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Abstract
Parkinson's disease is a brain disorder that leads to shaking, stiffness, and di�culty with walking,
balance, and coordination. Parkinson's symptoms usually begin gradually and get worse over time. As the
disease progresses, people may have di�culty walking and talking. In this system, an Architecture is
proposed for Parkinson’s disease detection by investigating the topological properties of functional brain
networks within fMRI and EEG Signals of Healthy Control (normal) and PD patients. For fMRI the
functional whole-brain connectome was constructed by thresholding partial correlation matrices of 160
regions from Dosenbach brain atlas. 160 x 160 functional correlation matrix was constructed using the
Pearson correlation. From the graph theory approach, network metrics were analysed. For EEG spatial
and Bispectrum features are extracted. Finally, Adaboost Classi�er is used to classify whether it is normal
or PD.

Introduction
Parkinson's disease (PD) is a progressive nervous system disorder that affects movement because of
less dopamine secretions in human Brain. An estimated seven to 10 million people worldwide have
Parkinson's disease. The prevalence of the disease ranges from 41 people per 100,000 in the fourth
decade of life to more than 1,900 people per 100,000 among those who are 80 and older. There is no
homogenous and large epidemiological data on PD from India. The prevalence rate of 14.1 per 100,000
amongst a population of 63,645 from rural Kashmir in the northern part of India. The prevalence rate over
the age of 60 years was 247/100,000. A low prevalence rate of 27/100,000 was reported from Bangalore,
in the southern part of India, and 16.1/100,000 from rural Bengal, in the eastern part of India. The
prevalence rate of 328.3/100,000 among a population of 14,010 Parsis living in colonies in Mumbai,
Western India.

The main aim of this work is to analyse Parkinson’s disease detection by investigating the topological
properties of functional brain networks within fMRI and EEG Signals of Healthy Control (normal) and PD
patients.

Related Works
Martin Gottlich et al. [8] used graph-theory based technique to measure whole-brain intrinsic connectivity.
The network parameters used in this study would be helpful to track disease state and characterize
subtypes of PD patients related to cognitive dysfunctions or other non-motor symptoms. Hugo-Cesar
Baggio et al. [9] reported that complex network analysis through resting-state fMRI is very helpful in
investigating functional changes related to cognitive decline in PD. Yongbin Chen et al. [16] had used
whole-brain functional connectivity as a classi�cation feature to identify PD patients and healthy
controls. The performance of this method had yielded an accuracy of 93.62%.
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Zhang D et al. [17] reported that they had used network centrality, seed-based functional connectivity, and
network e�ciency analyses for full map of abnormal connectivity networks in PD with tremor that is
distributed over cortical, subcortical, cerebellum, and brainstem sites and observed the functional
changes were recorded.

Abhishek M.S et al. [1] reported that voice signals played a major role in predicting Parkinson's disease
and concluded that genetic algorithm is the most common method used to extract features voice signal
properties. Athanasios Tsanas et al. [5], the authors had used 132 dysphonia measures from sustained
vowels and this work could be used to discriminate PD subjects from healthy controls and was tested.
Alex Frid et al. [2] developed an automatic system for quanti�cation and classi�cation of Parkinson’s
disease directly from natural speech using the Machine Learning technique

Jens Barth et al. [10] developed a method by combining hand and gait motor function impairment to
differentiate between PD patients and healthy controls. Sama et al. [4] presented a method to detect
dyskinesia and to characterize motor states for PD patients. Shyamal Patel et al. [14]) had used
accelerometer data to estimate the severity of symptoms and motor complications for the patients in
Parkinson’s disease

A. Valli and Dr.G. Wiselin Jiji [6] developed a method by extracting properties from Striatum, substantia
nigra to classify normal and PD controls. Peter Drotar et al. [11] had used different handwriting
modalities to classify PD. Pereira et al. [7] reported that handwritten trace as features for automatic
classi�cation of PD. Salama A. Mostafa et al. [13] reported that they had used multiple feature evaluation
and classi�cation methods for improving the diagnoses of Parkinson’s disease. Timothy J. Wroge et al.
[15] reported that disease diagnosis and prediction is possible through automated machine learning
architectures using only non-invasive voice biomarkers as features. A.M. Ardi Handojoseno et al. [3]
stated that combining the spatial, spectral and temporal features of surface EEG had helpful in the FOG
in PD. Rajamanickam Yuvaraj et al. [12] had used HOS features extracted from EEG signals for diagnosis
of PD patients. Passos et al.[18] had used deep neural network called ResNet-50 to learn the patterns and
extracted features from images draw by patients and produced 96% of identi�cation rate. Prajapati et.al
[23] reported that using topological properties of functional brain networks within healthy controls (HCs)
and PD patients are extracted from fMRI images to diagnose PD or HC.

In this work, we have used by combining the features of fMRI & EEG signals and performed classi�cation
using AdaBoost classi�er to accurately predict the target class for each case in the data.

Methodology
An Architecture is proposed for Parkinson’s disease detection by investigating the topological properties
of functional brain networks within fMRI and EEG Signals of Healthy Control (normal) and PD patients.
Figure 1 shows the overview of Proposed Architecture. For fMRI the functional whole-brain connectome
was constructed by thresholding partial correlation matrices of 160 regions from Dosenbach brain atlas.
160 x 160 functional correlation matrix was constructed using the Pearson correlation. From the graph
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theory approach, network metrics were analysed. For EEG spatial and Bispectrum features are extracted.
Finally, Adaboost Classi�er is used to classify whether it is normal or PD.

Data Set Used:
The input images were taken from the OpenNEURO which is open science neuro informatics database
storing datasets from human brain imaging research studies. The dataset contains raw fMRI scans, raw
EEG in Brain Vision format where the subjects include fMRI of 100 patients with Parkinson’s and 100 with
Healthy control, EEG signals were recorded in closed eye resting state for 100 patients with Parkinson’s
and 100 with Healthy Control. In Parkinson’s 25 Male patients and 75 Female patients and in Healthy
Control 10 Female and 90 male patients were taken. Figure 2 and Fig. 3 for the input Healthy Control and
PD and Fig. 4 and Fig. 5 are Input image EEG for Healthy Control and PD respectively.

Network Construction and functional Connectome
The two fundamental elements of the network are edges and nodes, where nodes represent the brain
regions and edges depict the functional connectivity between two brain regions or nodes. The Region of
interest for this category are frontoparietal, cingulo-opercular, sensorimotor, occipital, and cerebellum
were selected from Dosenbach atlas[ 21] to draw functional connectome and the output is shown in
Fig. 6.

GRETNA tool is used to �nd out the functional connectivity matrices from brain images [20] and edges
for the connectivity has been calculated using Pearson corelation coe�cients [19]. The output is shown
in Fig. 7 and Fig. 8. Each region is considered as a node to construct the brain network and the output is
shown in Fig. 9 and Fig. 10.

FEATURE EXTRACTION: fMRI
We have extracted [24] the parameters betweenness mean, betweenness standard deviation, page rank
mean, page rank standard deviation, centrality degree mean, centrality degree standard deviation,
clustering coe�cient, assortivity, closeness, centrality closeness values from network created from fMRI.

Betweenness

cBetweenness =
∑ v∈γ[cbet v ∗ − cbet(v)]

n3 − 4n2 + 5n − 2

1

Where,v ∗  is the node with maximum betweenness and cbet(. )is the normalized betweenness.

Page rank

( )
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CPR = (I − aAd −1) −11 = D(D − aA) −1

2

Where, D is a diagonal matrix,I is an N x N identity matrix, a is weight on the edges from vertex v.

Centrality Degree
CD(i) = Ki = ∑

i≠ j
A ij

3

Where, A is a matrix with vertices i ,j wherei ≠ j

Clustering Coe�cient

Cclustering(v) =
1

d(v). (d(v) − 1) ∑
r , s ∈N( v)

Ars

4

Where, d(v)is the degree of vertex v,N(v) is set of all nodes that are a distance 1 from a vertex v and A is
the matrix.

Assortativity

ρD =
∑ jkjk(ejk − qjqk)

σ2
q

5

Where,ejkrefers to the joint excess degree probability for nodes with excess degrees j and k. qkis a

normalized distribution of a randomly selected node, given by qk =
( k +1) pk

∑ jjpj
 and σq is the standard

deviation of the distributionqk

Centrality closeness

Ccloseness(v) =
1

∑u∈vd(u, v)

6

Where, d (u, v) is the distance to all the other nodes in the network.
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Feature Extraction: Eeg
The bispectrum is an advanced signal processing technique based on higher order statistics which
considers both the amplitude and the degree of phase coupling of a signal. In contrast to traditional
power spectrum, which quanti�es the power of a time series over frequency, higher order spectral (HOS)
analysis employs the Fourier transform of higher order correlation functions to explore the existence of
quadratic (and cubic) non-linear coupling information (Rajamanickam Yuvaraj et al,2016).

The extracted bispectrum features are Bispectrum, Cumulant, Element frequency and Lag vectors. Spatial
features include Wavelet Coherence mean, Wavelet Coherence SD, Wavelet Cross Spectrum mean,
Wavelet Cross Spectrum SD[22].

Bispectrum
B(f1, f2) = F f1 ∗ F f2 ∗ F ∗ (f1 + f2)

7

Where, F denotes the Fourier transform of the signal, and F* its conjugate.

Cumulant

Knz = ∑
i=1−n

an
i kn,xn

8

Where, knz represents the nth order of the obtained variable (z). denotes the nth-order cumulant of the ith

component random variable.kn,xn

Lag vector
LV = ⟨sign Δ∅(tk ⟩|

9

Where, sign is the signum function that discards phase difference of 0 mod π. The LV ranges between 0
and 1, with 0 indicating no coupling of instantaneous coupling due to volume conduction and 1
indicating true, lagged interaction.

Wavelet Cross spectrum
wcsn

jk(t, s) = wn
j (t, s)wn

k(t, s) ∗

( ) ( )

| [ ]
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10

Where, t is the time and s is frequency (scale), as a result the WCS is complex valued

Wavelet Coherence

C(t, f) =
|∑Δ

i= −Δpwxy(T, f, i)|
∑ ipwxx(T, f, i)∑ ipwyy(T, f, i)

11

Where T is the time around which the coherence is calculated, i is the current index, and f is the frequency.
The summations are carried around a variable segment size ∆, which is inversely proportional to
frequency

Classi�cation
Using fMRI and EEG signal, we have performed classi�cation operation, to identify whether the input is
healthy control or Parkinson affected. In An AdaBoost classi�er[24], we have used Naive Bayes classi�er
as base estimator. In this work, we have used n_estimators as 45 and learning rate as 1. The
misclassi�ed training samples get more weights, and the test error keeps decreasing even after 700
iterations.

Discussion
The proposed method performs the feasibility of a functional MRI and EEG based computational
biomarker, which can quantify the functional connectivity patterns between healthy controls and PD
patients. To differentiate PD and HCs, we utilized a novel graph theoretical approach to determine global
and nodal measures from rs-fMRI data and Spatial, Bispectrum Features from EEG signals.

The present study examined the topological characteristics of brain functional connectomes among 100
PD and 100 HC subjects. The whole-brain functional connectome was constructed from rs-fMRI using a
graph theory approach, which characterizes 160 regions from Dosenbach atlas. The mean correlation
matrices were determined for both HC and PD groups. Features are extracted from both EEG and fMRI
and given input to Adaboost classi�er.

The work is compared with four different earlier works, and we found that our proposed work has
received higher accuracy when compared with other works. Table 1 The Comparison of Sensitivity,
Speci�city, Precision and Performance of the reference papers with proposed paper has been organized
and the detailed comparison table is shown below.
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Table 1
Comparative analysis of Performance Measures

Work Sensitivity Speci�city Precision Accuracy

Work [1] 75.0 82.5 77.9 75%

Work [3] 88.9 100 82.5 87.25%

Work [11] 88 88.5 97.6 89.75%

Work [12] 89 90.8 100 91.34%

Proposed Work 92.3 95.1 100 93.45%

Conclusion
In this work, by examining the topological organization of functional brain networks and EEG Signals, we
have performed classi�cation operation for Normal and PD patients using Adaboost classi�er. We have
got good accuracy when compared with other works. In future, we can extend the methodology for other
psychological disorders. It can help the neurologists in faster and more accurate diagnosis during their
screening itself.
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Figure 1

PROPOSED ARCHITECTURE 
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Figure 2

Input image fMRI (Healthy Control)         

Figure 3

Input image(PD)   
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Figure 4

Input image EEG for Healthy Control

Figure 5
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Input image for PD

Figure 6

Functional Connectome

Figure 7

Functional Connectivity Matrix for Healthy Control

Figure 8

Functional Connectivity Matrix for PD
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Figure 9

Network Construction for Normal case

Figure 10

Network Construction for PD

Figure 11

Analysis of Performance Measure


