 1, where results increase from 43.2% (NG) to 55.7% (PDFS), showing that the
graph-based methods generalize better to new data.

In Fig. 8, we display some qualitative results for the NG, PCFS and PDFS models. More-
over, in Fig. 9 it can be seen that after the node feature update the cosine similarities of node
features are getting higher.

4.5 Gallery-only main product detection

In Table 4, we evaluate the setup which we call gallery-only main product detection. In
this setup, we take the best models from previous experiments and re-evaluate them while
setting all input text embeddings to zero. This setup is an important indicator to evaluate
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Fig. 7 Comparison of accuracies of different models with changing graph sizes on the dataset
1. Our proposed method especially improves results when the gallery of images contains many
bounding boxes

models when they are deployed in the wild where product titles or descriptions will not
always be available. It can be seen that the failure rate of the baseline approaches is much
higher than the graph-based approaches. PCFS and PDFS models also yield better results
than the ICSF model. This can be attributed to the fact that the graph-based models are
able to enforce consistency between the bounding boxes thanks to the graph formulation,
whereas the other methods show more dependency on the text, and fail in the case where no
text input is provided. We attribute the relative high performance of the contrastive model to
being biased to selecting the biggest bounding boxes as main products. The margin between

Fig. 8 Qualitative evaluation of NG, PCFS and PDFS models respectively. The product titles are written
under the subfigure. The gray nodes in the middle are the title nodes which are presented for demonstration
purposed. The scores on the edges are the classification scores of the connected nodes. The green and red
edges represent positive and negative nodes respectively. The nodes that are bounded by a red box are the
wrong classifications. The superiority of the graph based models are more apparent in case of larger graph
sizes (see also Fig. 7b) (best viewed in color)
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Fig. 9 Cosine similarities between the features after the image model and the graph network respectively.
After the node feature update, the similar items get closer to each other in the feature space, while the
dissimilar items are pushed further away. The main bounding boxes are connected to each other with green
edges. (best viewed in color)

Table 4 Performance comparison of the baselines and graph-based approaches in the gallery-only setup,
where no text input is provided

Train Test Models P@1 R@1 mAP Prod. acc.

1 1 Contrastive 79.8 28.0 89.6 56.9

NG 89.1 27.4 83.4 21.2

ICFS 91.4 29.5 89.1 37.4

PCFS 88.6 28.1 91.2 65.1

PDFS 83.0 28.4 88.9 67.9

2 Contrastive 81.6 39.3 91.6 65.1

NG 80.5 38.3 84.2 37.8

ICFS 88.4 41.4 90.4 51.2

PCFS 81.3 39.0 89.3 67.6

PDFS 81.8 39.2 89.6 71.3

2 1 Contrastive 54.0 19.5 74.2 20.7

NG 84.1 26.1 78.5 21.8

ICFS 87.8 27.2 79.5 24.8

PCFS 77.4 24.5 73.4 21.3

PDFS 80.1 25.0 80.6 30.4

2 Contrastive 71.7 35.7 87.4 56.2

NG 89.9 42.0 91.8 57.1

ICFS 89.9 42.1 90.9 44.9

PCFS 84.4 39.5 83.0 54.3

PDFS 93.3 42.9 93.7 72.4
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Fig. 10 Evaluation of the main product detection on video frames. The product titles are written under the
subfigure. In all frames, the bounding box that has the highest score is the main bounding box

the proposed and baselines approaches gets larger when the graph size increases, as can be
seen in Fig. 7b.

Finally, as an additional illustration, in Fig. 10 we show that our method can be used to
detect the main product in videos, by considering several frames from the video. The video
frames are taken from products that are being sold in a website of a fashion retailer. In this
website, along with the images, titles and descriptions of a product, a video of a model wear-
ing the item is available to customers. We evaluated our PDFS model by randomly sampling
3 frames of a video. After running the fashion detector on these frames, the bounding boxes
are input to the main product detection model along with the product title. In the figure, it
can be seen that the main product detection model successfully assigns the highest scores to
the main items compared to other items. This example shows that the proposed method here
for product detection in gallery images can potentially also be used for detection of main
products in fashion videos.
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Table 5 Performance comparison of the baselines and graph-based approaches on MBBDD

Models P@1 R@1 mAP Prod. acc.

Contrastive 95.5 94.5 97.7 88.4

NG 96.3 95.3 98.1 91.1

PCFS 96.5 95.5 98.2 94.8

PDFS 96.4 95.4 98.1 94.8

4.6 Main Bounding Box Detection Dataset (MBBDD)

We also train and evaluate the baselines and our models on MBBDD. We use the same
models and hyperparameters that we used for the previous experiments. The results can be
seen in Table 5. Since the average number of positive bounding boxes per product is 1.02,
the R@1 metric is much higher compared to results on our datasets. Again, especially in the
product accuracy metric, graph based models achieve higher results than baselines. We do
not display the results of the ICSF model since the products of the dataset are represented
by single images.

5 Conclusions

In this work, we propose a new approach for main product detection that incorporates a
graph neural network to capture the relationships between all the detected products in a
fashion product image gallery. We empirically demonstrate that the graph-based approaches
surpass the baselines which do not take the context of product images into account with
gains of 6-12 points. If we consider the more challengingGallery-only Main Product Detec-
tion we show that using graphs can result in gains of up to 50 points when comparing to the
same network without graphs. Moreover, with this work, we put a focus on the main prod-
uct detection, a crucial but often overlooked task, that has received less attention from the
research community due to its more application oriented structure.
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