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Encoding for Community Detection 
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Abstract 
Community structure is one of the most significant features of complex networks and community 

detection is a crucial method to analyze community structure. Existing representations in commu-

nity detection are inflexible and easily generate invalid solutions. To address the drawbacks, this 

paper proposed a multi-objective evolutionary algorithm based on mixed encoding (MOGAME). 

The algorithm combines the locus-based representation and labels-based representation, which can 

avoid generating invalid solution and improve the performance. Extensive experiments on both 

synthetic and real-word networks show that the proposed algorithm performs better than the ex-

isting algorithms with respect to accuracy and stability. 

Keywords Complex network · Multi-objective evolutionary · Mixed encoding ·Community  

detection 

 

1 Introduction 

Many complex systems in real life can be represented 

by complex networks, such as traffic networks, social 

networks, neural networks and biological networks 

[1-4]. Community structure is one of great significance 

in the study of complex networks. The characteristic of 

the structure is that the internal nodes of the commu-

nity are closely connected, and the external nodes are 

sparsely connected [5,6]. Community detection uses 

the information of network topology to find out the 

community structure, which is helpful for studying the 

modules, functions and evolution of the entire network 

in the way of dividing and conquering [7]. Therefore, it 

is meaningful to detect community in networks. For 

example, community detection helps to find proteins 

with similar biological functions in protein-structure 

networks and helps to find people with the same hob-

bies in social networks. In the last decade, many re-

searchers have been proposed a great number of com-

munity detection algorithm [8-12]. From the perspec-

tive of the number of optimization objective, the 

community detection 
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optimization single objective and multi-objectives. 

Tasign used genetic algorithm to optimize the modu-

larity function proposed in [13] to discover the com-

munity structure (GA-NET) [14]. Pizzuti defined the 

function named community score, which is able to de-

scribe the situation of the community structure [15]. 

Blondel proposed a fast modularity optimization algo-

rithm based on hierarchical clustering to obtain the 

best partition [16]. Cai proposed a greedy discrete par-

ticle swarm optimization framework for detecting 

communities in large-scale networks, which use a 

greedy strategy to get better solution and redesign the 

status update rules according to the network topology 

[17]. Sun pro-posed a two-stage community detection 

method based on label propagation (TS-LPA), which 

uses the idea of expanding neighborhoods to measure 

the centrality of nodes [18]. 

  Although the single objective optimization algo-

rithms mentioned above can find community structures, 

they cannot meet the actual requirements. In real-world 

applications, many factors need to be taken into con-

sideration when detecting community structure. These 

factors usually conflict with each other. Therefore, 

some researchers model the community detection 

problem as multi-objective optimization problem 

[19-23]. Pizzuti used the NSGA-II framework to apply 

to community detection (MOGA-NET) [24]. Gong put 

forward a decomposition-based community detection 

meth-od for improving the diversity of the population 

and accelerating the convergence of the solution [25]. 

Ji combined ant colony optimization method on the 

basis of MOEA/D-NET  

(MOCD-ACO) [26]. 

However, the representations of the multi-objective 

algorithms, either are highly con-strained by net-work 
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topology that caused inconvenience to evolutionary 

operator, or have a lot of randomness that easily gener-

ate invalid solution. To address this problem, this paper 

proposes a multi-objective evolutionary algorithm de-

noted as MOGAME. It combines locus-based repre-

sentation and labels-based representation [27,28], 

which not only make full use of network topology in-

formation but also make solution flexibly apply to 

evolutionary operations. The experimental results 

show that MOGAME has a good performance than 

other algorithms. Details of MOGAME are described 

in section 3. Section 4 conducts comprehensive ex-

periments to examine the efficacy of the pro-posed 

algorithm. The experimental results with respect to two 

evaluation criteria are analyzed. Finally, the conclud-

ing remarks are drawn in Section 5. 

2 Relate work 

2.1 Formulation 

Community detection is a process of dividing network 

nodes into different partitions according to the connec-

tion density of network nodes. The links between 

nodes in the same partitions (internal link density) 

need to be as dense as possible, and the links in differ-

ent partitions should be sparse enough [29,30]. Give an 

undirected network denoted as G(V ,E ) , where V and 

E are the sets of nodes and edges, respectively. The 

adjacency matrix is used to represent the information 

of the network. The community structure of network 

can be considered as 1 2 i sP { P ,P ,...P ,...P } , which di-

vided network into s parts. iP  is a community of the 

network. For example, Figure 1 denote a complex 

net-work with 11 nodes. The network is divided into 

two community. The first community is composed of 6 

nodes 3 6 8 9 10 11, , , , , .  

The second community contains nodes 1 2 4 5 7, , , , . 

10
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Fig.1 Schematic diagram of the community structure 

  Researchers define the community detection prob-

lem as a multi-objective optimization problem to get 

better community structure. In this study, we minimize 

two objective functions, ratio cut (RC) [31] and kernel 

K-means (KKM) [32]. Because they can reflect the 

overall situation of the community structure. Two ob-

jective functions are formalized as follows: 

s i i

i
i

s i i

i
i

PL( P , )
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| P |
min
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KKM ( n s )

| P |
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In formula (1), n is total the number of nodes in the 

network and s denotes the number of communities in a 

solution(individual). i i , ji i , j Pi
L( , ) AP P  represents 

the sum of node degrees within community. 

ii i , jii P ,j Pi
L( , ) AP P    is the sum of node degrees 

between nodes in the community and nodes out of the 

community. As mentioned in [33], KKM is a decreasing 

function measured the density of links within the 

community, but RC is an increasing function. Therefore, 

KKM and RC conflict with each other, which meets the 

requirements for community structure. 

2.2 Multi-objective optimization 

Multi-objective optimization is a way to solve optimi-

zation problems [34]. When two or more conflicting 

objectives need to be optimized, it can successfully 

find a set of solutions. These solutions satisfy to the 

theory of Pareto Optimal. For example, vehicle speed 

and time are two contradictory objectives. At this time, 

multi-objective optimization provides decision-makers 

with options. Figure 2 is the flowchart of the mul-

ti-objective evolutionary algorithm based on 

non-dominant. 

Start

Generate initial 
population P

Evolve P to get a new 
population R in EA

Rank population using Non-
Dominated Sorting and assign 

Crowding Distance

Choose best N solution from 
merging pool

Meet termination 
conditions? 

Output result 

Stop

No

Yes

 

Fig.2 Multi-objective evolutionary algorithm 



2.3 Exiting representation 

The evolutionary algorithm applied to community de-

tection usually needs to encode a genotype for the 

network. There are two popular representations: la-

bels-based representation and locus-based representa-

tion [35]. Labels-based representation is an integer 

vector ( x1 2, ,..., ,...,i n
X x x x ), where n is the 

number of nodes. ix  denotes the label of community 

to which node i  belongs. Unlike labels-based repre-

sentation, ix  is adjacent node of node i  in lo-

cus-based representation t induces a division of the 

network into connected subgraphs. Figure 3 (a)Shows a 

network with 11 nodes, (b)Locus-based represent of the 

network (a), (c) Corresponding graph division into three 

connected components, (d) Labels-based representation 

of network (a). 

3 The proposed algorithm 

3.1 Mixed representation 

  In multi-objective community detection, the repre-

sentation has a leading role in the evolution, and af-

fects the convergence of algorithm and quality of 

community di-vision. However, locus-based represen-

tation causes inconvenience to evolutionary progress, 

because it often takes into account the con-strains of 

network topology [35]. Labels-based representation is 

not restricted by the network topology and thus has 

great flexibility [36]. In this study, MOGAME utilizes 

the complementary advantages of locus-based repre-

sentation and labels-based representation to design a 

mixed representation. Three steps are taken to generate 

population: firstly, locus-based representation is used 

firstly. Secondly, the individual is decoded. Finally, 

labels-based representation is used for coding again. 

As shown in Figure 3, Figure 3(b) is locus-based rep-

resentation of network Figure 3(a). According to Fig-

ure 3(b), three subgraphs can be decomposed, visual-

ized by different colors in Figure 3(c). Figure 3(d) is 

labels-based representation on the basis of subgraphs 

obtained in previous step and node has the same label 

in the same subgraph. 

1 2 3 4 5 6 7 8 9 10 11i

1 2 3 4 5 6 7 8 9 10 11i

1 2
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Fig.3 (a) An example network with 11 nodes (b) Locus-based 

representation (c) The network division into three connected 

components. (d) Labels-based representation. 

 

Algorithm 1 Mixed representation 

Input: G (V ,E ) : the graph of a complex network; A : Adjacency matrix of a complex network; n : the number 

of genes in each chromosome; s : the number of communities in network. 

Output: Initial population; 

1: while population size is not satisfied: 

2: encode individual 1 2 nX { x ,x ,...,x }  in locus-based representation, where gene is the node and the 

3: corresponding allele is any adjacent nodes of the node. 

4: decode individual 1 2 nX { x ,x ,...,x }  to generate a partition 1 2 sP { P ,P ,...P }  of the Graph G  

5: encode a new individual in labels-based representation according partitions, where nodes in the same 

6:  community assigned identical label. 

7: end while  

8: return Initial population 

3.2 Variation operators The crossover operator is an important part of the 

evolutionary algorithm. It is not suitable for one-point 

crossover and two-point crossover to be applied in 



community detection. Therefore, MOGAME algorithm 

adopts the two-way crossover used in [37] to improve 

communication of information between individuals. As 

for mutation operator, the random mutation is used in 

MOGAME. An individual is randomly chosen in pop-

ulation. Corresponding allele of a gene randomly cho-

sen in the individual is changed to the community label 

of any adjacent nodes. 

3.3 MOGAME algorithm 

In the initialization phase, the network is encoded 

with locus-based representation, then the network is 

decoded some partitions, finally partitions used to en-

code again in labels-based representation. In evolu-

tionary phase adopts tournament selection, two-way 

crossover and random mutation method. Finally, the 

optimized solution set is obtained. 

 

Algorithm 2 MOGAME  

Input: f1, f2: fitness function; 

Output: The partition of the network; 

1: Generate population by mixed representation. 

2: While number of iterations is not satisfied: 

3: Decode each individual of the population to generate a partition. 

4: Evaluate the fitness values by using f1, f2. 

5: Sort each individual according to nondomination rank and give a rank. 

6: Select individual to create offspring by using the crossover operator and mutation operator. 

7: Combine the parents and offspring, and partition them into fronts finally. 

8: Select pop individuals on the lower front, and create the next population by variation operators. 

9: End while 

10: Select the individual with maximum MNI and Q from the Pareto front 

11: Return the individual after decoding (the partition of the network) 

 

4 Experiments 

In this study, we verify the performance of our algo-

rithm on both synthetic data set [38] and real network 

data set [39]. MOGAME is compared with two famous 

MOEAS in community detection (GA-Net and MO-

GA-Net), and two state-of-the-art algorithms (TSLPA 

and MOCDACO). The algorithms are coded in python 

and all experiments are conducted on a PC with Intel(R) 

Core (TM) i5-8250 CPU and 10.0G RAM running 64 

bits windows 10. 

4.1 evaluate metrics 

Modularity(Q) is a commonly used measure to 

evaluate the structural strength of network communi-

ties. Normalized mutual information (NMI) is an ex-

ternal measure to estimate the similarity between real 

result and the result of the algorithm [40][41]. 

Modularity Q function is defined as 

i j
ij

i
j

j
i

k k1
Q= A

2m 2
δ P

m
P

,
( , )( )     (2) 

where m  represent the number of edges. ijA  is the 

element of the adjacency matrix A of the network.

1ijA  means that node i connects node j. 0ijA

means the edge is no existence between node i and 

node j. ik  is the degree of node i. i jδ P P( , )  is used to 

judge whether node i and node j belong to the same 

community. The larger of the value of Q, the stronger of 

the community structure. 

NMI function is defined as 

,
. .

.
. .

log

( , )

log log

M M ijT P
i ji 1 j 1

i j

M M jT Pi
i ji 1 j 1

M n
2 M

M M
NMI T P

MM
M M

n n
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where T  is the true partition and P  is obtained parti-

tion by the algorithm. TM  is denoted the number of 

real communities and PM  is the number of found 

communities; ijM  is the number of nodes sharing in 

common by community i  in real T  and community 

j  in P ; .iM  is the sum of row i and . jM  is the sum of 

column j  in confusion matrix M. The larger of the 

value of NMI, the better the partition obtained. 

4.2 Experiments on Synthetic Network 



In this paper, we mainly experiment on GN extended 

benchmark network and LFR benchmark network. GN 

network has 128 nodes partitioned by four communi-

ties of 32 nodes. The average of degree of each node is 

16. Unlike the GN network, the node degree and 

community size of the LFR benchmark network obey 

an exponential distribution. The fuzzy of both bench-

mark networks can be control by μ . The fuzzier the 

network is, the cluster structure more difficult to iden-

tify [38]. Figure 4 and Figure 5 display the maximum 

MNI values obtained by five algorithms on GN net-

work and LFR network, respectively. It can be seen that 

MOGAME can accurately find out the true partition 

after 3 5μ . . The value of NMI is sustained above 0.92 

when μ  is less than 3.5. Obviously, whether on GN 

network or LFR network, MOGAME is more stable and 

accurate than the other algorithms

    

Fig.4 GN benchmark network test results        Fig.5 LFR benchmark network test results

4.3 Experiments on real network 

In the section, four kinds of real-world networks are 

used to test our algorithm [40-42]. Zachary’s Karate 
Club is a real social network constructed by observing 

American college karate clubs; Bottlenose Dolphins is 

a network formed by observing the exchanges of 62 

dolphins living in the Strait of New Zealand; Krebs’ 
books network on American politics is a network of 

political books complied by V. Krebs [26]; Football 

network is based on the American college football 

league. Table 1 shows the details of three real net-

works. 

In this study, we compare MOGAME with MO-

GA-NET、MOCDACO、GA-NET and TSLPA. The 

experimental results are averaged over 30 independent 

runs. It can be seen from the experimental results in 

Table 2 that MOGAME has better performance to di-

vide the community structure, because MOGAME 

adopted the mixed representation to create better ini-

tialization population during the initialization process, 

so that it can accurately determine the community to 

which the node belongs.

Table 1 Description of the real network data set 

Dataset Number of nodes Number of edges Number of real communities 

Karate 34 78 2 

Dolphins 62 159 2 

Books 105 440 3 

Football 115 613 12 

 

Table 2 Description of the real network data set 

Dataset Index MOGAME MOGA-NET MOCDACO GA-NET TSLPA 

 

Karate 

NMImax 1.0000 0.8385 1.0000 0.8990 1.0000 

NMIavg 1.0000 0.8381 1.0000 0.8029 1.0000 

Qmax 0.4696 0.4150 0.4197 0.4112 0.4185 

Qavg 0.4696 0.4147 0.4197 0.3768 0.4127 

 NMImax 1.0000 0.9918 1.0000 0.6725 0.9210 



Dolphins NMIavg 0.8235 0.9875 1.0000 0.6369 0.9135 

Qmax 0.5432 0.5144 0.5258 0.4664 0.5212 

Qavg 0.5346 0.5110 0.5230 0.4441 0.5104 

 

Books 

NMImax 0.5548 0.5270 0.6240 0.4648 0.5075 

NMIavg 0.4920 0.4872 0.5972 0.4462 0.4821 

Qmax 0.5235 0.5184 0.5208 0.5005 0.5033 

Qavg 0.5214 0.5042 0.5194 0.4895 0.4915 

 

Football 

NMImax 0.9270 0.7894 0.9374 0.8842 0.9010 

NMIavg 0.9268 0.7863 0.9268 0.8556 0.8942 

Qmax 0.6131 0.5194 0.5999 0.5803 0.5810 

Qavg 0.6092 0.5163 0.5886 0.5619 0.5795 

The community detection results of our method on 

Karate data set, Dolphin data set, Krebs’ books data set, 
and Football data set are shown in Figure 6, Figure 7, 

Figure 8, and Figure 9, respectively. NMI=1 means 

that community structure obtained by algorithm is 

consistent with the real partition of the network, so 

MOGAME can detect the real partition in Karate and 

Dolphin. In Krebs’  

books dataset, MOGAME performs better than MO-

GA-NET、GA-NET and TSLPA. As for Football data 

set, except for ultra-small communities that are diffi-

cult to find, other communities with obvious commu-

nity structures can be detected by MOGAME.

 
 

(a) NMI=1 (b)Q = 0.4696 

Fig.6 Real structures found by MOGAME. (a) Karate network with maximum NMI (b) Karate network with maximum modularity 



(a) NMI=1 (b) Q=0.5432 

Fig.7 Real structures found by MOGAME. (a) Dolphin network with maximum NMI (b) Dolphin network with maximum modularity Q 

 

(a) NMI=1 



 

(b) Q=0.5235 

Fig.8 Real structures found by MOGAME. (a) Krebs’ books network with maximum NMI (b) Krebs’ books network with maximum 
modularity Q. 

 

(a) NMI=0.9268 



 

(b) Q=0.6131 

Fig.9 Real structures found by MOGAME. (a) Football network with maximum NMI (b) Football network with maximum modularity Q. 
 

 

5 Conclusions 

In this study, a new multi-objective community detec-

tion algorithm (MOGAME) has been proposed. In the 

initialization phase, the population is preprocessed us-

ing mixed representation, which combine locus-based 

representation and labels-based representation. Then, 

evolutionary operators (selection, crossover, and muta-

tion) based on the mixed representation are applied 

iteratively to obtain a set of Pareto optimal solutions. 

We test our algorithm on both synthetic and real-world 

networks. The experimental results show that the pro-

posed algorithm performs better than or competitive 

with existing algorithms including GA-NET, TSLPA, 

MOGA-NET and MOCDACO. In the next work, 

MOGAME will be apply to detect community in large 

scale networks and signed social networks. In addition, 

local search for the objectives be introduced to develop 

performance of the algorithm. 
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