RETRACTION NOTE

Retraction Note: Thermal power generation fault diagnosis and prediction model based on deep learning and multimedia systems

Fei Chen¹ · Zhongguang Fu¹ · Ling Zhen¹

Published online: 20 September 2022 © Springer Science+Business Media, LLC, part of Springer Nature 2022

Retraction to: Multimedia Tools and Applications (2019) 78:4673–4692 https://doi.org/10.1007/s11042-018-6601-5

The Editor-in-Chief and the publisher have retracted this article. The article was submitted to be part of a guest-edited issue. An investigation by the publisher found a number of articles, including this one, with a number of concerns, including but not limited to compromised editorial handling and peer review process, inappropriate or irrelevant references or not being in scope of the journal or guest-edited issue. Based on the investigation's findings the Editor-in-Chief therefore no longer has confidence in the results and conclusions of this article. The Publisher has not been able to obtain a current email address for Fei Chen, Zhongguang Fu and Ling Zhen.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fei Chen chenfeincepu@yahoo.com

The online version of the original article can be found at https://doi.org/10.1007/s11042-018-6601-5

¹ North China Electric Power University, Beijing 102206, China