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Abstract
Recently, anchor-based methods have achieved great progress in face detection. They adopt
standard anchor matching strategy to sample positive anchors according to predefined IoU
threshold. However, the max IoUs of extreme aspect ratio faces are still lower than fixed
positive threshold, leading to the sampling failure from these faces. To construct a more
robust detection model, more positive anchors from extreme aspect ratio faces need to be
sampled and participate in the training phase. The goal of the present research is to improve
the detection performance by reasonably extending sampling range of face aspect ratio. In
this paper, we firstly explore the factors that affect the max IoU of each face in theory. Then,
anchor matching simulation is performed to evaluate the sampling range of face aspect ratio.
Finally, we propose a Wide Aspect Ratio Matching (WARM) strategy to collect more rep-
resentative positive anchors from ground-truth faces across a wide range of aspect ratios.
Besides, we present a novel feature enhancement module, named Receptive Field Diversity
(RFD) module, to provide diverse receptive field corresponding to different aspect ratios.
Extensive experiments have been conducted on popular benchmarks to show the effective-
ness of our method, which can help detectors better capture extreme aspect ratio faces. Our
method achieves promising APs onWIDER FACE validation dataset (easy: 0.965, medium:
0.955, hard: 0.904) and impressive generalization capability on FDDB dataset.

Keywords Face detection · Anchor matching · Feature enhancement · Deep learning ·
Convolutional neural network

1 Introduction

Accurate face detection is a prerequisite of many face related applications, such as face
alignment [17, 42], face recognition [7, 27, 41] and facial emotion recognition [1], etc.
Moreover, face detection and its extension technology [35] are widely used in various real-
life scenarios to prevent the spread of the COVID-19 virus. Limited by the size of dataset
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and hardware conditions, traditional methods design hand-crafted features to detect faces.
In the era of deep learning, convolutional neural networks (CNN) have achieved remark-
able successes in a variety of computer vision tasks, ranging from image classification [3,
11] to object detection [10], which also inspire face detection. CNN-based methods utilize
popular backbone network (e.g., VGG [34], ResNet, DenseNet [13], and MobileNet) and
feature fusion strategy like FPN [9] to extract face features from huge dataset automatically.
Although it is difficult to explain the reasons from human perspective, the detection per-
formance of these CNN-based methods is further improved indeed. Therefore, traditional
methods are more efficiency and interpretable, while deep learning methods achieve higher
detection accuracy.

Among them, anchor-based methods play a dominant role in CNN-based face detec-
tors. During the training phase, a series of anchors are preset on the images with different
scales and single aspect ratio (AR). Later, standard anchor matching (SAM) strategy [32]
assigns positive and negative labels on these anchors according to intersection-over-union
(IoU) threshold. We assign anchors to positive labels when their IoU threshold are in (Tp ,
1], and negative labels if their IoU in [0, Tn). The rest anchors are discarded. Finally, these
labeled anchors are feed into training network and update its parameters. During the infer-
ence phase, they detect faces by classifying and regressing these anchors. Predict score from
classification branch can tell us if current anchor contain a face while coordinate offsets
of current anchor locates its position from regression branch. Obviously, sufficient train-
ing samples and complex feature extraction networks are essential for high performance
anchor-based face detection.

However, sampling positve anchors from each face is not always successful. SAM strat-
egy utilizes the identical sampling threshold for all faces. When anchor sampling threshold
fixed, the AR sampling range for positive anchors is determined. The ground-truth faces
whose AR out of this range, called extreme aspect ratio faces, will be neglect. Figure 1

Fig. 1 Extreme aspect ratio faces on Wider Face training set. The aspect ratio (AR) of each ground truth face
is noted blow. The first row faces fail to be sampled with anchor AR of 1.0 while the second row faces with
anchor AR of 1.25. The first four columns show extreme pose faces while the last column are partial faces
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shows some extreme AR faces on Wider Face [45] training set. We can see that extreme AR
faces consist of extreme pose faces and partial faces. Extreme pose faces come from head
rotation in pitch, yaw, and roll axis as seen in the first four columns of Fig. 1. And partial
faces are derived from occlusion as shown in the last column of Fig. 1. To construct a more
robust detection model, there is a rising demand for sampling more positive anchors from
extreme aspect ratio faces. So, fixed sampling threshold for all faces is no longer suitable.

Furthermore, diversified aspect raitos conflict with single receptive field of network. Cur-
rent feature enhancement modules usually adopt symmetric filters to enlarge receptive field.
In fact, anchors with diverse receptive field make it easier to be classified and regressed in
a convolutional manner.

In this paper, we firstly investigate what makes the max IoU of each face different and
theoretically prove that AR of faces is the key impact. Then, anchor matching simulation is
performed to evaluate the sampling range of face AR. Obviously, the sampling failure from
extreme AR faces is just because of their ARs out of sampling range. In fact, the max IoUs
of these extreme AR faces are still lower than fixed sampling threshold in SAM strategy.
Therefore, we propose a Wide Aspect Ratio Matching (WARM) strategy to collect more
representative positive anchors from ground-truth faces with a wide range of ARs. Specif-
ically, extreme AR faces have their own sampling threshold according to AR themselves.
Besides, we design a novel feature enhancement module, named Receptive Field Diver-
sity (RFD) module, to provide large receptive field and diverse aspect ratio simultaneously.
Both symmetric and asymmetric convolution kernels are used. Finally, we conduct com-
prehensive experiments on popular benchmarks, including WIDER FACE and FDDB [14]
datasets, and achieve promising detection performance, especially for extreme AR faces.

For clarity, the main contributions of this paper can be summarized as:

(1) We theoretically prove that aspect ratio of faces is the key factors affecting the max
IoU of each face and perform anchor matching simulation to evaluate the sampling
range of face aspect ratio.

(2) We propose a WARM strategy to collect more representative positive anchors from
ground-truth faces with a wide range of aspect ratio.

(3) A novel feature enhancement module, named RFD module, is designed to provide
more diverse aspect ratio and large receptive field simultaneously.

(4) Our method can help detectors better capture extreme aspect ratio faces and achieve
promising detection performance on challenging face detection benchmarks, including
WIDER FACE and FDDB datasets.

The rest of the paper is organized as follows. Section 2 briefly reviews the related work in
face detection. Section 3 presents our proposed method. Section 4 shows our experimental
results. Section 5 concludes this paper.

2 Related work

Face detection is a fundamental step to various face related applications. Previous methods
can be roughly divided into two categories as follows:
Traditional method: They detect faces based on hand-crafted features (e.g., HOG, LBP,
HAAR, SIFT, SURF, and ORB [2]) in a sliding-window manner and optimize each com-
ponent separately. The pioneering work of Viola-Jones [40] used Haar-like features and
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AdaBoost to train a cascade of face detectors. LBP [16] introduced local texture features for
face detection. NPDFace [22] presented normalized pixel difference feature to address chal-
lenges in unconstrained face detection, such as arbitrary pose and heavy occlusion. Kumar
et al. [18] combined YCbCr, HSV and L × a × b color model to detect faces from still
images under occlusion and non-uniform illumination.

CNN-based method: Different from traditional methods, CNN-based methods can auto-
matically extract discriminative features from challenging face datasets. CascadeCNN [19]
developed a cascade framework via deep CNNs to detect face coarse to fine. Faceness [44]
trained a series of CNNs for facial attribute recognition to detect partially occluded faces.
MTCNN [51] jointly solved face detection and alignment using several multi-task CNNs.
HR [12] built multi-level image pyramids to boost the performance on extreme scale vari-
ations. UnitBox [47] presented an IoU loss to directly regress the bounding box. FANet
[50] created a new hierarchical effective feature pyramid with rich semantics at all scales.
BFBox [25] designed a FPN-attention module to joint search the face-appropriate space of
backbone and FPN.

Recently, anchor-based methods have attracted more attention duo to their detection
accuracy as well as inference efficiency. Effective anchor design and anchor matching
strategy are necessary to generate more representative training samples. Besides, feature
enhancement can further improve the ability of discriminative face features. Therefore, we
focus on reviewing the prior works from this three perspectives below:

Anchor design In face detection, the choice of anchors and their placement on the image
is very important. For example, using extra strided anchors are shown to be beneficial. ZCC
[55] introduced a novel anchor design to guarantee high overlaps between faces and anchor
boxes. PyramidBox [38] formulated a data-anchor-sampling strategy to increase the propor-
tion of small faces in the training data. FaceBoxes [53] presented a new anchor densification
strategy to improve the recall rate of small faces. FA-RPN [30] proposed an efficient anchor
placement strategy to reduce the number of anchors to detect faces. Group sampling [28]
emphasized the importance of balanced training samples, including both positive and neg-
ative ones, at different scales. In this paper, we continue to follow these guidances to form
a high recall ratio anchor design, which adopts a wider range of anchor size and a shorter
anchor stride.

Anchor matching SAM strategy utilized fixed sampling threshold to assign positive
anchors. S3FD [54] proposed scale compensation anchor matching strategy which helps the
outer faces match more anchors. SRN [6] introduced a selective two-step classification to
ignore training easy sample anchors in the second stage. DSFD [21] offered an improved
anchor matching method to provide better initialization for the regressor. HAMBox [26]
helped outer faces compensate high-quality anchors, which can obtain high IoU regression
bounding boxes. Although anchor matching has been extensively studied, the failure of
sampling positive anchors from extreme AR faces is still neglect. In this paper, we propose
WARM strategy to sample more positive anchors from extreme AR faces.

Feature enhancement SSH [29] added large filters on each detection module to merge the
context information. DSFD [21] introduced a feature enhance module to extend the single
shot detector to dual shot detector. OS-LFFD [43] designed a novel ommateum block to
maintain the corresponding ratio of receptive fields to face regions. RefineFace [48] con-
structed a RFE module to provide more diverse receptive fields for detecting extreme-pose
faces. In this paper, we propose RFD module to adapt the diversity of face AR. Inspired
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by ACNet [8], both symmetric and asymmetric convolution kernels are used into proposed
RFD module.

3 Proposedmethod

This section introduces our proposed WARM strategy and RFD module. We firstly explore
the factors of max IoU between anchors and each face. Next, anchor matching simulation
is performed to evaluate sampling range of face aspect ratio. Then, we demonstrate WARM
strategy in detail. Finally, we design RFD module to fit for face features with various aspect
ratios.

3.1 Factors of facemax IoU

For anchor-based face detection, one of the most important steps is to match ground-truth
boxes with well-designed anchors and assign those anchors with positive and negative labels
based on their IoUs. However, we discover that sampling positve anchors from each face
is not always successful. When anchor design determined, SAM strategy always fails to
sample positive anchors from faces with extreme AR. Therefore, we theoretically explore
what affects the max IoU of each face and the reason of sampling failure.

Formally, the set of anchors is denoted as A={ai}mi=1, where i is the index of anchors
and m is the number of anchors for all scales. Ba

i = (xa
i , ya

i , wa
i , ha

i ) is the bounding box
of anchor ai , where (xa

i , ya
i ) is the upper-left coordinates and (wa

i , ha
i ) represents the width

and height of this anchor. Besides, ra is the aspect ratio of all anchors. Similarly, the set of
ground-truth faces is denoted as G={gj }nj=1, where j is the index of the ground-truth faces
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face gj , the max IoU of this face can be computed as in (1).
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where ∩ and ∪ denote the intersection and union of two boxes respectively. Area(.) cal-
culates the area of the bounding box. Furthermore, we recognize that there exists the max
value of B

g
j ∩ Ba

i formulated as in (2).

max(Bg
j ∩ Ba

i ) = min(wg
j , wa

i ) ∗ min(hg
j , h

a
i )

= min(wg
j , wa

i ) ∗ min(wg
j ∗ r

g
j , wa

i ∗ ra),
(2)

When anchor design determined, the width w
g
j and AR r

g
j of ground-truth face gj are

the rest factors affecting face maxIoU(gj ). Moreover, anchor setting is well designed in a
multi-scale manner. Hence, the AR of faces is the key factors to determine their max IoUs.
In other words, different faces have their own max IoU overlap according to AR themselves.
Unfortunately, SAM strategy utilizes the same IoU threshold for all faces. As a result, the
failure of sampling positive anchors from extreme AR faces is just because the max IoUs of
these faces are still lower than sampling IoU threshold.
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3.2 Anchor matching simulation

According to the max IoU of faces as discussed in Section 3.1, Anchor Matching Simulation
(AMS) is performed onWider Face training set to evaluate the sampling range of face aspect
ratio. We assume that enought random crop is executed. Thus, each face will have the chance
to match anchors with its max IoU. The AMS can be described in the following steps:

– Step 1: Construct a high-recall anchor design.
– Step 2: Calculate max IoU of each face.
– Step 3: Judge if current face can match positive anchors.
– Step 4: Record the sampling range of face aspect ratio.

To be more specific, we firstly construct a high-recall anchor design. The anchor size
ranges from 4 to 512 pixels while the anchor stride is

√
2. All anchors have the same AR.

Next, the max IoU of each face can be calculated as shown in (1) and (2). Then, we compare
face max IoU with positive sampling threshold Tp. If the max IoU of current face is greater
than Tp , the positive anchors related to this face can be added into training samples. Finally,
we update the sampling range of face AR.

The result of AMS is listed in Table 1. Here we take SAM strategy as an example. From
the first three rows, we can see that sampling range centers around the AR of anchors. More
experimental results show that anchor AR of 1.0 can achieve higher performance. Besides,
we find that the sampling range enlarges gradually as positive sampling threshold reduces
as listed in the last four rows of Table 1. For convenience, we define Aspect Ratio Sampling
Domain (ARSD) to approximately describe the sampling range of face AR as follow:

Definition 1 (Aspect Ratio Sampling Domain). Given an anchor design A, where ra is the
aspect ratio of anchors. M denotes the anchor matching strategy. For a ground-truth face set
G, the aspect ratio sampling domain D(ra, η) is difined as

D(ra, η) = {x|ra/η < x < raη}, (3)

where η is the radius of sampling domain. Thus, the left and right ARSD can be descirbed
as follows:

D−(ra, η) = {x|ra/η < x < ra}, (4)

D+(ra, η) = {x|ra ≤ x < raη}, (5)

When positive sampling threshold Tp of SAM is set to 0.5, we notice that the ARSD
is D(1.00,2.25) as listed in the third row of Table 1. However, statistics show that the AR

Table 1 The AMS is performed with different positive sampling threshold Tp and anchor aspect ratio Ra

Tp Ra Range ARSD

0.50 1.50 0.666667 ∼ 3.363636 D(1.50,2.25)

0.50 1.25 0.560000 ∼ 2.809524 D(1.25,2.25)

0.50 1.00 0.449275 ∼ 2.241379 D(1.00,2.25)

0.45 1.00 0.388889 ∼ 2.586207 D(1.00,2.59)

0.40 1.00 0.333333 ∼ 3.055556 D(1.00,3.06)

0.35 1.00 0.285714 ∼ 3.666667 D(1.00,3.67)

The aspect ratio sampling range of matched faces is listed blow. We can approximately describe the sampling
range as ARSD
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of more than 99.96% faces on the Wider Face training set is in D(1.00,5.00). Therefore, a
considerable part of extreme AR faces is neglected during anchor matching phase as seen
in Fig. 1.

3.3 Wide aspect ratio matching

Current anchor matching strategy usually consists of two steps: SAM and anchor com-
pensation. Each face firstly attemps to match all anchors with IoU higher than predefined
threshold. However, some of these ground-truth faces may be unmatched in this step,
especially for extreme AR faces. Then, unmatched faces will be compensated with the
rest anchors that have highest IoU with them in current iteration. Obviously, compensated
anchors may reduce the detection performance since these anchors have lower IoU with
unmatched faces. Therefore, we believe that current anchor matching strategy is neither
flexible nor sufficient to match the anchors in face detection.

To address this issue, we propose a Wide Aspect Ratio Matching strategy to collect
more representative positive anchors from a wide range of face aspect ratios. The core idea
is to construct variable positive threshold for extreme AR faces. We firstly determine the
sampling domain of extreme AR faces according to the result of AMS as follows.

E(η1, η0) = D(ra, η1) \ D(ra, η0) (6)

whereD(ra, η1) represents the total sampling domain in our WARM strategy andD(ra, η0)

is a subset of this sampling domain. According to the result of AMS, η0 is set to 2.0. After
that, the difference set E(η1, η0) of these two ARSDs is the sampling domain of extreme
AR faces. Furthermore, the left and right sampling domain of extreme AR faces can be
noted below.

E−(η1, η0) = D−(ra, η1) \ D−(ra, η0) (7)

E+(η1, η0) = D+(ra, η1) \ D+(ra, η0) (8)

Then, we construct a variable positive threshold function in the sampling domain of
extreme AR faces while follow the SAM strategy in the rest sampling domain. For simplic-
ity, the linear function is applied. The positive threshold of our WARM can be formulated
as follow:

Tp =
{

T0 − δ ∗ θ(r
g
j ), r

g
j ∈ E(η1, η0)

T0, otherwise
(9)

where T0 is the initial value of positive threshold and δ represents the amplitude of positive
threshold. Similar to SAM, T0 is set to 0.5. Besides, θ(r

g
j ) reflects the change rate of positive

threshold associated with the AR r
g
j of each face. When the AR of a face is far away from

current anchor’s, positive sampling threshold related to this face should decrease gradually.
Thus, a simple implementation of θ(x) is given below.

θ(x) =

⎧⎪⎪⎨
⎪⎪⎩

max(x) − x

max(x) − min(x)
, x ∈ E−(η1, η0)

x − min(x)

max(x) − min(x)
, x ∈ E+(η1, η0)

(10)

To visualize our proposed WARM strategy, we plot the scatter diagram of all training
faces in Fig. 2. The coordinate of each blue dot represents the AR of a face and its maxi-
mum IoU. It should be noted that face max IoU is the IoU value of the best matching anchor
with this face. The green line is the positive threshold boundary of SAM while the red lines
are our proposed WARM’s. Specifically, line AB and CD represent the variable positive
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Fig. 2 The distribution of face aspect ratio and their max IoUs. The coordinate of blue dot represents the
aspect ratio of each face and their max IoUs. The green line is the positive threshold boundary of SAM while
the red lines are our proposed WARM’s. Both of them adopt the cyan line as negative threshold boundary

threshold boundary for extreme AR faces. Instead of anchor compensation, variable posi-
tive threshold can match extreme AR faces with higher IoU anchors. Similarly, both of them
adopt the cyan line as negative threshold boundary. When δ is set to 0, our proposed WARM
degenerates to SAM strategy. Therefore, our proposed WARM method could be a general
strategy for anchor-based single-stage face detection.
Although reducing positive sampling threshold in SAM can expand the sampling range of
face AR as seen in Table 1, the average IoU of all positive anchors will decline, which is
harmful for the quality of training samples. Besides, it is difficult to guarantee the high-
quality positive anchors for unmatched faces can be compensated at each iteration. Different
from SAM and anchor compensation, our proposed WARM strategy can sample high-
quality positive anchors from extreme AR faces while basically maintain the whole quality
of all positive samples at the same time.

3.4 Receptive field diversity

Current feature enhancement modules usually enlarge receptive field by mean of symmetric
convolution kernels. The singleness of the receptive field is not fit for extreme AR faces. To
address this issue, we propose a novel feature enhancement module, named Receptive Field
Diversity (RFD) module, to provide diverse aspect ratio and large receptive field simul-
taneously. Both symmetric and asymmetric convolution kernels [8] are used to adapt the
diversity of face AR.

Figure 3 illustrates the structure of RFD module, which is inspired by Inception [37]
and ResNet blocks. The RFD module adopts a 4-path structure. In particular, we firstly
utilize a 1x1 convolution layers to reduce the channel number to one quarter of the input
feature maps. Then, the 3×3, 5×5, 3×1 and 1×3 convolution kernels are employed to pro-
vide diversity receptive field. Finally, these 4-path feature maps are concatenated togather.
Besides, we apply a shortcut path, which maintain the original receptive field, to sum up
with concatenated features above.
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Fig. 3 The structure of Receptive Field Diversity module. Both symmetric and asymmetric convolution
kernels are used to provide large receptive field and diverse aspect ratio simultaneously

4 Experiments

4.1 Experimental setup

In this section, we introduce the backbone, anchor design, data agumentation, loss function
and other implementation details.

Backbone We adopt ResNet-50 with 5-level feature pyramid structure as the backbone net-
work in our method. The feature maps are extracted from those four residual blocks, denoted
as C2, C3, C4 and C5. P2, P3, P4, and P5 are the fused feature maps [9] corresponding to
C2, C3, C4 and C5, while P6 is just down-sampled by two 3x3 convolution layers after C5.
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Anchor design For anchor generation, we assign {4, 4√2, 8} in P2, {8√2, 16, 16
√
2} in

P3, {32, 32√2, 64} in P4, {64√2, 128, 128
√
2} in P5, and {256, 256√2, 512} in P6. All

anchors have aspect ratio of 1.0.

Data augmentation We randomly crop [38, 54] square patches from the original images
and resize these patches into 640×640. Except for random crop, we also utilize random
horizontal flip with probability of 0.5 and photo-metric color distortion [54] to augment
training data.

Loss function We apply the multi-task loss as our objective function. Specifically, Focal
loss [23] is used for the binary classification while Smooth-L1 loss is for the bounding box
regression.

Optimization details We use stochastic gradient descent (SGD) with momentum 0.9 and
weight decay 5×10−5 to fine-tune our detection models. The learning rate is set to 0.01 for
the first 60 epochs, and decreases to 10−3 and 10−4 for the next two 30 epochs. Besides,
OHEM [33] is applied to alleviate significant imbalance between the positive and negative
training examples with a ratio of 1:3. During training phase, 256 detections per module
are selected for each image. During inference phase, each module outputs 1000 detection
results whose confidence scores are all higher than the threshold of 0.02. Finally, we
perform NMS with a threshold of 0.3 on the outputs of all modules together. Our method
is implemented in MXNet [5] and all the experiments are trained on 2 NVIDIA GeForce
GTX 1080Ti GPUs in parallel.

4.2 Datasets

WIDER FACE dataset: It consists of 32,203 images with 393,703 labeled face boxes with a
high degree of variability in scale, pose and occlusion. These images are split into training
(40%), validation (10%), and testing (50%) sets by randomly sampling from 61 event
classes. Faces in this dataset are classified into Easy, Medium, and Hard subsets according
to their detection difficulty. We train all models on the training set of the WIDER FACE
dataset while evaluate on its validation and test sets. Ablation studies are also performed on
the validation set.

FDDB dataset: It contains 2845 images and 5171 annotated faces. Most of these faces
have large scale, high resolutions or slightly occlusion sometimes. Different from WIDER
FACE, faces in the FDDB dataset are labeled by bounding ellipses. In order to verify
generalization ability of our method, we perform the evaluation on the FDDB dataset.

4.3 Ablation study

In this subsection, we conduct ablation studies to evaluate the effectiveness of our proposed
WARM and RFE. For fair comparisons, we use the same settings as described in Section 4.1
for all the experiments.

The effect of wide aspect ratio matching strategy We discuss the effect of two hyper-
parameters in our proposedWARM strategy. The performance under different η1, δ (defined
in Section 3.3), is shown in Table 2. Compared with SAM, our proposed WARM can collect
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Table 2 Varying η1, δ for WARM on WIDER FACE validation set

Method η1 δ AP

Easy Medium Hard

SAM 2.25 0.00 0.959 0.950 0.898

2.50 0.05 0.962 0.952 0.899

2.50 0.10 0.961 0.952 0.901

WARM 2.50 0.15 0.958 0.949 0.897

3.00 0.10 0.962 0.953 0.902

4.00 0.10 0.960 0.951 0.898

more positive anchors from extreme AR faces, whose ARSD is in E(η1,2.0). Besides, these
extra collected positive anchors have higher IoU, ranging from 0.5-δ to 0.5, related to their
matched extreme AR faces. After multiple ablative experiments, we find the optimal hyper-
parameters. When η1 and δ are set to 3.0 and 0.1, our proposed WARM can increase the
detection performance of 0.3%(Easy), 0.3%(Medium), and 0.4%(Hard) separately.

The effect of receptive field diversity module To demonstrate the effectiveness of RFD
module, we conduct the comparation experiment between SSH and RFD module as shown
in Table 3. Previous feature enhancement modules utilize symmetric convolutional kernels
(e.g., 3×3, 5×5, and 7×7) to enlarge the receptive field. Here, we take SSH detection
module as an example. In order to adapt the diversity of face AR, both the symmetric and
asymmetric convolution kernels are applied in our proposed RFD module as seen in Fig. 3.
Note that, the 3×3, 5×5, 3×1 and 1×3 convolution kernels are used to provide diversity
receptive field. From the Table 3, we can see that RFD module can further enhance the
feature maps and improve the detection performance of 0.2%(Easy), 0.1%(Medium), and
0.2%(Hard) respectively.

Combining the WARM strategy and RFD module, our method achieves a promising
detection performance as shown in the last row of Table 3.

4.4 Evaluation on benchmark

We evaluate our proposed method against state-of-the-art methods on two public face
detection benchmarks.

Table 3 Effectiveness of RFD module on the AP performance

Component AP

Easy Medium Hard

SSH 0.959 0.950 0.898

RFD 0.961 0.951 0.900

Ours(WARM + RFD) 0.965 0.955 0.904
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4.4.1 Wider face dataset

Our model is trained on the training set and evaluate on its validation and testing set against
the recently published state-of-the-art face detection methods including RefineFace [48],
DSFD [21], SRN [6], PyramidBox [38], FANet [50], SFDet [49], FA-RPN [30], ZCC [55],
S3FD [54], SSH [29], HR [12], MSCNN [4], CMS-RCNN [56], MTCNN [51], LDCF+
[31], Faceness [44], Multiscale Cascade CNN [45], ACF [46] and Two-stage CNN [45].
The precision-recall curves and AP values on WIDER FACE validation and testing sets are
shown in Fig. 4. Our method based on resnet-50 achieves the promising average precision in
all level faces, i.e., 0.965 (Easy), 0.955 (Medium), 0.904 (Hard) for validation set, and 0.960
(Easy), 0.952 (Medium), 0.900 (Hard) for testing set. It can be seen that our method outper-
forms almost all other methods, demonstrating the effectiveness of our proposed method.
Note that RefineFace and DSFD adopt resnet-152 as their backbone to achieve the detection
performance as seen in Fig. 4. We believe that a deeper backbone like resnet-152 can fur-
ther improve the detection performance of our method. More importantly, our study leads
to a new insight to make detection models robust for extreme AR faces.

4.4.2 FDDB dataset

We directly use the same detection model above to perform the evaluation on FDDB dataset.
Specifically, the shortest side of the input images is set to 400 pixels while the larger
side is less than 800 pixels. We compare our method against the recently published state-
of-the-art methods including FANet [50], PyramidBox [38], DSFD [21], FD-CNN [39],
ICC-CNN [52], RSA [24], S3FD [54], FaceBoxes [53], HR [12], HR-ER [12], DeepIR [36],
LDCF+ [31], UnitBox [47], Conv3D [20], Faster RCNN [15] and MTCNN [51] on FDDB
dataset. For a more fair comparison, the predicted bounding boxes are converted to bound-
ing ellipses. Figure 5 shows the discrete ROC curves and continuous ROC curves of these

Fig. 4 Precision-recall curves on WIDER FACE validation and test sets
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Fig. 5 Evaluation on the FDDB dataset

methods on the FDDB dataset respectively. As can be seen, our proposed method consis-
tently achieves a relatively higher performance in terms of both the discrete ROC curves
and continuous ROC curves. These results demonstrate the effectiveness and impressive
generalization capability of our proposed method.

4.5 Qualitative results

Figure 6 shows some detection results of our proposed method on the WIDER FACE
validation dataset. Our method is able to detect faces with different AR, especially for
extreme AR faces. The detection results for extreme pose faces are shown in the first row
of Fig. 6. Besides, our method can also detect partial faces caused by occlusion as seen in
the last row of Fig. 6. Surprisingly, our detection model can capture some extra extrmeme
AR faces which are missing labels.

Figure 7 shows some detection results generated by our detection model on the FDDB
dataset. Benefit from excellent performance of our method in detecting extreme AR faces,

Fig. 6 Qualitative results on the WIDER FACE validation set. Red bounding boxes are the faces that anno-
tated on the WIDER FACE validation dataset. Green bounding boxes represent the detection results. Best
viewed in color. Please zoom in to see some small detections
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Fig. 7 Qualitative results on the FDDB dataset. Red bounding ellipses are the faces that FDDB labeled;
Green bounding boxes are the detection results. Best viewed in color. Please zoom in to see some small
detections

we can find some more faces from human perspective but lack of labels on the FDDB
dataset. Similarly, the detection results, which contain atypical pose and heavy occlusion
faces, are presented in the first and last row of Fig. 7 separately.

Figure 8 is a qualitative result in world’s largest selfie. Our method successfully find 911
faces out of the reported 1000 faces in the above image.

5 Conclusions and future work

In this paper, we examined the failure of sampling positive anchors from extreme AR faces
and identified that the max IoUs of these faces are still lower than fixed sampling threshold

Fig. 8 The qualitative result in world’s largest selfie. Our method successfully find 911 faces out of the
reported 1000 faces in the above image. Best viewed in color. Please zoom in to see some small detections
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in SAM strategy. Motivated by this observation, both Wide Aspect Ratio Matching strat-
egy and Receptive Field Diversity module were deployed in our method for the sake of
better detecting faces with different aspect ratio. These two strategies make our model effec-
tive and robust to detect faces with diversified AR in unconstrained settings, especially for
extreme AR faces. Extensive experiments demonstrate that our method outperforms most
of the recently published face detectors and achieves promising performance on challenging
face detection benchmarks like WIDER FACE and FDDB datasets.

In the future, we attempt to construct nonlinear positive sample threshold boundary for
extreme AR faces, to further improve the detection performance. Note that our proposed
WARM strategy can flexibly adjust the sampling domain of aspect ratio, which can help
detection models fit for the specific demand in real applications. Moreover, the design idea
of WARM strategy proposed in this paper can also be transferred into other anchor-based
detection task, which is also a direction of our future work.
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