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Abstract
Recent years have witnessed the rapid growth of Small Private Online Courses (SPOC) which
is able to highly customized and personalized to adapt variable educational requests, in which
machine learning techniques are explored to summarize and predict the learners’ performance,
mostly focus on the final grade. However, the problem is that the final grade of learners on
SPOC is generally seriously imbalance which handicaps the training of prediction model. To
solve this problem, a sampling batch normalization embedded deep neural network
(SBNEDNN) method is developed in this paper. First, a combined indicator is defined to
measure the distribution of the data, then a rule is established to guide the sampling process.
Second, the batch normalization (BN)modified layers are embedded into full connected neural
network to solve the data imbalanced problem. Experimental results with other three deep
learning methods demonstrate the superiority of the proposed method.

Keywords Grade prediction . Class balance . SPOC .Deep neural network . Batch normalization

1 Introduction

With the continuous development of the online education and the knowledge sharing projects,
online sharing courses comes into public views [1, 2, 4]. Small Private Online Courses (SPOC)
is one of the most popular solutions of implementing online sharing courses. SPOC benefits
the educational source sharing without the constraints of time and location. As an online
education method without face-to-face, tracking the learning situation of students play a key
role in SPOC, guaranteeing the education effect. Predicting student final grade of courses is a
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straightly approaching for investigating the teaching effectiveness. The advanced research made
great contributions to precisely foresee the performance of student in the final exam. I. C. Juanatas
et al. [8] presented the licensure examination performance prediction based on their academic
grades using Logistic Regression. That provides a binary result liked PASS or FAIL, which is
insufficient for further analysis [11]. For detailed prediction, the support vector machine (SVM) is
applied. In specialized dataset, SVM shows outstanding performance compared to current
methods [9]. While it is sensitive to the distribution of training datasets, lacking the practical
generality. For traditional educational data under the massive scale, Y. Yang et al. [10, 14]
proposed an improved random forest method to comprehensively predict the grade of students in
the final exams. It is effective in prediction task for less students, but difficult to handle massive
educational data in SPOC. The deep learning methods are applied in the educational system with
large amount students [18]. ABayesian deep learningmodel with variants was proposed for grade
prediction under a course-specific framework [6]. While it is only applied to the offline or the
traditional school education. The investigating features of online education are different from
offline but providing an approaching to model the student behavior [12]. T. Yang et al. [13]
proposed amodel predicting the performance of students base on online video click stream events.
While there are some obstacles in some cases of the SPOC grade prediction. The special
circumstance on SPOC causes the imbalanced final grades of student which concentrate on upper
score between 90 and full mark. This sort of long tail distribution causes derivation comparedwith
the standard Gaussian distribution expected in the neural network, resulting in the negative effect
on predication [3, 5, 15–17]. To address this problem, we propose a sampling batch normalization
embedded deep neural network (SBNEDNN). In proposedmodel, we reconstructed an indictor to
measure the distribution of the dataset, guiding the following sampling operation. Moreover, we
embedded the batch normalization (BN) modified layers into the multilayer perceptions, furtherly
handling the training difficulties caused by imbalance educational data [7]. Our contributions can
be summarized as: 1) The paper proposes a data distribution indicator Max _ score (MS) to
measure the imbalance situation of education data. MS comprehensively considers the skewness
index and kurtosis index of data. It is the guideline in the data processing procedure. 2) An
improved imbalance data processing method is proposed in this paper. This method does not
simply transform data into the uniform distribution. It reconstructs the resampling method to fit
the hypothetical distribution in the following neural network design under the guideline of MS. 3)
Experiments results with the widely used deep learning methods prove the superiority of our
proposed method.

2 Sampling-BN embedded deep neural network method

In this part, we will describe the proposed model SBNEDNN. It includes two main compo-
nents: data processing and neural predicting. To encounter the influence caused by distribu-
tion, a modified data process is designed, including diagnosing and shifting. For the
diagnosing, a reconstructed indicator of data is applied to evaluate the distribution, integrating
skewness and kurtosis rules. Then the adjustment of data using sampling is operated guided by
the indicator, acting as the shifting module. After the processed, the data will be trained by the
modified batch-normalized fully connected networks.

Data processing In the SBNEDNN method, we firstly evaluate the distribution of the dataset.
The histogram presents qualitative analysis of the dataset distribution. However, it is not

Multimedia Tools and Applications



convincing to provide the quantitative analysis of the distribution, such that a define evaluation
index is needed for guidance of the following sampling operation. Skewness, kurtosis, and
standard deviation each measures the characteristics of data distribution. We constructed a
quantitative indicator integrates three characteristics indicators above, diagnosing the data
distribution and guiding the sampling. Specifically, the corresponding formulas are generated
from the standard Gaussian distribution.

The skewness S can indicate the extent that a given distribution varies from a normal
distribution, which can be written as Eq. (1):

S ¼ 1

n
∑

X i−μ
σ

� �3
" #

; ð1Þ

where S denotes the skewness, Xi represents the ith student’s score, μ represents the mean value
of the final grade of all students and σ represents the standard variance of the scores of all
students, n represents the number of students.

The skewness indicates the numerical imbalanced characteristics of data distribution. In
practice, when S < 0, the probability distribution graph is biased to the left, on the contrast,
when the S > 0, it is biased to the right. S = 0 is a good symbol that the data is relatively
evenly distributed on both sides of the average value. Another measure in our indicator is
kurtosis K, which indicates the steepness of the probability distribution of a random variable.
The measure can be written as Eq. (2):

K ¼ 1

n
∑

X i−μ
σ

� �4
" #

−3; ð2Þ

where K denotes the kurtosis, μ represents the mean value of the scores of all students, σ
represents the standard variance of the scores of all students, n represents the numbers of
students. Specially, it assumes that the K value of the data being standard Gaussian distribution
equals zero, which is the result of −3. When the kurtosis K > 0, it means that the data
distribution is sharper than the normal distribution, on the other hand, K < 0 means that it is
squat compared to the normal distribution. By combining S and K, σ, the developed indicator
Max _ score can be written as Eq. (3):

MS ¼ max abs S; Kð Þð Þ
σ

; ð3Þ

where max(·) means selecting the largest data value, abs(·) represents calculating the absolute
value, S represents the skewness, K represents the kurtosis, σ represents the standard variance
of MS. The proposed indicator presents how the data converge to Gaussian distribution
considering both skewness and kurtosis. Moreover, we introduced the hypothesis testing to
evaluate the data distribution via measuring the MS. Z-test formula is opted as the criteria in
this part. The formula can be presented as:

Z ¼ MS
σ

; ð4Þ

where σ presents the standard value of MS. Z is the testing statistical value in the hypothesis
test. Z reflects the difference between testing data distribution and Gaussian distribution,
considering skewness and kurtosis through selecting the most distant indicator. To exemplify,
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the skewness and kurtosis of one specified dataset are 0.194 and 0.373, and σ in Z is obviously
a value less than the standard values of skewness and kurtosis, representing asM which is 0.36
in this case. Z is expected ranging from 0 to 1.96 as statistical standard Z-test threshold value ε,
while it is 1.036 in this example. According to the hypothesis testing result, it can be supposed
that the data distribution obeys the standard Gaussian distribution.

When we obtain the S and K,Max _ score of the dataset of scores, we take S and K to zero as
the direction of sampling and stop sampling until the value of Z is less than ε (usually set as 1.96).
For better illustration, a flow chart is exhibited in Fig. 1. Under the guidance of theMax _ score,
the classes withmore samples are first processed by an under-sampling approach, the classes with
less samples are first processed by using an over-sampling approach, which helps to balance class
distribution by replicating data of minority sample. Figure 2 shows these two methods detailly.

Once the data is processed by above processes, the fully connected neural network with BN
modification is applied in the subsequent prediction, the three steps of the proposed

Fig. 1 The logistic of data preprocess. K presents the kurtosis and S presents the skewness. Z presents the
evaluation value of Max _ score

Fig. 2 The changes of data distribution from original to well-balanced after under sampling and over sampling
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SBNEDNN model can be summarized as Table 1. For a better illustration, the pre-processing
procedure is represented by Fig. 3a, while the deep learning model prediction is displayed on
the Fig. 3b and c.

3 Experiments

3.1 Dataset

We conduct the experiments on two SPOC dataset, Medic 2020 and Statistics 2020. Medic 2020
is a real-world dataset with 40,494 students from SPOC for medical graduate education on
Chaoxing platform1. Statistics 2020 is a dataset with the desensitization learning record for the

Table 1 The implementation process of the SBNEDNN Method
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Fig. 3 a The pre-processing procedure of SBNEDNN Method b The model training procedure of SBNEDNN
Method c The training network of SBNEDNN
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year 2020 on the “Medical Statistics Program of the National Association of Medical College
Graduate Schools SPOC Platform”, including 5254 students. It tracks the learner’s performance
of exercises and tests during their studies on the online learning platform. The utilized SPOC
datasets contain various features about students, including student background, learning behavior
record, and test performance. To focus the learning-related features, we simplify the dataset,
filtering out the background-related features, like age, hometown, and gender. We focus on the
features reflecting the learning behavior of student on the SPOC platform. The filtered dataset has
sixty-nine features, which can be classified into three categories, “Audio and Video”,
“Chapter Test Record”, “Discussion Score”. The detailed description of these features is presented
in Table 2. In the SPOC datasets, some records of the features are missing in some specified
students. The records of these student are dropped in the data preprocess. In the datasets, there are
six final grades of student according to the score of final exam as Eq. 5. The percentage of final
grades in two datasets is shown as Fig. 4. The data distribution of Medic 2020 is imbalanced as
shown. The majority grade of Medic 2020 is L6, while the L4 takes the least. By contrast, the
percentage of every grade on Statistics 2020 is fair comparing with the Medic 2020.

level ¼

L1 0≤score≤70
L2 70≤score≤80
L3 80≤score≤90
L4 90≤score≤93
L5 93≤score≤95
L6 95≤score≤100

8>>>>><
>>>>>:

: ð5Þ

Softmax Function

Hidden Layer

c

Fig. 3 continued.

Table 2 Features Description

Three main feature classes Description

Audio and Video (60 features) The score of behavior in sixty lesson sections.
Chapter Test Statistics (8 features) The score of each chapter test.
Discussion Score (1 features) The score in the discussion activities.
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3.2 Parameter setting and evaluation metrics

To initiate the model, we opt the Xavier initialization and generate the parameter from the
gauss distribution. The average value and variance are calculated from the training dataset. The
mini-batch size is 64. Adam algorithm is applied for optimization. The activation function is
Sigmoid. The train-test split ratio is 70 versing 30. To measure the performance of different
structures, we selected the prediction accuracy to evaluate whether model can predict the final
grade of students.

We implement the all experiments with PyTorch via Python and conduct them on a Linux
server with two 2.0GHz Intel Xeon E5–2683 CPUs and two GeForce 1080Ti GPUs.

3.3 Experimental results

3.3.1 Baseline experiments comparison

To show the superiority of the SBNEDNN method, three widely used deep learning methods,
including CNN, RNN, LSTM, are applied with the pre-balanced dataset. The prediction accuracy
of these methods is shown in Tables 3 and 4, the best performance of prediction task is in bold in
both tables. The SBNEDNN method achieves the highest prediction accuracy compared to the
other three methods in overall. Moreover, we can get further interesting information if taking
educational practice into consideration. As Tables 3 and 4 shown, the proposed model shows the
superior performance among the medium three classes. According to the educational experience,
the students of the medium classes ranging 70 to 90 should be specially focused for promoting
them or preventing them from dropping [17]. Recognizing them and taking the proper tutorial are
significant in the SPOC education. From this aspect, LSTM and our method are suitable in the
situation above, while LSTM are less accurate.

L1
14%

L2
15%

L3
18%

L4
19%L5

15%

L6
19%

Fig. 4 The number of samples in each class with the experimental dataset. Left: Medic 2020 Right: Statistics
2020

Table 3 Experiments of SBNEDNN and three deep learning methods on Medic 2020

Methods Acc of L1 Acc of L2 Acc of L3 Acc of L4 Acc of L5 Acc of L6 Tol acc

LSTM 93.06% 100% 97.33% 91.92% 95.65% 82.47% 92.74%
RNN 94.53% 96.15% 88.47% 88.68% 95.21% 78.59% 91.49%
CNN 97.01% 97.11% 98.84% 98.49% 97.82% 84.87% 95.55%
SBNEDNN 95.83% 100% 100% 100% 95.65% 80.41% 98.85%
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3.3.2 Model structure comparison

In this section, the prediction performance of different model structures will be
compared and discussed. It is divided into position of BN layers and count of fully
connected layer. Through these result and relative discussion, it demonstrates that the
structure of our model is comprehensive and properly constructed for accurate
prediction.

To find the suitable BN layer position, we implemented three positional variants of
model in the experiments. The result is shown as Table 5. It is no doubt that
SBNEDNN achieves the excellent prediction according to the experimental result,
while the network structure without BN layers gets the bottom of experiment as
expected. Different positions of BN layer influence the transformation of data to
Gaussian distribution, avoiding gradient disappearing and distribution deviation during
the propagation. The result also convinces that the BN operation earlier means more
positive effect in the network.

Moreover, the amount of fully connected layer plays significant role in the deep
learning prediction model. We implemented the modal variants with different multiple
fully connected layers. Specifically, all the variant models are BN-embedded. In
experiments, we focus on the increasing rate of training time and accuracy, which
presents how much time cost in the unit accuracy promotion. Experimental result is
presented as Table 6.a and Table 6.b. It demonstrates that more fully connected layers
enhance the network accuracy, while it also causes the longer training time and lower
adoptability. The result also shows that considerable prediction does not require such
deep network which cost much more time. Moreover, the over deep network structure
leads to overfitting and data deviation, causing negative effect in the educational
predication task. It requires the prediction model with generality and adoptability
due to handling the various student behavior features in practical situation.

Table 4 Experiments of SBNEDNN and three deep learning methods on Statistics 2020

Methods Acc of L1 Acc of L2 Acc of L3 Acc of L4 Acc of L5 Acc of L6 Tol acc

LSTM 84.50% 83.66% 96.97% 89.94% 92.77% 52.33% 87.75%
RNN 79.84% 94.77% 94.55% 98.32% 87.35% 69.19% 86.78%
CNN 87.60% 92.81% 96.36% 96.09% 92.77% 79.07% 83.63%
SBNEDNN 96.90% 94.12% 100% 94.41% 98.80% 80.23% 92.84%

Table 5 The accuracies with different BN layouts

Structure Layers Medic 2020 Statistics 2020

Structure 1 Dense ->Dense ->Dense 67.68% 51.86%
Structure 2 Dense ->Dense ->BN ->Dense 94.83% 62.75%
Structure 3 Dense ->BN ->Dense ->Dense 97.47% 64.21%
SBNEDNN Dense ->BN ->Dense ->BN ->Dense 98.85% 92.84%
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4 Conclusion

This paper constructs SBNEDNN method for the prediction of SPOC learner’s grade. First, an
indicator is defined to measure the distribution of dataset as well as guide the sampling
process. Second, a BN modified neural network is built to train the data after sampling. Then,
a SBNEDNN method is developed to improve the prediction accuracy with imbalance data.
Experimental results with the comparison of other three widely used deep learning methods
show the effectiveness and supremacy of our method.
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