
Development Iterations Based on Web
Augmentation and Context Tasks

Lucy Gutierrez Marticorena1[0000−0002−4656−4624], Leonardo A. Morales1,3,
Leandro Antonelli2, Gustavo Rossi2, and Diego Firmenich1*

1 DIT, Departamento de Informática Sede Trelew
Facultad de Ingenieŕıa, UNPSJB, Chubut, Argentina.

*dafirmenich@ing.unp.edu.ar
2 LIFIA; Facultad de Informática,
UNLP, La Plata, Bs. As. Argentina

3 IPCSH; CONICET-CENPAT,
Puerto Madryn, Chubut, Argentina

Abstract. The use of prototypes in requirements engineering has widely
known benefits since they actively involve the stakeholders in the de-
velopment process. Web Augmentation techniques make it possible to
build prototypes relying on existing web applications. Thus, high fidelity
mockups can be quickly generated. One of the most critical activities
is dividing requirements into tasks and managing them through the de-
velopment process. This paper proposes an approach that includes high
fidelity mockups into the Task-oriented Development approach. The pro-
posed approach consists of the following steps: (i) end-users specifies re-
quirements, (ii) a product owner verifies and prioritizes the requirements,
(iii) tasks are defined and included in a kanban board, (iv) developers
should provide the functionality, and (v) the product owner should ap-
proved the functionality. The main contribution of this approach is to
integrate the requirements specified through web augmentation mock-
ups, into the development environment via a task-oriented development
approach. Thus, developers will have a rich context that facilitates the
understanding of the requirements. At the same time, the management
of the development process will have benefits because of the traceabil-
ity between tasks and requirements. This paper describes the approach
proposed, called ”WAMRI”, and an application of its usage, as well as a
tool to support the application.

Keywords: Web Engineering · Web Augmentation · Requirements En-
gineering · Software Development Environments · Task Contexts · Soft-
ware tools

1 Introduction

Software development approaches based on mockups and prototyping techniques
have been used since decades ago. They were proven to be effective to commu-
nicate between engineers with end-users [37, 4]. More recently [41] and [48] have



2 L. Marticorena et al.

shown how to involve end-users allowing them to define their needs using text
and layout tools to visually specify requirements. Some model-driven approaches,
such as Mockup-driven development [49], propose to evolve prototypes into mod-
els. However, from a methodological point of view, it is not really frequent and
convenient [40].

Traditional techniques commonly used today to define requirements include
Use Cases, User Stories, and Prototyping. The three techniques rely on defining
requirements in artifacts isolated from the software application. Thus, from the
analysis of the requirements to its implementation, there is a wide gap and
this gap demands a huge effort to understand the requirement placing it within
the application context, as well as to identify the source code related to the
functionality.

The identification and limitation of the work context has been a matter
of previous research. The approach called MyLar [29] allows the developers to
focus on carrying out their labor within the boundaries of a work context. This
approach evolved to MyLyn[46] that makes it possible to build and collect the
work contexts related to the execution of some specific development tasks. Thus,
the development environment can be adapted and prepared for allowing to the
developer manipulate a limited set of elements, having as a consequence an
increase in their productivity [30].

Moreover, requirements artifacts and the running software application follows
two different threads, where both elements should be synchronized. That is, the
requirements evolve, so the requirements artifacts should be updated to match
the implementation. This task is very demanding, and it is even more time
consuming to update mockups, since they have many details. Nevertheless, it
makes no sense to update a mockup that represents the application GUI, when
the application GUI can be itself used as a base for the mockup.

Web Augmentation techniques allow web users to work directly with the
application, modifying the content (information displayed) and functionality of
the existing web applications. Although Web Augmentation is primarily used for
customization, these techniques with an adequate support of tools can be used
to define new requirements [15]. Moreover, while describing the requirement the
tools are also capable of identifying the modules of the application that need to
be modified, providing to the developer some clues about the source code that
needs to be modified.

Let’s consider as an analogy civil engineer or architecture. It would be very
useful to plan the extension or modification of a house at the same time that
the inhabitants live in there. Thus, preferences and needs can be better assessed
and described. In the virtual world of the application, the benefits are even
more promising considering the great variety and quantity of stakeholders that
usually exist behind an application deployed over the Internet. Even more, the
augmentation techniques make it possible for different users to discover and
define different versions of their same needs, and these can be prioritized and
negotiated through adequate support of tools [16].



Development Iterations Based on Web Augmentation and Context Tasks 3

The contribution of this paper is providing an approach that involves the
end-user in the definition of the requirements through the technique of Web
Augmentation. The requirements are anchored to the real application that need
to be modified and the proposed approach also provide clues about the modules
(source code) that should be considered for modification.

The proposed approach is based on two fundamental pillars. One of them, is
the definition of requirements using high-fidelity web mockups with augmenta-
tion techniques for their construction. Particularly, this paper proposes the use
of a novel software artifact, called Runnable Augmentation Mockup [15]. The
second pillar is the usage of augmented task contexts through the integration
of our web augmentation mockups into the development environment. Although
there are some previous proposal, our approach combine software artifacts with
task contexts.

The rest of the paper is organized in the following way. Section Background
and related works, provides a deeper description of the conceptual and tech-
nological background for understanding the proposed approach. Then, section
WAMRI (Web Augmentation Mockup Rapid Iteration) describe the contribu-
tion of this paper, that is, an approach of rapid development increments in web
applications based on mockups and augmented task contexts. Section four, de-
scribes examples of the proposed approach and tools to support the approach.
Then, some discussion is provided. Finally, some conclusions and future work
are presented.

2 Background: Web augmentation and Runnable
Augmentation Mockups

To provide clarity and describe web augmentation [6] techniques in more depth,
it could be mentioned that it is often said that augmentation is to the web of
what augmented reality is to reality [12]. Because the end-user of web applica-
tions executes them in a browser on the client-side, there when the web apps are
rendered, they have the opportunity to modify their appearance and behavior.
Technically this can be accomplished in several ways, but the most widely used
are Browser Extensions and User Scripts. About the former, these are gener-
ally obtained through Browser Extension markets [23] where users can find and
install the extensions of their interest. These extensions are developed by third
parties, generally, to work on the different web applications used by the end-user.
Just to mention an example, the Dark Reader[11] extension apply dark themes
overall visited websites or a few ones selected by the user. This extension has
more than 3 million installations.

The execution of the extensions is managed by browsers, and technically they
are capable of doing incredible things by altering, modifying, and combining con-
tent and functionality of the websites visited by the user. All this making use of
the Web Extension API [8, 43] and manipulating the DOM Trees corresponding
to the web applications used.



4 L. Marticorena et al.

Fig. 1. Mockplug Web Extension: prototyping over an existing web application.



Development Iterations Based on Web Augmentation and Context Tasks 5

On the other hand, user scripts are software artifacts written in Javascript
by end-users of the web, who build and share them through repositories forming
different communities [25]. These user scripts are then executed using a user-
scripts management extension [5, 24]. This extension is aware of the websites
visited to insert these Javascript artifacts when the user visits the augmented
ones.

Although these techniques are quite well known and popular, it is worth con-
sidering that they are not so much given their real potential and the immense
number of web users [13]. In addition, it is important to mention that these arti-
facts are built and maintained naturally and totally decoupled from augmented
websites and that drastically affects their survivability to augmented website
changes.

In a previous work that we have called Crowdmock [16], we have used these
augmentation techniques to allow end-users to elicit, define, and prioritize the
augmentation requirements. Crowdmock provides an engineering approach in
the construction and maintenance of user scripts. Part of the proposed process
was based on the Mockplug [15] tool that allows end-users to start the process
by defining the requirement on the augmented website itself.

Figure 1 shows a capture corresponding to a prototyping session using the
Mockplug tool on a web application that we have developed for a particular
domain related to a flora study on the Patagonia region [1]. It shows how the
end-user dragged and dropped a representative image of a map on the application
and added an annotation describing their need.

This new type of prototype, which we have called RAM (Runnable Augmen-
tation Mockup), allows adding different kinds of elements such as text and form
fields, buttons, lists, images, etc. Among other things, it also allows to select ele-
ments present in the UI and change their position or remove them. It also allows
adding pocket widgets. That is, collecting elements in a pocket while browsing
the web, and then mixing them with those existing in the system on which there
is a need. In the case of the figure 1, this is what was done with the map element.

The tool also makes it easier for an advanced user to incorporate behavior
into the elements. So that it not only allows generating visual representations
of the requirement but also allows generating dynamic representations of it.
Distinguishing this last possibility we have called them RAM.

These techniques not only facilitate the involvement of the end-user in their
role of the stakeholder from the point of view of requirements engineering, but
they have also allowed us to go further and provide tools that facilitate their
participation in component testing and references maintenance of DEOIs (DOM
Elements of Interest) [17]. Being these, two very important aspects for software
artifacts built with augmentation techniques.

However, Crowdmock’s objective is that the end-user community can get hold
of the augmentation artifacts that allow them to satisfy their own customization
needs, precisely those that the owners of the web applications did not originally
provide. To do this, the end-user just begins by specifying and share their needs
with RAM models through the Mockplug tool.



6 L. Marticorena et al.

3 Related Works: Tasks and Context in Software
Development

The context of a task is the set of interactions with tools and artifacts that the
developer performs during its execution [36]. The same artifact (for example a
user story, the source code, or a test specification), could be involved in more
than one task and its relevance will surely be different in each case. There are
two prominent approaches to measuring this relevance. On the one hand, the
degree-of-interest (DOI) model takes into account the frequency and decay of
interactions to continuously calculate the degree of interest of each artifact [31].
On the other hand, the FDA model measures the frequency and duration of each
developer-artifact interaction, also considering the passage of time (or aging) of
these interactions [36].

In the development of Software, understanding how the dynamics of inter-
actions and artifacts work in the context of tasks allows the development of
tools that facilitate the development process. Multiple tools have been proposed
to free engineers from costly mental burdens (such as searching for artifacts
or changing context) in order to increase their productivity and achieve higher
quality products.

In order to attend to user productivity, and in relation to task planning,
there are works such as [34] in which a real-time multiple workflow scheduling
scheme is proposed to schedule workflows dynamically with a minimum cost and
under different time constraints. Nevertheless the benefit of this approach it is
necessary to organize the tasks in an acyclic directed graph structure in order to
proceed. Another work [61] proposes an approach that uses the network encoder-
decoder with short-term memory (LSTM) along with attention mechanism to
generate predictions from activity logs and create schedules for allocating tasks.
This proposal avoid the effort to manually build an acycic directed graph since
it uses the activity logs. Nevertheless, [35] states that it is more effective the
use of context than task-based integration.

There are multiple factors of context that can be taken into account in the
work of Software Engineers and their interaction with the development tool or
IDE. Some examples of these are: overall developer experience, IDE experience,
complexity of the artifact in development, or even the day of the week the task
is performed. In [20], thirteen of these context factors were selected, and a model
was presented through which it has been possible to improve the precision and
synchronization of the recommendations produced in the IDEs. Focusing on the
so-called systems of recommendations for software engineering (RSSEs), [20]
allows categorizing tools linked to the context of tasks in the development envi-
ronment. Another group of tools focuses on offering relevant code examples, such
as Strathcona [26] and Code Conjurer [27] (which, unlike Strathcona, does not
require manual selection of the code snippet to perform the query and present
a useful code snippet). We believe that recommendation is a valuable feature
combined with code example, since it is the key in developer works: finding the
source code to modify. Some other approaches focus on improving the use of
the commands available in the IDE, such as SpyGlass [59], while others focus



Development Iterations Based on Web Augmentation and Context Tasks 7

on adapting the user interface presented by the IDE, such as Mylyn [31] and
AutumnLeaves [54]. And other tools focus on adapting the ordering of the rec-
ommendations offered to the developer, such as OCompletion [50] and Quick
Fix Scout [45]. We believe that it is not necessary to change the functionality or
appearance of the view, since the developer is familiar with it.

The aforementioned Mylyn is one of the most popular tools and its objective
is to help the developer focus on those artifacts that are most relevant to their
coding tasks [28]. This plug-in, for the Eclipse [14] integrated development envi-
ronment (IDE), implements the DOI model to filter Java classes, methods, and
variables. Thus, this tool provides a kind of search tool to help the developer.
Nevertheless, the developer needs to know what should he search for and if he
does, he need to do the effort, while a recommendation is more efficient.

In more recent solutions an advance can be noticed in the treatment of the
context of software engineers. [7] introduces Devy, a Conversational Developer
Assistant (CDA) that enables developers to focus on their high-level development
tasks. It is a voice-controlled prototype with a pre-defined set of automated Git
and Github tasks. ”CognIDE” [58], meanwhile, is a proposal that integrates
psycho-physiological information from the developers (obtained through sensors)
to the IDE. The data processed by this tool is presented both in the source code
editor and in external visualization boards. In both cases, the proposals pursue
the goal of helping developers to input the information to the tool. Nevertheless,
in the first case, it is necessary to give some information orally while in the
second case, the sensors also demands input from some explicit stimulus.

Previous cited works only considered source code as context, but MylynSDP
[47] based on the aforementioned Mylyn tool considers some other phases (and
artifacts) of software development, such as requirements and testing. MylynSDP
extends the DOI function of Mylyn to work on three detected disadvantages:
include artifacts from other phases of software development such as use cases
and test cases; collect information on other characteristics of artifacts such as
frequency or file type; third to prevent tasks from being manually defined. We
believe that the inclusion of requirements is crucial since it provides a richer and
higher level context that the source code.

Murphy [44] also proposed a new dimension regarding contexts since he focus
on historical and activity information, which then serve as input for the creation
of tools that actually increase human intelligence. This is a kind of machine
learning solution that can be interesting approach in which the recommenda-
tions are adjusted according to the criteria finally adopted by the developers.
We can find some examples of these tools in the work [38], such as chatbots
(cognitive computing) in conjunction with recommendation systems (machine
learning). The paradigm proposed in this work aims to take advantage of con-
text information (implicit or explicit) to assist developers in real time and in the
different scenarios in which they are working.

Considering the ways of building software today, “Agile Methodologies” are
mature and widely adopted in the industry. These methodologies proposed a
paradigm shift in order to increase the success rate of software projects. With



8 L. Marticorena et al.

their practices, they seek to keep the client involved in all phases of development,
deliver software early and continuously and adapt quickly to changes that may
occur [19]. From this new way of working new artifacts emerged and gave rise to
new interactions for software engineers in their day-to-day work. Therefore new
contexts emerge as well. Work on [33] has shown that incorporating Continuous
Integration and Continuous Delivery tools into the IDE has increased their use,
and it has also improved the workflow for developers. The Agile Methodologies
most used in the industry today are Extreme Programming, Kanban, and Scrum
[52]. Some of them user combined [53]. In Agile Requirements Engineering, the
most frequently used artifacts are User Stories, Prototypes, Use Cases, Scenarios,
and Story Cards [57]. Thus, it is valuable to include artifacts related to agile
methodologies in the context.

4 WAMRI

This section is organized in the following way. The first subsection describes
WAMRI briefly. The second subsection describes general characteristics of the
approach. The third subsection describes the steps of the approach. Finally,
the last subsection conceptually describes the main components of the proposed
aproach.

4.1 WAMRI In a Nutshell

From an engineering conception, our approach raises the possibility of including,
within the development process of an existing web application, integrated tools
that provide a framework for the elicitation and definition of new functional
requirements. At the same time, it takes advantage of the prototyping informa-
tion, at the precise moment and place in which the developers carry out the
tasks corresponding to the resolution of the requirements.

According to the proposed approach, it is the end-users who, through the
use of the web application and based on their own experiences and needs, are in
charge of laying out their functional requirements. This is achieved by enriching
the web application by adding web augmentation capabilities to define their
requirements. These web augmentation capabilities, let end-users add artifacts
over the existing web applications that are essentially high-fidelity mockups and
can be used later to provide the development environment with new kinds of
information about the user requirements. Thus, new ways of reverse engineering
in the construction and maintenance of web applications are possible.

In this way and as can be seen in the diagram of figure 2, the end-user
as stakeholders that are interested in new functionalities, use the web applica-
tion accompanied by special new tools for the definition of requirements, us-
ing prototypes via web augmentation techniques. The information obtained by
the augmentation artifacts nourishes the development process, and developers
through the development environment, visualize information of interest linked
to the tasks to be carried out to satisfy these augmented requirements.



Development Iterations Based on Web Augmentation and Context Tasks 9

Fig. 2. WAMRI General Diagram.

The diagram depicted in figure 2 includes the following steps: (i) end-users
specify requirements, (ii) a product owner verifies and prioritizes the require-
ments specified by the end-users, (iii) tasks are defined and included in a kanban
board, (iv) developers code the functionality to satisfy the requirements which
(v) the product owner should test to be approved. Thus, three roles are involved
in the method: end-user, product owner, and developer. End-user is the role in
charge of specifying requirements. The product owner is the role in charge of
prioritizing the requirements, identifying and solving conflicts, and validating
functionality after the developer implements the requirements. The developer is
the role in charge of analyzing the requirements and implementing them.

In the same way, figure 3 allows us to distinguish the three main software
components that support the approach: an extension for the browser (A), an
extension for the development environment (B), and an extension for the web
application (C). These components are also indicated in the general diagram in
figure 2.

Thus, the extension of the browser is used by end-users to specify require-
ments and the product owner to verify them. Then, the extensions make use of
the Kanban Tool Support to manage the creating and updating of the tasks in
the board. Finally, the combination of the web server extension and the IDE
provides the information about the files needed to be edited by the developers.



10 L. Marticorena et al.

Fig. 3. WAMRI Components Diagram.

4.2 General characteristics of the approach

Foremost, it is important to emphasize that the method applies to developing
new features of an application already developed and deployed in production.
The running software application is the base for specifying new requirements.
The key product to specify requirements is the web augmentation mockup. It is
a mockup described directly on the software application to be extended in its
functionality. That is in contrast to the traditional mockups designs approaches
and tools, where the mockup artifacts are described in extern documents. The
webmockup is also enriched with a User Story. Both elements are used to describe
every requirement. Webmockups are runnable because it can contain widgets
actions that triggers some functionality. Requirements are used as a mean of
communication between end-users and products owners. Every requirement is
available for every end-user, thus they can collaborate in the definition. This
evolution creates a tree where end-user can also vote to express their agreement
with the requirements. Finally, the product owner has the responsibility to define
the final version of the requirement [16].

After the requirement is accepted by the product owner, it is included in
a kanban board, which is a communication means between product owner and
developers. The board includes the following columns: (i) To Do, with the task to
be performed, (ii) Doing, with the tasks picked up by developed, (iii) Done, with
the finished tasks that need to be validated by the product owner, (iv) Reviewing,
with the tasks being validated and (v) Reviewed, with the tasks finally validated
by the product owner. It is important to mention that the board is automatically
updated according to the actions performed by the roles. That is, in order to
have a task in ToDo, the product owner should have accepted a requirement.

The use of the software application to describe the requirement makes it pos-
sible to relate the requirement with the files needed to modify in order to satisfy
the requirement. This is an advantage of the approach. There is a relationship
between the requirement and the files to be edited. Another advantage is that



Development Iterations Based on Web Augmentation and Context Tasks 11

there is no need to learn to use a tool to specify requirements, and no need to
change from the tool to specify requirements and the running software.

The method proposed is based on an agile life cycle, since the documenta-
tion is simple and light. Moreover, it is iterative and incremental, since end-users
request new functionality, it is developed and deployed, and end-users can re-
quest new functionality. Finally, it is based on an evolutionary prototype. The
literature considers an evolutionary prototype when the prototype is improved
and finally is transformed into the final application. In this case, it is even more
extreme, since the application also contains the requirement.

4.3 Steps of the approach

This section describes every one of the steps of the proposed approach. The first
step is the requirements specification. In this step, a group of end-users speci-
fies requirements. The product owner does not elicit requirements from them.
Requirements are specified directly in the web application using augmentation.
Thus, the implementation begins in some way with the specification, since a new
widget can be placed in the real position of the application and the developer
will have to implement the logic and functionality needed. It is important to
mention that requirements not only consider adding widgets, it also consider
removing, moving, combining, etc...

The second step is the requirements verification and prioritization stage
where the product owners review every requirement looking for requirements re-
peated or in conflict. If there are two repeated requirements, the product owner
should accept only one. By contrast, if there are two requirements in conflict,
the product owner decides (in combination with the end users) the specification.
For example, it could occur a conflict when two end users request a delete func-
tionality to work in different ways. One end user requests a delete function to
remove one element, while another end user requests a delete function to remove
the element chosen, performing delete in cascade with the related elements. In
this situation the product owner decides, in discussion with the end user involved
if necessary, the best approach. It is important to mention that this discussion
can be carried out in situations where there is no huge amount of end user. For
example, in a global platform like social medias is not possible, but in a back
office of a bank could be. Finally, the product owner accepts a requirement and
prioritize it.

The third step is the definition of tasks stage where every requirement ac-
cepted by the product owner is translated to an individual task in the kanban
board positioned according to the prioritization. Files related to the task are
traced by the tool that supports this approach. Thus, the task is described us-
ing three elements: (i) a webmockup defined in a real application, (ii) a User
Story described by the end-user, and (iii) the files needed to be edited which are
identified by the tool proposed in this approach.

The last two steps are coding and user acceptance tests. In coding stage, the
developer chooses a task, then the IDE displays a list of the files needed to be
edited. Thus, the developer does not need to search for them, he can focus on



12 L. Marticorena et al.

write the source code. When he finishes the task, the product owner performs
the last stage: user acceptance test, where he checks whether the functional-
ity satisfies or not the requirements. If it not, the product owner restarts the
iteration.

4.4 Conceptualization of principal components

As mentioned, the fundamental components that support the approach are the
web augmentation mockups for the definition of the requirement (Component
A), as well as the extension of the functionality of the existing web framework,
to be able to inspect the source code files of the deployed web application to be
modified (Component C).

As described above, these two artifacts interact mediated by the develop-
ment environment extension (Component B). Components A and C, are the key
pieces that support the approach since the first one contains the requirement
information provided by the end-user, and the second one, can exploit this in-
formation on the web server that deploys the application where the requirement
was created.

Concerning Component A, it can be seen in figure 4, the metamodel of a web
augmentation mockup. Each RAM model is made up of the following: the URL
where it was created, a set of widgets, their properties, their insertion strate-
gies, actions, etc. Thus, the models created by end-users in their augmentation
requirements are represented by particular instances of this metamodel.

Fig. 4. Web augmentation mockups metamodel.

As for the C artifact to extend the functionality of the web framework, this
is conceptualized as a web service. Requested, given a specific instance of the
previous metamodel, it will be capable of responding with a list of source files
and lines of code of potential interest to resolve the requirement.



Development Iterations Based on Web Augmentation and Context Tasks 13

This service, attached to the services offered by the web server that de-
ploys the application on which the requirement was created, may, depending on
the technology used, be implemented in many ways. However, conceptually, an
example compatible with any Web Application Framework based on the well-
known and popular architectural pattern Model View Controller (MVC) is next
described in more detail.

Most popular web frameworks are based on the MVC pattern and its deriva-
tives (MVT, MVP, MVVM), and they achieve the separation of concerns by di-
viding the application into distinct types of components and source files. Thus,
based on the component’s nature, there are component types and files for the
business model and backend (application domain logic), there are component
types for view files and templates (user interface logic), and finally, there are
component types for controllers and files where the application events and in-
puts logic are located.

Therefore, a requirement specified by a specific web augmentation model,
over an MVC Framework based application, will be related to a set of views,
models, and controllers. These will be defined in certain files, and within those
files, very commonly composed of hundreds of lines of code, only some snippets
will be relevant to solve the requirement.

Figure 5 shows an algorithm for obtaining as an outcome these files and these
lines of relevant code for a particular web augmentation mockup model, created
on an application deployed in a Web MVC Framework.

Fig. 5. Component C generic algorithm for a MCV Framework.

It can be seen that the algorithm can meet its objectives in a polynomial time
O(n3). At a lower level of abstraction, foreseen in any implementation of this



14 L. Marticorena et al.

algorithm, it will be probably necessary the use of regular expressions, XML or
configuration files processing to find the controllers corresponding to the URLs
of the mockups, as well as to lean on the characteristics of each framework and
its technology, and its libraries, to programmatically browse the directories and
the text of its view and model files. In the generic algorithm of figure 5 that
operations were abstracted with the pseudo primitives match and find.

Finally, it will also be necessary performing widget definition searches based
on their HTML Text properties. Like in the case of sub-algorithm of figure 6,
which looks for widgets in an HTML view file. And for that, it is important
to highlight that the widgets in the web augmentation mockup, may have been
pre-existing in the application, or may have been added from the default tool
palette or from any other application apart on the entire web. In either case, as
is expressed in the metamodel, widgets are inserted into the augmented applica-
tion using an Insertion Strategy. There, an existing reference to the DOM Tree
relative application host element is used, which is the one used to search for the
corresponding widget code definition lines (widget.insertionStrategy.domRef).

Fig. 6. Component C sub-algorithm for find widgets relative lines in views.

5 Examples and Tool Support

The examples in this section are of an intranet web application used by biology
scientists to record, visualize, and manage data about the flora and its distri-
bution in the territory. These scientists use mobile applications to conduct flora
recognition campaigns, then sync their devices with the intranet web application
when they return to their labs. Four developers make up the software develop-
ment team, two of them focus on mobile applications and the other two on web
applications. The product owner role is played by the leader of the development
team. Showing our contribution from the use of web augmentation mockups to
the software development process, let’s think about a possible scenario to present
the tools in that context.



Development Iterations Based on Web Augmentation and Context Tasks 15

5.1 The end-users define their needs

Rose, a biologist, has already registered 40,000 specimens from 377 different
species using the mobile app. She has collected dozens of samples from these
specimens, and she is now in her lab, using her stereoscopic magnifying glass to
identify the species that she has not been able to recognize with her naked eye
in the territory. Once the species’ scientific name has been determined, it must
be registered using the web application, associating it with the synonym used
during the exploration campaign with the mobile app. Figure 7 shows how Rose
accesses the form that she uses to record the scientific names from the list of
different species.

Fig. 7. Intranet web application.

While Rose is working in the lab, the web app displays a legend that shows
how many fantasy names do not yet have a scientific name assigned (in figure 7,
this number is 26/377). However, she has no way of knowing how representative
these species are in comparison to the entire sample, and she needs to know how
many of the 40,000 specimens sampled already have a scientific name and how
many do not.

Then, using the same browsing session and the Mockplug tool, Rose defines
a new requirement to communicate her need to the IT team that maintains the
application. Figure 8 depicts the definition of this simple requirement, in which
the user indicates that she needs to add an element of information about the
data she is working on.

Rose is unaware, but this method of specifying her need allows us to incor-
porate her requirement into the DOM Tree during the user’s browsing session.
Figure 9 depicts the Mockplug tool’s modification of the DOM Tree. The el-



16 L. Marticorena et al.

Fig. 8. Rose requirement.

ements corresponding to the requirement were added there. Furthermore, as
shown in figure 8, existing DOM Tree elements relevant to the requirement were
converted into requirement elements as well, such as the container div element
for the data of interest.

Once Rose finishes defining her needs in terms of prototyping, she reports
them by completing a simple form in which she adds a textual description of
them using well-known user stories.

Fig. 9. Augmented DOM Tree in Browser Inspector.

5.2 The product owner verify and prioritize the requirement

User stories are automatically assigned to a specific list on the Kanban board
of the product owner. There he can see the requirement’s textual description
as well as a screenshot of the mockup. As shown in Figure 10, from his board,
the product owner will be able to verify and prioritize the resolution of the
requirements.

It’s worth noting that the product owner can resume the mockup created by
Rose at this point in the process by clicking on the Kanban card details. This
would allow him to evolve or adjust the required Mockplug mockup as he sees



Development Iterations Based on Web Augmentation and Context Tasks 17

Fig. 10. Product owner Kanban Board in Trello.



18 L. Marticorena et al.

fit using his own browsing session. In this case, the Rose need was validated and
then accepted by simply dragging and dropping it onto the IT Team board’s
TODO list. At that time, the web developers are notified in their development
environment.

5.3 Augmenting the context of the developer task

On the developer’s side, all the previously described information becomes really
important: the resulting DOM tree on the original Rose browser session, all
the data about her story, including annotations, widgets, and their respective
properties, and the URL where the requirement was prototyped.

As part of it work, it has been developed an experimental extension for
the Visual Studio Code environment [39] to support our approach from the
developer’s point of view. Figure 11 shows a development session where the
developer, through the main menu of the extension, has started solving the
requirement mentioned above, which is shown to the developer on his right.

Fig. 11. WAMRI Tool Integrated on Visual Studio IDE.

In the rapid development iterations approach proposed, it was found im-
portant to think about the development contexts, as augmented contexts of
development tasks. It can be seen in figure 12, how the extension is based on
the information of the selected requirement to infer, through its WAMRI Outline
component, which files probably need to be modified. This association allows the
developer to have at hand the file(s) involved in each of the tasks that he must
face when he selects the task on which he is going to work. Even more, as can
be seen in the Figure 12, the developer has opened one of the files to edit it, and
the cursor was automatically positioned where the HTML file has an element



Development Iterations Based on Web Augmentation and Context Tasks 19

Fig. 12. WAMRI Task Outline.

of id ”SynonymsToResolve”. This action could carry out due to the information
obtained from the augmented web mockup (relevant part of the corresponding
DOM tree is showing in Figure 9). There, this particular instance of the web
augmentation metamodel, Component A, were used by the extension to request
the related components to the Component C, the web service extension.

On the developer side all requirement data can be conveniently used to sup-
port the developer work and carry out his task with new suggestions that now
can be automatically done by the tooling. For example, figure 13 shows how
through the contextual editing menu, the developer can use the tool options
to incorporate the base code of the widgets present in the web augmentation
mockup.

Finally, when the requirement is resolved, developers release a new version of
the application for review and, from their developer environment, move the card
to the TO-REVIEW list on the kanban board so it can be noticed and reviewed
by the product owner.

Fig. 13. WAMRI Commands in the Context Editor Menu.



20 L. Marticorena et al.

5.4 Behind the scenes

Through Component A, all the information captured when the end-user was
prototyping his requirement was collected from some part of the web applica-
tion and contains the end-user annotations, the widgets with their properties, a
snapshot of the browser tab that the end-user has worked on, as well as other
complementary information about the application part where the requirement
was prototyped. That is, information about the AJAX requests that may have oc-
curred, the URL of the CSS files and rules of the elements selected, the Javascript
files involved, etc.

On Component A we have carried out experiments with very positive re-
sults[15, 16] through its MockPlug implementation. In these experiments, par-
ticipants specified their requirements through web augmentation mockups, and
through traditional requirements specification techniques. As result, participants
reported different levels of perceived difficulty. Through Component A, although
the perceived difficulty was considered mostly normal, it was considered be-
tween easy and very easy many more times than using traditional techniques.
Participants also reported that using this component, they spent half the time
specifying their requirements compared to traditional techniques.

While the end-user finishes defining his requirement with these facilities, all
the information of the web augmentation mockup, as well as the information
about the AJAX requests that may have occurred, the URL of the CSS files
and rules of the elements selected, the Javascript files involved, etc. All of that
information is attached to the user story in the Kanban board using Trello’s
REST API [3].

Using this Trello REST API with the appropriate security keys from the
development environment, the pending resolution user stories are listed, and
with all the previously described information, a small but very important piece
of the approach comes into play, which is the extension of the web framework to
support our approach (component C in Figure 3).

This extension of the web application framework takes information from the
requirement and returns information from the software project probably related
to it: source files, component names, lines of code where they are defined, HTML
templates, etc.

Over this component, it have been carried out a series of tests into two
scenarios: in the previously described one, on the Django Framework, and with
another web application that we have developed on the Flask Framework [42].
The data obtained from these test is published at FigShare [18].

These tests consisted of verifying that the suggested components of the ap-
plication corresponded to those that should have been for different requirements
laid out on the web apps. Based on the collected information, it can be stated
that it was always possible to find the main source files as well as the lines of
code where the main functions and methods are defined, which are the functions
where the framework inversion of control happens. Also was always possible
to find the HTML templates that the developer should modify to resolve the
requirement. This is resumed in Table 1.



Development Iterations Based on Web Augmentation and Context Tasks 21

Table 1. Component C test results in Django an Flask Frameworks.

Property/Framework Django Flask

Found source file 100 % of times 100 % of times
Found line in source file 100 % of times 100 % of times
Found all HTML template files 100 % of times 100 % of times
Found all widget lines 40 % of times 50 % of times
Found all widget container lines 95 % of times 100 % of times
Found used domain classes 100 % of times No applicable

It wasn’t always possible to figure out which lines of the HTML template
corresponded to the defined widgets in the mockup. This is because widgets are
frequently dynamically generated on the DOM Tree in the user browser and
are not textually present in the HTML template file. However, in most cases, it
was possible to find a container for the widgets, which did make it possible to
position the developer between the most relevant lines of the template to resolve
the requirement.

5.5 The example in contrast

A summary of how the approach has affected the actors involved in the example
scenario concludes this section. Table 2 shows which activities were done in a
new way using the approach and associated tools.

Table 2. Activities in the example affected by the approach.

Activity Actor Traditional Agile
Approach

WAMRI Approach

Requirement defini-
tion

End-user User story, textual
description, tradi-
tional mockup

Mockplug mockup

Requirement commu-
nication

End-user E-mail Mockplug User
story form

Requirement elicitation Product-owner E-mail Trello

Requirement planifica-
tion

Product-owner Trello Trello and VS
Code

Find files to be modi-
fied

Developer Requirement and
source code analy-
sis

VS Code, WAMRI
extension

Find lines to be modi-
fied

Developer Source code analy-
sis

VS Code, WAMRI
extension

Find component impli-
cated

Developer Explore Source
code project

VS Code, WAMRI
extension

It stands out that the end-user never had to change her attention from the
application she was using to specify her needs. In addition, she communicated



22 L. Marticorena et al.

without knowing it with all the IT team involved, without having to send emails
to any of them, and without having to verbatim describe any part of the appli-
cation. The product owner did not have to interpret loose emails. Finally, when
given the task to developers, they did not have to resort to their memory to
know which files were related to that part of the application source code, nor
did they have to perform text searches to find parts of the most important files
related to the part of the system that should be modified.

6 Discussion

As it have been previously exposed, this work has two clearly defined fundamen-
tal pillars: the definition of requirements and their integration into the develop-
ment environment through task contexts.

Concerning the use of RAMs, it is important to distinguish that the proposed
approach deals with functional requirements in web applications that are already
deployed since, the use of these web mockups is built over the application itself.
This sets it apart from approaches like Mockup-driven development proposed in
[49] where the prototyping work needs to be done from scratch using traditional
mockup tools. We strongly believe that our new type of mockups make it easier
to use these visual forms for the definition of requirements from the point of
view of communication with the stakeholders, in stages in which modeling in
methodological terms is much more expensive to carry out and to implement
keeping aligned with the evolution of the applications [60, 40].

On the other hand, in contrast to end-user approaches such as Crowdmock
[16] the main difference is that in those the end-users solve their objectives with-
out the intervention of the developers of the web applications. In the present
work, what is intended is that stakeholders have the possibility of communicat-
ing with the developers in a visual, agile, traceable way and from which it is
possible to take real advantage by being able to intervene in the own develop-
ment environment where the developer performs his tasks.

The main differences between MDD, Crowdmock, and WAMRI are summa-
rized in Table 3.

Other authors [10] have observed that during a working day, the developer
makes modifications to the source code that are related to more than one par-
ticular task, and proposes the automatic detection [10, 9] of the task that are
working on. Attending the same problem approaches like [51] starts from a set of
source components of interest and then enriches the task contexts automatically
from the software project structure using its hierarchy. In the case of approaches
like [2], the contexts are enriched from textual descriptions of the task, focus-
ing on the fact that developers often use representative words for the names of
classes and methods in the source code.

Instead, our approach proposes creating the tasks contexts from the defini-
tion of the requirement in visual as well as textual terms, and through these
particular kinds of mockup indicate to the developer in his own work environ-
ment a few clicks away which files he will have to probably modify. Being that



Development Iterations Based on Web Augmentation and Context Tasks 23

Table 3. Main difference between approach’s.

Feature/Approach MDD CrowdMock WAMRI

Requirement defined by End user, Devel-
oper

End user End user

Requirement artifact Traditional
mockup, SUI
Model, Tags

Runnable aug-
mentation
Mockup

Runnable aug-
mentation
Mockup

Prioritized and validated
by

End user, Devel-
oper

User community Product owner

Implemented by Development
team

End user Development
team

Applicable to Web applications
from scratch

Existing web ap-
plications

Existing web ap-
plications

Theoretical pillars Model driven, Ag-
ile

Crowdsourcing,
Web Augmenta-
tion, End User
Programming

Task focused pro-
gramming, Web
augmentation,
Agile

possible because the stakeholder has selected parts of the system when making
the mockup. We believe that this can be a great contribution. Since, in tradi-
tional task-oriented approaches, when these tasks originate, there is no precise
information on which files to work on. Either the task context is inferred as
in the mentioned approaches, or the developer generates the context while he
does progress in the resolution of the requirement by opening, modifying, and
closing files of the development project in question. The recent bibliography
highlights this disadvantage of manual task creation (on which the context is to
be recorded) as an issue to be resolved [47].

There are numerous approaches concerning the problem raised that account
for its relevance. Developers perform many different tasks per day, generating
many task context switches[22]. In each of these context changes, the developer
usually must read the documentation, the emails, the parts of the web, and the
systems themselves[32]. There are recent studies[56] on the effects of high lev-
els of developer stress on the quality of the products developed and how the
aforementioned task-oriented approaches and others for time dimension admin-
istration such as the Pomodoro technique [55, 21], help to combat such effects.

In [44] Murphy describes a future and hypothetical scenario in which a de-
veloper, Jessica, is assisted in solving a task: An assistant prioritizes the require-
ments that were assigned to him by e-mail. After asking for the next action to
be carried out, the assistant is in charge of loading the necessary environment
to start coding. After solving the issue, the tasks of verification, measurement
of results, and deployment of the new feature are carried out by the assistant.
This way then allows this hypothetical developer to work without ever losing the
central focus of her assigned task. Thus, by combining tools and recording inter-
actions, it is possible to work on the context as a first-class element. Now, our
approach can be thought of as an approximation to this ideal case enunciated,



24 L. Marticorena et al.

taking advantage of the power of the augmented mockups. In our case, with the
augmented mockup accompanied by a user story, the developer receives a new
request in her IDE since the request has been added to their dashboard. The de-
veloper, having a notion of how to respond to the change, tells the IDE that she
wants to work on the change request. The IDE loads the user story workspace,
the components involved and leaves the cursor on the piece of software involved
in the requested change. Jessica at this point never lost focus on the main task.

7 Conclusions and Future Work

The web is an incredibly massive and dynamic software platform. Year after
year from its standards new functionality is incorporated, and today, it is really
very difficult to imagine a future where the web may not be relevant. And, if
that future existed, after more than 20 years of global level evolution, the legacy
would be immeasurable. It is not at all risky to say that we will live using and
evolving the web for many more years. Even more, new generations of developers
with skills increasingly different from those of precursors will have to deal with
an immense legacy. We believe that developer tools play a very important role
in this regard and this work presents a new way of incorporate prototypes into
the development process of existing web applications. This facilitate and speed
up the exploring of the source files related to a requirement in a task-focused
development way.

In technical terms, web applications are usually developed over some frame-
work for the development of these kind of software and, about these type of
frameworks, there is also a great variety and they are technically very diverse.
Different programming languages are used and different architecture patterns
such as MVC, MVT, MVP, MVVM, are adopted. And, as if the diversity is not
enough, the most modern to be more comprehensive, use their own palette of
components rather than simple HTML elements.

So in modern web front-end frameworks, we have identified situations where
the ability to refer to a part of the code according to the intervened DOM element
needs a little more attention. In these frameworks, a conversion of the code that
the developer writes is carried out to generate the corresponding HTML, CSS
and Javascript files. This allows developers to generate separate units, usually
called components, that contain the graphical interface design plus its necessary
logic. These components are then combined to integrate the entire application.
This environment opens the doors to the challenge of developing an interpreter
that allows dialogue between the HTML generated by the framework and the
corresponding component highlighted here, in the context of the approach pre-
sented.

The proposed approach is fundamentally based on the integration of develop-
ment tools. Some of the types of tools involved are well known and conceptually
validated as is the case on tools for task-focused development. In the case of
MockPlug that is used for the definition of the web augmentation mockups, we
have carried out several experiments with very encouraging results. In previous



Development Iterations Based on Web Augmentation and Context Tasks 25

work [16], we showed that using these techniques for the definition of require-
ments has a direct and positive impact on the obtained software product. In
these experiments, participants who played the stakeholder role found it easier
to express their requirements in this way, defining them in half the time they
spent with traditional techniques.

Concerning the WAMRI extension for VisualStudio Code, it should be noted
that there are too many options in terms of technologies, and we have tried
to take as a guiding criterion the incorporation of popular technologies in our
experimental tools. In that sense, VisualStudio Code is one of the most widely
used IDES today and several thousand extensions are available in its extension
market. Similarly, Django, the Web Framework we’ve been experimenting with
so far, is a very popular and mature framework. Soon we hope to be able to
reach a good level of usability in our most recent tools. That will allow us to
carry out new experiments over more applications and frameworks and get new
feedback as well as discover new alternatives for improvements and challenges.

Author contributions Conceptualization, L.G.M., L.A. and D.F.; WAMRI
Extension software, L.G.M.; Mockplug Extension software D.F.; investigation,
All.; writing—original draft preparation, L.G.M., L.M. and D.F.; writing—review
and editing, All.; supervision, G.R., D.F; project administration, D.F.;

Acknowledgments We would like to thank to Mat́ıas, Ian, Gastón and Nicolás,
who has collaborated with us in the Trello REST API utilization and the mi-
gration of a part of MockPlug tool to modern JS.

Datasets The datasets generated during and/or analysed during the current
study are available in the Figshare repository.

https://doi.org/10.6084/m9.figshare.20060363
https://doi.org/10.6084/m9.figshare.19096781

Declarations All authors declare that they have no conflicting interests. All
authors declare that they do not have any competing financial interests nor any
personal relationships that could seem to have influenced the presented work.

References

1. Almonacid, S., Klagges, M.R., Navarro, P., Morales, L., Pazos, B., Puigbó, A.C.,
Firmenich, D.: Mobile and wearable computing in patagonian wilderness. In: Con-
ference on Cloud Computing and Big Data. pp. 137–154. Springer (2019)

2. Antoniol, G., Canfora, G., De Lucia, A., Merlo, E.: Recovering code to documenta-
tion links in oo systems. In: Sixth working conference on reverse engineering (cat.
No. PR00303). pp. 136–144. IEEE (1999)

3. Atlassian: Trello REST API. https://developer.atlassian.com/cloud/trello/rest/api-
group-actions/, accessed: 2022-02-03



26 L. Marticorena et al.

4. Beynon-Davies, P., Holmes, S.: Integrating rapid application development and par-
ticipatory design. IEE Proceedings-Software 145(4), 105–112 (1998)

5. Biniok, J.: Tampermonkey. https://www.tampermonkey.net/, accessed: 2022-02-03
6. Bouvin, N.O.: Unifying strategies for Web augmentation. Proceedings of the

tenth ACM Conference on Hypertext and hypermedia : returning to our di-
verse roots returning to our diverse roots - HYPERTEXT ’99 pp. 91–100 (1999),
http://portal.acm.org/citation.cfm?doid=294469.294493

7. Bradley, N., Fritz, T., Holmes, R.: Context-aware conversational developer assis-
tants. In: 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). pp. 993–1003. IEEE (2018)

8. Chrome: Developer extensions. https://developer.chrome.com/docs/extensions/,
accessed: 2022-02-03

9. Coman, I., Sillitti, A.: Automated segmentation of development sessions into task-
related subsections. International Journal of Computers and Applications 31(3),
159–166 (2009)

10. Coman, I.D., Sillitti, A.: Automated identification of tasks in development sessions.
In: 2008 16th IEEE International Conference on Program Comprehension. pp. 212–
217. IEEE (2008)

11. DarkReader: Browser extension. https://darkreader.org/, accessed: 2022-02-03
12. Dı́az, O.: Understanding web augmentation. In: International conference on web

engineering. pp. 79–80. Springer (2012)
13. Dı́az, O., Arellano, C.: The augmented web: rationales, opportunities, and chal-

lenges on browser-side transcoding. ACM Transactions on the Web (TWEB) 9(2),
1–30 (2015)

14. Eclipse Foundation: Eclipse IDE. https://www.eclipse.org/eclipseide/, accessed:
2022-02-03

15. Firmenich, D., Firmenich, S., Rivero, J.M., Antonelli, L.: A platform for web aug-
mentation requirements specification. In: International Conference on Web Engi-
neering. pp. 1–20. Springer (2014)

16. Firmenich, D., Firmenich, S., Rivero, J.M., Antonelli, L., Rossi, G.: Crowdmock: an
approach for defining and evolving web augmentation requirements. Requirements
Engineering 23(1), 33–61 (2018)

17. Firmenich, D., Firmenich, S., Rossi, G., Wimmer, M., Garrigós, I., González-Mora,
C.: Engineering web augmentation software: A development method for enabling
end-user maintenance. Information and Software Technology 141, 106735 (2022)

18. Firrmenich, D.: WAMRI component c test results.
https://doi.org/10.6084/m9.figshare.19096781, accessed: 2022-02-03

19. Fowler, M., Highsmith, J., et al.: The agile manifesto. Software development 9(8),
28–35 (2001)

20. Gasparic, M., Murphy, G.C., Ricci, F.: A context model for ide-based recommen-
dation systems. Journal of Systems and Software 128, 200–219 (2017)

21. Gobbo, F., Vaccari, M.: The pomodoro technique for sustainable pace in extreme
programming teams. In: International Conference on Agile Processes and Extreme
Programming in Software Engineering. pp. 180–184. Springer (2008)

22. González, V.M., Mark, G.: ” constant, constant, multi-tasking craziness” managing
multiple working spheres. In: Proceedings of the SIGCHI conference on Human
factors in computing systems. pp. 113–120 (2004)

23. Google: Chrome web store. https://chrome.google.com/webstore/, accessed: 2022-
02-03

24. Greasespot: The weblog. https://www.greasespot.net/, accessed: 2022-02-03



Development Iterations Based on Web Augmentation and Context Tasks 27

25. Greasyfork: Safe an useful user scripts. https://greasyfork.org/, accessed: 2022-02-
03

26. Holmes, R., Walker, R.J., Murphy, G.C.: Strathcona example recommendation
tool. In: Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of soft-
ware engineering. pp. 237–240 (2005)

27. Hummel, O., Janjic, W., Atkinson, C.: Code conjurer: Pulling reusable software
out of thin air. IEEE software 25(5), 45–52 (2008)

28. Kersten, M.: Focusing knowledge work with task context. Ph.D. thesis, University
of British Columbia (2007)

29. Kersten, M., Murphy, G.C.: Mylar: a degree-of-interest model for ides. In: Proceed-
ings of the 4th international conference on Aspect-oriented software development.
pp. 159–168 (2005)

30. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering. pp. 1–11 (2006)

31. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: Proceedings of the 14th ACM SIGSOFT international symposium on
Foundations of software engineering. pp. 1–11 (2006)

32. Kersten, M., Murphy, G.C.: Reducing friction for knowledge workers with task
context. AI Magazine 36(2), 33–41 (2015)

33. Luo, L., Schäf, M., Sanchez, D., Bodden, E.: Ide support for cloud-based static
analyses. In: Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing. pp. 1178–1189 (2021)

34. Ma, X., Xu, H., Gao, H., Bian, M.: Real-time multiple-workflow scheduling in cloud
environments. IEEE Transactions on Network and Service Management 18(4),
4002–4018 (2021)

35. Maalej, W.: Task-first or context-first? tool integration revisited. In: 2009
IEEE/ACM International Conference on Automated Software Engineering. pp.
344–355. IEEE (2009)

36. Maalej, W., Ellmann, M., Robbes, R.: Using contexts similarity to predict rela-
tionships between tasks. Journal of Systems and Software 128, 267–284 (2017)

37. Macaulay, L.: Requirements for requirements engineering techniques. In: Proceed-
ings of the Second International Conference on Requirements Engineering. pp.
157–164. IEEE (1996)

38. Melo, G., Alencar, P., Cowan, D.: A cognitive and machine learning-based soft-
ware development paradigm supported by context. In: 2021 IEEE/ACM 43rd In-
ternational Conference on Software Engineering: New Ideas and Emerging Results
(ICSE-NIER). pp. 11–15. IEEE (2021)

39. Microsoft: Visual Studio API. https://code.visualstudio.com/api, accessed: 2022-
02-03

40. Molina-Ŕıos, J., Pedreira-Souto, N.: Comparison of development methodologies in
web applications. Information and Software Technology 119, 106238 (2020)

41. Moore, J.M.: Communicating requirements using end-user gui constructions with
argumentation. In: 18th IEEE International Conference on Automated Software
Engineering, 2003. Proceedings. pp. 360–363. IEEE (2003)

42. Morales, L., Navarro, P., Cintas, C., Gonzalez-Jose, R., Ramallo, V., Delrieux,
C.: Bulsarapp: Interactive visual analysis for surname trend exploration. IEEE
Computer Graphics and Applications (2021)



28 L. Marticorena et al.

43. Mozilla: Browser extensions. https://developer.mozilla.org/es/docs/Mozilla/Add-
ons/WebExtensions, accessed: 2022-02-03

44. Murphy, G.C.: Beyond integrated development environments: adding context to
software development. In: 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: New Ideas and Emerging Results (ICSE-NIER). pp. 73–76. IEEE
(2019)

45. Muşlu, K., Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.: Speculative analysis of
integrated development environment recommendations. ACM SIGPLAN Notices
47(10), 669–682 (2012)

46. Mylyn: Task and application lifecycle management.
https://www.eclipse.org/mylyn/, accessed: 2022-02-03

47. Portugal, I., Oliveira, T., Alencar, P., Cowan, D.: Mylynsdp—process-aware arti-
fact filtering based on interest. Journal of the Brazilian Computer Society 26(1),
1–35 (2020)

48. Rashid, A., Meder, D., Wiesenberger, J., Behm, A.: Visual requirement specifi-
cation in end-user participation. In: 2006 First International Workshop on Mul-
timedia Requirements Engineering (MERE’06-RE’06 Workshop). pp. 6–6. IEEE
(2006)

49. Rivero, J.M., Grigera, J., Rossi, G., Luna, E.R., Montero, F., Gaedke, M.: Mockup-
driven development: providing agile support for model-driven web engineering.
Information and Software Technology 56(6), 670–687 (2014)

50. Robbes, R., Lanza, M.: Improving code completion with program history. Auto-
mated Software Engineering 17(2), 181–212 (2010)

51. Robillard, M.P.: Automatic generation of suggestions for program investigation.
In: Proceedings of the 10th European software engineering conference held jointly
with 13th ACM SIGSOFT international symposium on Foundations of software
engineering. pp. 11–20 (2005)

52. Rodŕıguez, P., Mäntylä, M., Oivo, M., Lwakatare, L.E., Seppänen, P., Kuvaja, P.:
Advances in using agile and lean processes for software development. In: Advances
in Computers, vol. 113, pp. 135–224. Elsevier (2019)

53. Rodŕıguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage
in finnish software industry. In: Proceedings of the 2012 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement. pp. 139–148.
IEEE (2012)

54. Röthlisberger, D., Nierstrasz, O., Ducasse, S.: Autumn leaves: Curing the win-
dow plague in ides. In: Proceedings of the 16th Working Conference on Reverse
Engineering (WCRE 2009). IEEE Computer Society (2009)

55. Ruensuk, M.: An implementation to reduce internal/external interruptions in agile
software development using pomodoro technique. In: 2016 IEEE/ACIS 15th Inter-
national Conference on Computer and Information Science (ICIS). pp. 1–4. IEEE
(2016)

56. Sarkar, S., Parnin, C.: Characterizing and predicting mental fatigue during pro-
gramming tasks. In: 2017 IEEE/ACM 2nd International Workshop on Emotion
Awareness in Software Engineering (SEmotion). pp. 32–37. IEEE (2017)

57. Schön, E.M., Thomaschewski, J., Escalona, M.J.: Agile requirements engineering:
A systematic literature review. Computer Standards & Interfaces 49, 79–91 (2017)

58. Vieira, R.D., Farias, K.: Cognide: A psychophysiological data integrator approach
for visual studio code. In: Proceedings of the 34th Brazilian Symposium on Software
Engineering. pp. 393–398 (2020)



Development Iterations Based on Web Augmentation and Context Tasks 29

59. Viriyakattiyaporn, P., Murphy, G.C.: Improving program navigation with an active
help system. In: Proceedings of the 2010 Conference of the Center for Advanced
Studies on Collaborative Research. pp. 27–41 (2010)

60. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE software 31(3), 79–85 (2013)

61. Zhu, Y., Zhang, W., Chen, Y., Gao, H.: A novel approach to workload predic-
tion using attention-based lstm encoder-decoder network in cloud environment.
EURASIP Journal on Wireless Communications and Networking 2019(1), 1–18
(2019)


