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Abstract
This paper constructs and analyzes the dynamical properties of a new fractional-order real
hyper-chaotic system and its corresponding complex variable system. A thorough analysis
was done by employing stability of equilibrium points, phase plots, Lyapunov spectrum, and
bifurcation analysis for the consequences of varying fractional-order derivative and param-
eter values on the system. For the first time, a modulus synchronization scheme is proposed
to synchronize real and complex fractional-order dynamical systems. Based on Lyapunov
stability theory, non-linear controllers are designed to achieve the proposed modulus syn-
chronization scheme. A newmodulus synchronization encryption algorithm with a large key
space size for digital images is introduced for the application. The experimental results and
analysis validate the desired algorithm. Also, we compare our result of the new encryption
algorithm with the previously published literature and verify the efficacy of the considered
scheme. Numerical simulations are given to validate the theoretical analysis

Keywords Complex fractional-order systems · Hyper-chaos · Modulus synchronization ·
Digital image encryption · Coronavirus image

1 Introduction

In the digital world, digital or multimedia data security becomes more critical since they are
easily transmitted over the network via insecure channels to help recent communication and
social networking technologies. A well-secured encryption scheme is essential for multime-
dia data communication to protect and stop the misuse of multimedia data. In information
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communication, the digital image is an essential carrier of information. The encryption
algorithms using chaotic systems are more effective and secure than traditional encryption
algorithms due to some important features of chaotic systems like sensitivity to initial con-
ditions, simple analytic description, ergodicity, and high complex behavior, which are more
favorable to data security. Image encryption algorithms based on chaotic systems have been
investigated [16, 17, 25, 26, 34, 40–43] with an experimental analysis and their outcomes
have been reported. The key space size plays a more vital role in all encryption algorithms
since the security level depends on key space size. If the size of the key space is very large,
then the hackers should not be able to hack the keys easily. The existing image encryption
algorithms [16, 17, 25, 26, 34, 40–43] have key space size is nearly equal to 2600. So, it is
essential to propose an encryption algorithm with a large key space size.

A strategy for underwater image enhancement has been proposed in [10] by using the
methodology of Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Per-
centile to improve the quality of the image outcome. The object recognition results and
their applications using several deep learning methods have been described in [4]. Fur-
ther, analysis results of various techniques for object recognition have been reported. The
major survey of deep learning and its significant application domains in the various field
has been presented in [9]. A new scheme for printer attribution [22] has been constructed
with the support of utilizing Speeded Up Robust Features and Oriented Fast Rotated and
BRIEF feature descriptors. At very first, source camera and source mobile detection evalua-
tion were attempted in [13]. The passive approach has been established to fix the document
source printer in [12] and adaptive boosting-bootstrap aggregating methodologies have been
proposed to improve the level of classification accuracy.

Fractional calculus [6, 35] can be employed as an important mathematical instrument for
modeling of practical systems. The dynamical behaviors of many practical systems have
been described by fractional differential equations, such as viscoelastic system [2], kinetic
equations [36] and dynamo theory [32]. In recent decades, the study of chaos, control, and
synchronization [19, 21] in fractional-order systems has been gaining interest due to their
applications in cryptography. In particular, fractional-order dynamical systems have been
applied to develop an algorithm for encryption-decryption of multimedia data; for instance,
fractional-order hyper-chaotic systems have been utilized for color image encryption algo-
rithm [15, 17, 20, 34], synchronized fractional-order King Cobra chaotic systems have been
applied for image encryption technique [31], fuzzy fractional integral sliding mode con-
trol based image encryption algorithm has been presented in [3], robust synchronization of
mismatched fractional-order dynamical systems have been applied to an audio encryption
algorithm in [33], and a video encryption algorithm based on a fractional-order hyperchaotic
system has been proposed in [14].

Apart from real variable fractional-order systems, the complex variable fractional-order
systems received very much attention because of their existence in rotating fluids, elec-
tronic circuits, detuned lasers and many more. In this direction, chaos has been identified
in fractional-order complex Lorenz system [29] and fractional-order complex Chen system
[28]. The cluster synchronization between complex dynamical networks has been inves-
tigated in [7]. In [18], the author achieved the hybrid projective synchronization between
two different fractional-order complex systems in the presence of external disturbances and
uncertainties. In [39], dual-function projective synchronization has been achieved between
fractional-order complex T system and complex Lu system. The modified projective syn-
chronization between fractional-order complex systems has been enquired in [24, 30]
and dual-phase, dual anti-phase synchronization in fractional real variables and complex
variables with uncertainties have been studied in [38].
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All the mentioned synchronization techniques either synchronize the real master and
real slave system or the complex master and complex slave system. In [23], P. Li. et al.
synchronize classical integer-order real hyper-chaotic and its corresponding complex sys-
tem through a modulus synchronization scheme. To the author’s best knowledge, the
idea of synchronizing complex variable fractional-order chaotic master system and real
fractional-order chaotic slave system is not yet been exposed.

Enlightened by the above motivation, we have introduced and analyzed the new
fractional-order hyper-chaotic system and its corresponding complex variable fractional-
order hyper-chaotic system. We have presented the dynamical analysis of the considered
system employing stability of equilibrium points, phase plots, Lyapunov spectrum and bifur-
cation analysis for the consequences of the fractional-order derivative and parameter values
on the system. A novel synchronization scheme has been introduced between the fractional-
order hyper-chaotic system and its corresponding complex fractional-order hyper-chaotic
system. The non-linear controllers are designed by implementing the Lyapunov stability
theory and achieve the desired synchronization. A new modulus synchronization encryption
algorithm with a large key space size for digital images is proposed, and the experimen-
tal results and analysis validate the desired algorithm. Also, we compare our result of the
novel encryption algorithm with the previously published literature and verify the efficacy
of the considered scheme. Numerical simulations have been obtained in the shape of plots
to ensure the feasibility and efficiency of the desired scheme. Different types of medical
images will be considered for executing the proposed scheme and new encryption algorithm
will be developed to protect the medical image information in near future.

Then main objectives and findings of the paper are summarize as follows

• A new fractional-order hyper-chaotic real and its corresponding complex variables
system have been constructed.

• A thorough analysis was done by employing equilibrium stability theory, Lyapunov
exponents, bifurcation theory, and phase portraits.

• We have shown the consequences of the varying dynamics of the proposed real and
complex-valued hyper-chaotic system by varying fractional-order derivatives between
0.7 < α < 1 and system parameter values.

• A new synchronization scheme has been constructed to synchronize our proposed real
and complex-valued hyper-chaotic systems.

• To demonstrate the effectiveness of our proposed synchronization scheme, we devel-
oped a new modulus synchronization encryption algorithm with a large key space size
for digital images.

• The proposed encryption algorithm’s experimental analysis and comparison results
have been established in both a theoretical and graphical manner.

The rest of the manuscript is arranged as Section 2 shows the fundamental definitions and
stability theorems of fractional-order chaotic systems. In Section 3, the dynamical analysis
of both the real fractional-order hyper-chaotic and complex fractional-order hyper-chaotic
systems have been presented. In Section 4 we describe our novel synchronization scheme
and illustrate the results of the proposed scheme. Section 5 represents the application of the
modulus synchronization scheme in digital images and the proposed encryption algorithm
has been demonstrated experimentally. In Section 6, the experimental analysis and compari-
son results of the proposed encryption algorithm have been performed and verified. Finally,
we conclude our paper in Section 7.
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2 Preliminaries

In this section, first we provide few elementary definitions of fractional differential calcu-
lus and then present some fundamental stability theorems. The integro-differential operator
denoted as t0D

α
t is a generalization of integration-differentiation operator of fractional

calculus theory defined by

t0D
α
t =

⎧
⎨

⎩

dα

dtα
: α > 0

1 : α = 0
∫ t

t0
(dτ)−α : α < 0

where α fractional-order derivative, ‘t0’ is the fixed lower limit and ‘t’ is the moving upper
limit.

The αth order Riemann Liouville’s derivative is defined as

t0D
α
t f (t) = dn

dtn

[
1

�(n − α)

∫ t

t0

f (τ)

(t − τ)α−n+1
dτ

]

, , t > t0

where n − 1 < α < n, n ∈ N, �(α) is the Gamma function.
The definition of Caputo’s αth order derivative is presented as

t0D
α
t f (t) = 1

�(n − α)

∫ t

t0

f (n)(τ )

(t − τ)α−n+1
dτ, , t > t0

The Grünwald Letnikov’s αth order derivative is given as

t0D
α
t f (t) |t=kh= limh→0

1

hα

� t−c
h

�
∑

j=0

ωα
j f (kh − jh)

where h represents the sample time. �.� is the floor function and ωα
j is given by

ωα
j = (−1)j�(α + 1)

�(j + 1)�(α − j + 1)
, j = 0, 1, 2, ..., k.

Since the initial conditions of a fractional-order system take the same form as for the integer
order system in the Caputo’s fractional derivative, therefore we have used the Caputo’s
definition in the rest of the paper. Further, t0D

α
t is read as Dα for easiness of the notation in

the rest of the content.

Theorem 1 [11] Consider the autonomous system

Dαu(t) = Au(t), u(0) = u0

where 0 < α ≤ 1, u ∈ R
n, then this system is asymptotically stable if and only if

| arg(eig(A)) |> απ

2

Also the system is stable if and only if | arg(eig(A)) |≥ απ
2 and the eigenvalues which

satisfies | arg(eig(A)) |= απ
2 have geometric multiplicity one.

Lemma 1 [1] ∀ H(t) ∈ R
n, ∀q ∈ (0, 1] and ∀t > 0

1

2
Dq(HT (t)H(t)) ≤ HT (t)Dq(H(t))
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3 The new fractional-order hyper-chaotic system and its
corresponding complex system

In this section,we analyze a new fractional-order hyper-chaotic system. In [27], classical
integer-order model is introduced with three quadratic non-linearities and analyzed which
is given in the following form

ẋ = a(y − x) + yz

ẏ = by − xz + w (1)

ż = −cz + xy

ẇ = −d(x + y)

where (x, y, z, w)T ∈ R
n are state variables and a, b and c are constant parameters.

In this paper, we study fractional version of the system (1) and its complex system. Then,
new fractional-order system is presented as

Dαω1 = a(ω2 − ω1) + ω2ω3

Dαω2 = bω2 − ω1ω3 + ω4 (2)

Dαω3 = −cω3 + ω1ω2

Dαω4 = −d(ω1 + ω2)

where Dα denotes the Caputo’s Derivative. (ω1, ω2, ω3, ω4)
T ∈ R

n are state variables and
a, b, c and d are constant parameters.

The corresponding complex fractional-order hyper-chaotic system is

Dαμ′
1 = a(μ′

2 − μ′
1) + μ′

2μ
′
3

Dαμ′
2 = bμ′

2 − μ′
1μ

′
3 + μ′

4 (3)

Dαμ′
3 = −cμ′

3 + 1/2(μ̄′
1μ

′
2 + μ′

1μ̄
′
2)

Dαμ′
4 = −d(μ′

1 + μ′
2)

where μ′
1 = μ1 + jμ2 , μ′

2 = μ2 + jμ4 and μ′
4 = μ6 + jμ7 are complex state variables

and μ′
3 = μ5 is real state variable. Also j = √−1 and over bar denotes the conjugate of

complex variable.
Then the real version of system (3) is obtained as

Dαμ1 = a(μ3 − μ1) + μ3μ5

Dαμ2 = a(μ4 − μ2) + μ4μ5

Dαμ3 = bμ3 − μ1μ5 + μ6

Dαμ4 = bμ4 − μ2μ5 + μ7 (4)

Dαμ5 = −cμ5 + μ1μ3 + μ2μ4

Dαμ6 = −d(μ1 + μ3)

Dαμ7 = −d(μ2 + μ4)

Now, we describe the complete dynamical analysis of system (2) and system (4).
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3.1 Symmetry

(A) We have found that the new fractional-order hyper-chaotic system (2) is invariant
under the transformation (ω1, ω2, ω3, ω4) = (−ω1,−ω2, ω3, −ω4), which shows
that the new system has rotational symmetry about ω3-axis.

(B) The complex system (4) is symmetric about the μ5 axis for the transformation
(μ1, μ2, μ3, μ4, μ5, μ6, μ7) = (−μ1,−μ2, μ3,−μ4, μ5,−μ6,−μ7).

3.2 Dissipative

(A) The divergence (�.H ) of proposed system (2) is given as

� .H = ∂ω̇1

∂ω1
+ ∂ω̇2

∂ω2
+ ∂ω̇3

∂ω3
= (−a + b − c) (5)

If �.H < 0, then the divergence is dissipative and vice-versa.
Therefore, for (−a + b − c) < 0, the system (2) is dissipative.

(B) The divergence (�.H ) of the system (4) is given as

� .H = ∂μ̇1

∂μ1
+ ∂μ̇2

∂μ2
+ ∂μ̇3

∂μ3
+ ∂μ̇4

∂μ4
+ ∂μ̇5

∂μ5
+ ∂μ̇6

∂μ6
+ ∂μ̇7

∂μ7
= (−2a + 2b − c) (6)

Therefore, for (−2a + 2b − c) < 0, the system (4) is dissipative.
Hence, the trajectories of system (2) and (4) finally emerge to chaotic attractor.

3.3 Equilibrium points stability

(A) To find the equilibrium points of system (2), we have to solve the following equations

a(ω2 − ω1) + ω2ω3 = 0

bω2 − ω1ω3 + ω4 = 0 (7)

−cω3 + ω1ω2 = 0

−d(ω1 + ω2) = 0

From (7), we get three equilibrium points at parameter values a = 30, b = 15, c = 3
& d = 2, represented as E0 = (ω1 → 0, ω2 → 0, ω3 → 0, ω4 → 0) E1 =
(ω1 → 13.4164, ω2 → −13.4164, ω3 → −60, ω4 → −603.738) E2 = (ω1 →
−13.4164, ω2 → 13.4164, ω3 → −60, ω4 → 603.738)
The Jacobian matrix of system (2) is obtained as

J =

⎡

⎢
⎢
⎣

−a a + ω3 ω2 0
−ω3 b −ω1 1
ω2 ω1 −c 0
−d −d 0 0

⎤

⎥
⎥
⎦ (8)

Then, the Characteristic Polynomial of (8) at equilibrium point E0 is simplified as

(λ + c)(λ3 − (a − b)λ2 − (d − ab)λ − 2ad = 0 (9)

The eigenvalues of above equation at parameter values a = 30, b = 15, c = 3 &
d = 2 are λ = (−3, 0.270348, 14.7739,−30.0443).

Then by using results of [8, 37] and from Theorem 1, the equilibrium point E0 is
saddle point and unstable.
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Since the characteristic polynomial of (8) at equilibrium point E1 and E2 are same,
then the eigenvalues of (8) at E1 and E2 at parameter values a = 30, b = 15, c = 3
& d = 2 are λ = (0.0254,−19.8140, 0.8943+ j37.8431, 0.8943+ j37.8431). Then
by using results of [8, 37] and from Theorem 1, the equilibrium point E1 and E2 are
saddle focus and unstable.

(B) The equilibrium point of system (4) can be found by solving the equation, μi = 0,
i=1 to 7, i.e.,

a(μ3 − μ1) + μ3μ5 = 0

a(μ4 − μ2) + μ4μ5 = 0

bμ3 − μ1μ5 + μ6 = 0

bμ4 − μ2μ5 + μ7 = 0 (10)

−cμ5 + μ1μ3 + μ2μ4 = 0

−d(μ1 + μ3) = 0

−d(μ2 + μ4) = 0

Then the system (10) has one isolated equilibrium point (0, 0, 0, 0, 0, 0) as well as a
whole circle of equilibria in (μ1, μ4) space given as

μ2
1 + μ2

4 = 2ac (11)

This equation represents a circle with centre (0, 0) and radius r = √
2ac.

Let μ1 = μ3 = rcosθ and μ2 = μ4 = rsinθ , where θ ∈ [0, 2π ], then we get the
non-isolated fixed points as

Eθ = (rcosθ, rsinθ, rcosθ, rsinθ, −2a, (b − 2a)rcosθ, (2a − b)rsinθ) (12)

To examine the stability of trivial equilibrium point (0, 0, 0, 0, 0, 0) the characteristic
polynomial at this equilibrium is

λ2(λ + c)(λ2 + (a − b)λ2 − ab + d)2 = 0 (13)

So, this fixed point is stable if c > 0 and d > ab. Otherwise it is unstable.

3.4 Lyapunov exponents & dimensions

(A) To find out the Lyapunov exponents, the system (2) can be written in vector form as
follows-

ω̇(t) = L(ω(t)) (14)

where ω(t) = [ω1(t), ω2(t), ..., ω4(t)], L = [l1, l2, l3, l4]t and [...]t represent the
transpose.

The trajectory ω(t) for small deviation δ can be represented as

δω̇(t) = H(ω(t), δω(t)) (15)

where H = ∂L
∂ω

represents the following Jacobian matrix-

H =

⎡

⎢
⎢
⎣

−a a + ω3 ω2 0
−ω3 b −ω1 1
ω2 ω1 −c 0
−d −d 0 0

⎤

⎥
⎥
⎦ (16)
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Then, the Lyapunov exponents Li of the system are defined as

Li = lim
t→∞

1

t

t−1∑

i=0

log
‖ δωi(t) ‖
‖ δωi(0) ‖ (17)

For the parameter values a = 30, b = 15, c = 3, d = 2 and fractional-order α =
0.985, the Lyapunov exponents are obtained as L1 = 1.4873, L2 = 0.1086, L3 ≈
0, L4 = −20.695. Figure 1(a) shows the Lyapunov exponent spectrum for real
fractional-order hyper-chaotic system (2).

Therefore our new fractional-order system is hyper-chaotic because it has two
positive Lyapunov exponents L1, L2.

Using the theoretical analysis and numerical simulations, the Lyapunov dimen-
sion(or Kaplan-Yorke dimension) can be find out by the following method

LDKY = m + 1

| Lm+1 |
m∑

i=1

Li (18)

where m is the largest integer satisfying
∑m

i=1Li ≥ 0 and
∑m+1

i=1 Li < 0. Therefore,
the Lyapunov dimension for real hyper-chaotic system is LDKY = 3.07525, which is
a fractional dimension.

(B) Similarly from the above case, the Lyapunov exponents for complex system are
calculated as L1 = 3.3828, L2 = 2.7239, L3 = 0.2600, L4 = −2.450, L5 =
−4.1744, L6 = −15.5966, L7 = −19.235. Figure 1(b) shows the Lyapunov exponent
spectrum for complex fractional-order hyper-chaotic system (4).

Therefore, system (4) is hyper-chaotic because it has at least two positive Lyapunov
exponents. Also, the Kaplan-Yorke dimension for a complex hyper-chaotic system (4)
is calculated as LDKY = 4.9382, which is a fractional dimension.
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Fig. 1 Lyapunov Exponents for order α = 0.95: (a) Real fractional-order hyper-chaotic system (2) (b)
Complex fractional-order hyper-chaotic system (4)
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3.5 Dynamics of the systems for varying fractional-order and bifurcation analysiss

Recently, it has been discovered that the fractional-order derivative behaves like a control-
ling parameter and extends a threshold value of derivative order; chaos is either created or
exterminated. So, the dynamics for varying fractional-order α ∈ (0.8, 1) can be described
for both real and corresponding complex hyper-chaotic systems. Also, we have shown the
bifurcation analysis for fixed derivative order α = 0.95, the parameter c = 3, d = 2
and varying the parameter values of a and b for both real and corresponding complex
hyper-chaotic systems as follows

(A) For real hyper-chaotic system (2) simulations, we set the rest of the parameters as
a = 30, b = 15, c = 3 & d = 2 and alter the derivative order α.

From Fig. 2(a), we see that for α < 0.86, the system is not hyper-chaotic because
it has only one positive Lyapunov exponent, but after α > 0.86, the real system is
hyper-chaotic because of the presence of two positive Lyapunov exponents. Also, it
is more clear from the Fig. 2(b) that the bifurcation diagram for varying order shows
that the real system is hyper-chaotic for the value α > 0.86.

Bifurcation Analysis for varying parameter values a, b and fix α = 0.95, c = 3
and d = 2 can be illustrated in the Fig. 3.

From Fig. 3, we see that for a specific interval of parameters a and b, the system
shows hyper-chaotic behavior, and after a verge value, chaos is demolished.

(B) Similarly, for complex hyper-chaotic system simulations, we set the parameters as
a = 30, b = 15, c = 3 & d = 2 and alter the derivative order α.

From Fig. 4(a), we see that for α < 0.86 the system has only one positive lyapunov
exponents but after α > 0.86 it has two positive lyapunove exponents which shows that
corresponding fractional-order complex system is hyper-chaotic. Also, from the Fig. 4(b),
the bifurcation diagram for varying order clearly represents that the complex system is
hyper-chaotic for the value α > 0.86.

Also, Fig. 5 shows the bifurcation analysis for varying parameter values a and b and fix
derivative order α = 0.95, parameter c = 3 and d = 2.
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Fig. 2 (a) Lyapunov exponents (b) Bifurcation diagram of system (2) for α ∈ (0.8, 1)
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Fig. 3 Bifurcation diagram of system (2) for (a) parameter a ∈ (10, 50) (b) parameter b ∈ (10, 50)

Therefore, we say that the parameter values a and b for a definite interval show hyper-
chaotic behavior and after a verge value, chaos demolished.

3.6 Hyper-chaotic attractors

(A) For the parameter values a = 30, b = 15, c = 3 & d = 2 , initial condition (ω1(0),
ω2(0), ω3(0), ω4(0)) = (1, 2, −0.1, 0.1) and α = 0.95 the real system (2) exhibits
the hyper-chaotic behavior. The hyper-chaotic attractors displayed in Fig. 6

(B) For the parameter values a = 30, b = 15, c = 3 & d = 2 , initial condition
(μ1(0), μ2(0), μ3(0), μ4(0), μ5(0), μ6(0), μ7(0)) = (1, 1, 2, 3, −0.1, 0.1, 0.1) and
α = 0.95 the complex system (4) is hyper-chaotic. The hyper-chaotic attractors shown
in Fig. 7.

Fig. 4 (a) Lyapunov exponents (b) Bifurcation diagram of system (4) for α ∈ (0.8, 1)
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Fig. 5 Bifurcation diagram of system (4) for (a) parameter a ∈ (10, 40) (b) parameter b ∈ (10, 28)

Fig. 6 Hyper-chaotic attractors for fractional-order real system (2)
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Fig. 7 Hyper-chaotic attractors for fractional-order complex system (4)

4 Modulus synchronization scheme

This section discusses the novel synchronization scheme to synchronize real fractional-
order hyper-chaotic system and their corresponding complex system.

Consider the master system and slave system in the following form

DαU(t) = f (U(t)) (19)

DαW(t) = BW(t) + g0(W(t)) + C (20)

where U(t) = (u1, u2, ..., un)
T denotes the state vector of master system. Note that u

is considered as u = (ur
1, u

r
2, ..., u

r
n)

T , u = (ui
1, u

i
2, ..., u

i
n)

T and j = √−1. W(t) =
(w1, w2, ..., wn)

T are the real state vector of slave system. A,B ∈ R
N×N are constant

matrix, f, g are n × 1 continuous vector function respectively. C = (C1, C2, ..., Cn)
T are

non-linear controllers which will be designed later.
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Now, to synchronize complex master system and real slave system, here we define the error
system of Modulus synchronization as

e(t) = W(t) − |U(t)| (21)

where |.| denotes the complex modulus of master system.

Definition 1 The synchronization between complex master system and real slave system
can be achieved by the following scheme

lim ‖e(t)‖ = lim ‖W(t) − |U(t)|‖ = 0 (22)

where ‖.‖ denotes Euclidean norm and |.| denotes the modulus of complex variable.

Remark 1 If (ur , ui) = |0, 0|, the error can be rewritten as

lim ‖e(t)‖ = lim ‖W(t) − |U(t)|‖
= lim ‖W −

√
(ur)2 + (ui)2‖ = 0

Remark 2 If ur �= 0 and ui �= 0, then (22) can be written as

lim ‖e(t)‖ = lim ‖W −
√

(ur)2‖
= lim ‖W − |ur |‖ = 0 (23)

The (23) implies that the synchronization between the complex master system and a real
slave system can be turned into an absolute value synchronization problem of real system.

From (22), the error dynamical system can be written as

Dαe = DqW − Dq(
√

(ur)2 + (ui)2)

Dαe = BW(t) + g(V (t)) + C − Dq(
√

(ur)2 + (ui)2) (24)

The error system can be described as

Dαe = (B − P)e(t) + PW(t) + (B − P)
√

(ur)2 + (ui)2 + g(W(t))

−Dα
√

(ur)2 + (ui)2 (25)

where P ∈ R
N×N is a constant control matrix to be chosen.

Theorem 2 If we select the control matrix P ∈ R
N×N such that (B −P) is a negative defi-

nite matrix, then the complex master system and real slave system are globally synchronized
with respect to complex modulus function under the following controllers.

C = −PV (t) − (B − P)
√

(ur)2 + (ui)2 − g(W(t)) + Dα
√

(ur)2 + (ui)2 (26)

Proof Using (25) and (26), we get

Dαe(t) = (B − P)e(t) (27)

Consider the Lyapunov function as

V (e(t)) = 1

2
eT (t)e(t)

We obtain,

DαV (e(t)) = Dq

(
1

2
eT (t)e(t)

)
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By using Lemma 1, we get

DαV (e(t)) � eT (t)Dqe(t) = eT (t)(B − P)e(t) = eT (t)Le(t) < 0

Thus from the stability theory of Lyapunov, the error system is globally asymptotically
stable. Therefore complex master system and real slave system are globally synchronized.

4.1 Illustration

We consider the complex fractional-order hyper-chaotic system (4) as master system given
as follows

Dαμ1 = a(μ3 − μ1) + μ3μ5

Dαμ2 = a(μ4 − μ2) + μ4μ5

Dαμ3 = bμ3 − μ1μ5 + μ6

Dαμ4 = bμ4 − μ2μ5 + μ7 (28)

Dαμ5 = −cμ5 + μ1μ3 + μ2μ4

Dαμ6 = −d(μ1 + μ3)

Dαμ7 = −d(μ2 + μ4)

Consider the controlled real fractional-order hyper-chaotic system (2) as slave system which
is written as

DαW = BW(t) + g0(W(t)) + C (29)

where W(t) = (ω1(t), ω2(t), ω3(t), ω4(t))
T ,

B =

⎡

⎢
⎢
⎣

−a a 0 0
0 −b 0 1
0 0 −c 0

−d −d 0 0

⎤

⎥
⎥
⎦ , g0(W(t)) =

⎡

⎢
⎢
⎣

ω2ω3
−ω1ω3
ω1ω2
0

⎤

⎥
⎥
⎦ (30)

and C = (C1, C2, C3, C4) represents a controller.
The error term for modulus synchronization synchronization is defined as

e1 = ω1 −
√

μ2
1 + μ2

2

e2 = ω2 −
√

μ2
3 + μ2

4 (31)

e3 = ω3 − μ5

e4 = ω4 −
√

μ2
6 + μ2

7

To achieve modulus synchronization between systems (28) and (29), the control matrix
P is chosen as

⎡

⎢
⎢
⎣

0 0 0 0
0 16 0 0
0 0 0 0

−2 −2 0 1

⎤

⎥
⎥
⎦ (32)

17814 Multimedia Tools and Applications (2023) 82:17801–17825



The control vector C = (C1, C2, C3, C4) can be determined as

C1 = 35
√

μ2
1 + μ2

2 − 35
√

μ2
1 + μ2

2 − ω2ω3 + Dα

(√

μ2
1 + μ2

2

)

C2 = −16ω2 +
√

μ2
3 + μ2

4 + ω1ω3 + Dα

(√

μ2
3 + μ2

4

)

(33)

C3 = 3μ5 − ω1ω2 + Dα(μ5)

C4 = 2ω1 − 2ω2 − ω4 + Dα

(√

μ2
6 + μ2

7

)

The error function can be obtained as
⎡

⎢
⎢
⎣

Dαe1
Dαe2
Dαe3
Dαe4

⎤

⎥
⎥
⎦ = (B − P) ∗

⎡

⎢
⎢
⎣

e1
e2
e3
e4

⎤

⎥
⎥
⎦ (34)

where

(B − P) =

⎡

⎢
⎢
⎣

−30 30 0 0
0 −1 0 1
0 0 −3 0
0 0 0 −1

⎤

⎥
⎥
⎦ (35)

Therefore, it is clear that (B − P) is negative definite matrix. According to Theorem 2,
the systems (28) and (29) are globally modulus synchronized with the parameter value are
taken as a = 30, b = 15, c = 3 & d = 2 at fractional-order α = 0.95. Figure 8 displays the
synchronization error achieved at time t = 4 units (approx.)
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Fig. 8 Synchronization error for fractional-order complex system and real system
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5 Application of the proposed synchronization scheme

This section applies the synchronized complex and real fractional-order hyper-chaotic sys-
tems to develop a new algorithm for digital image encryption and decryption technique. The
proposed algorithm has three phases: 1. The key generation phase 2. Encryption phase, and
3. Decryption phase. Before going to construct the algorithm, the following assumptions are
needed.

Consider the fractional-order complex system (28) as the sender system and the con-
trolled real fractional-order system (29) as the receiver system. The sender and receiver
agree on parameters (t0, t1, α, g, p). Figure 8 shows that the modulus synchronization error
e(t) between the systems (28) and (29) tends to zero after t ≥ 4 at α = 0.95. So, we fix the
parameter values t0 = 4, t1 > t0 and α = 0.95. Further, g is any positive integer less than p

where p = 256 since the range of intensity values of an image from 0 to 255.

5.1 Modulus synchronization encryption algorithm

1. Key generation phase:

1. The sender chooses a number t2 > t0 and solves the system (28) at time t2. Then
computes the private KSA

and public key KSB
by

KSA
≡ f loor

(
7∏

i=1

μi(t2)

)

∗ 104 (mod p)

KSB
≡ gKSA (mod p)

2. The sender kept secret their private key KSA
and publish the public key KSB

.
3. The receiver chooses a number t3 > t0 and solves the system (29) at time t3. Then

computes the private KRA
and public key KRB

by

KRA
≡ f loor

(
4∏

i=1

wi(t3)

)

∗ 104 (mod p)

KRB
≡ gKRA (mod p)

4. The receiver kept secret their private key KRA
and publish the public key KRB

.

2. Encryption phase:

5. The sender wants to send a digital image I with sizem×n secretly via insecure channel.
6. Sender randomly chooses an integer k and calculates T ≡ gk (mod p) and s ≡ k +

KSA
(mod p)

7. The sender computes an encrypted image E or cipher image of I by

E ≡ I ∗ (
Ks

RB

)−1 ∗
(

∏

i

φi(t1)

)

(mod p)

where φ1(t1) = f loor

(√

μ2
1(t1) + μ2

2(t1)

)

, φ2(t1) = f loor

(√

μ2
3(t1) + μ2

4(t1)

)

,

φ3(t1) = f loor(μ5(t1)) and φ4(t1) = f loor

(√

μ2
6(t1) + μ2

7(t1)

)

.

8. Further, sender sends (T , s, E) to receiver.
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3. Decryption phase:

9. The receiver receives (T , s, E) from the sender and recovers an original image I or
decrypted image D by computing

I ≡ D ≡ E ∗ (T ∗ KSB
)KRA ∗

(
∏

i

ψi(t1)

)−1

(mod p)

where ψi(t1) = f loor(wi(t1)), i = 1, 2, 3, 4.
10. The validity of the recovered image must be verified by computing

gs ≡ T ∗ KSB
(mod p).

For,

E ∗(T ∗ KSB
)KRA ∗

(
∏

i

ψi(t1)

)−1

≡ E ∗ (gk ∗ gKSA )KRA ∗
(

∏

i

ψi(t1)

)−1

(mod p)

≡ E ∗
(
gkKRA

+KSA
KRA

)
∗

(
∏

i

ψi(t1)

)

(mod p)

≡ I ∗ (Ks
RB

)−1 ∗
(

∏

i

φi(t1)

)

∗
(
gkKRA

+KSA
KRA

)
∗

(
∏

i

ψi(t1)

)−1

(mod p)

≡ I ∗
(
K

k+KSA

RB

)−1 ∗
(
gkKRA

+KSA
KRA

)
∗

(
∏

i

φi(t1)

)

∗
(

∏

i

ψi(t1)

)−1

(mod p)

≡ I ∗
(
(gKRA )k+KSA

)−1 ∗
(
gkKRA

+KSA
KRA

)
∗

(
∏

i

φi(t1)

)

∗
(

∏

i

ψi(t1)

)−1

(mod p)

≡ I ∗
(
gkKRA

+KSA
KRA

)−1 ∗
(
gkKRA

+KSA
KRA

)
∗

(
∏

i

φi(t1)

)

∗
(

∏

i

ψi(t1)

)−1

(mod p)

≡ I (mod p).

5.2 Demonstration of the proposed algorithm

In this subsection, the performance of the proposed algorithm to be demonstrated experi-
mentally.
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Assume that t1 = 15, t2 = 10, t3 = 21, g = 89 and k = 39.
At t1 = 15, μ1(t1) = 2.1639, μ2(t1) = 3.0154, μ3(t1) = 1.2083, μ4(t1) =

1.6837, μ5(t1) = 10.5402, μ6(t1) = −4.3571, μ7(t1) = −6.0712 and w1(t1) =
3.7115, w2(t1) = 2.0724, w3(t1) = 10.5402, w4(t1) = 7.4729.

At t2 = 10, μ1(t2) = 1.2001, μ2(t2) = 1.6754, μ3(t2) = 1.0237, μ4(t2) =
1.4288, μ5(t2) = 8.0642, μ6(t2) = −0.9404, μ7(t2) = −1.3187.

At t3 = 21, w1(t3) = 0.4303, w2(t3) = 0.8397, w3(t3) = 10.8281, w4(t3) = 4.3734.
The private and public keys of sender are

KSA
≡ f loor

(
7∏

i=1

μi(t2)

)

∗ 104 ≡ 208 (mod 256)

KSB
≡ gKSA ≡ 129 (mod 256)

The private and public keys of receiver are

KRA
≡ f loor

(
4∏

i=1

wi(t3)

)

∗ 104 ≡ 16 (mod 256)

KRB
≡ gKRA ≡ 129 (mod 256)

The sender calculates T ≡ gk ≡ 169 (mod 256), s ≡ k + KSA
≡ 247 (mod 256)

and computes the encrypted image E of an original image I by E ≡ I ∗ (Ks
RB

)−1 ∗
(

∏

i

φi(t1)

)

(mod 256). Then sends (T , s, E) to receiver. Finally, receiver recovers an

original image I by computing I ≡ D ≡ E ∗ (T ∗ KSB
)KRA ∗

(
∏

i

ψi(t1)

)−1

(mod 256)

For experiment, we take Coronavirus, Lena, Baboon, Zinnia flowers, Fractal and
Autumn leaves images as an original images I and their corresponding encrypted and
decrypted images are shown in Fig. 9.

6 Experimental analysis and comparison results

In this section, the security and performance of the proposed algorithm are analyzed by
different security measures.

6.1 Key space analysis

The key space is the total number of different secret keys that can be used in the cryptosys-
tem. A good encryption scheme should have a large key space to resist the brute-force attack.
In the proposed image encryption algorithm, the secret keys are the parameters (a, b, c, d)

and initial values μi(0), i = 1, 2, · · · , 7, wi(0), i = 1, 2, 3, 4 of the complex and real
fractional-order system, the fractional-order α and the time parameters (t0, t1, t2, t3). If the
computation precision is 10−14, then the estimated key space of the proposed algorithm is
10266 ≈ 2880. The estimated key space is 8 times greater than the key space size 2100 to
provide the high level security and to resist all varieties of brute-force attacks. The compar-
ison of key space result between the proposed encryption algorithm and the recent existing
schemes is given in Table 1.
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Fig. 9 Left to right from the top: The original, encrypted and decrypted images of Coronavirus, Lena,
Baboon, Zinnia flowers, Fractal and Autumn leaves respectively
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Table 1 Comparison results of
key space Encryption algorithm Key space size

The proposed algorithm 2880

Li et al. Ref. [25] 2576

Zhang et al. Ref. [42] 2383

Yang et al. Ref. [41] 2448

Yang et al. Ref. [40] 2460

Niu et al. Ref. [34] 2370

Zhang et al. Ref. [43] 2357

6.2 Information entropy analysis

It is an important analysis to measure the randomness and the unpredictability of an
information in the image and the value of the entropy is measured by the following formula

H(s) = −
2N−1∑

i=0

P(si) log2 P(si), (36)

where s is the source of information and P(si) is the probability of symbol si , si ∈ s.
Theoretically, the maximum entropy value is 8 for a random image with 256 gray levels. A
good encryption scheme should produce the entropy value of encrypted image very close to
8 [5, 44]. For the proposed algorithm, the entropy values of encrypted images are listed in
Table 2. It is very clear that the entropies of encrypted images are close to 8 and proves that
the unpredictability of information is very high. Hence, the proposed encryption algorithm
is secure against the entropy analysis and possess good randomness. Further, the comparison
result with some existing algorithms is given in Table 3.

6.3 Histogram analysis

The histogram reflects the pixel distribution of an image at each intensity level. Figure 10
displays the histograms of the color components of original and encrypted Coronavirus
image. It shows that the histogram of encrypted image is entirely different from the original
image and it is uniform. Hence, no statistical information about the original image can be
observed from the encrypted image.

Table 2 Information entropy of
encrypted images Encrypted images Entropy value

Coronavirus 7.9958

Lena 7.9994

Baboon 7.9994

Zinnia flowers 7.9962

Fractal 7.9967

Autumn leaves 7.9954

17820 Multimedia Tools and Applications (2023) 82:17801–17825



Table 3 Comparison of
information entropy of encrypted
images

Encrypted Lena image Entropy value

The proposed algorithm 7.9994

Li et al. Ref. [25] 7.9974

Zhang et al. Ref. [42] 7.9992

Yang et al. Ref. [40] 7.9976

Zhang et al. Ref. [43] 7.9990

Li et al. Ref. [26] 7.9971

6.4 Correlation analysis

The efficiency of an encryption algorithm is measured by the correlation of encrypted
images. In the good encryption scheme, the correlation coefficient of the encrypted image
is close to 0 [5, 44]. That is, the adjacent pixels are entirely uncorrelated to each other. The
correlation coefficient between two adjacent pixels in a digital image is calculated by

rxy = cov(x, y)√
D(x)

√
D(y)

, (37)

where cov(x, y) = 1
N

n∑

i=1
(xi − E(x))(yi − E(y)), E(x) = 1

N

n∑

i=1
(xi) and D(x) =

1
N

n∑

i=1
(xi − E(x))2.

In the proposed algorithm, the correlation coefficients of two adjacent pixels (2000 pixel
pairs are randomly selected) are examined and tabulated in Table 4 for original images and
encrypted images in horizontal, vertical, and diagonal directions, respectively. The corre-
lation distribution of the Coronavirus image and their corresponding encrypted image are
depicted in Fig. 11. Table 4 shows that the calculated value of correlation coefficients of
encrypted images are close to 0 in three different directions, which means the proposed
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Fig. 10 Histograms of Red, Green and Blue color components of (a) Coronavirus image and (b) Encrypted
Coronavirus image respectively
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Table 4 Correlation coefficients of two adjacent pixels in original and encrypted images

Original image Encrypted image

Images Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Coronavirus 0.9088 0.9069 0.8863 0.0122 0.0065 0.0153

Lena 0.9896 0.9803 0.9712 0.0039 0.0026 0.0030

Baboon 0.8676 0.9240 0.8578 0.0098 0.0065 0.0186

Zinnia flowers 0.9045 0.9189 0.8558 0.0136 0.0100 0.0124

Fractal 0.9232 0.9365 0.9129 0.0097 0.0087 0.0046

Autumn leaves 0.9194 0.9200 0.8987 0.0134 0.0120 0.0182

encryption algorithm is secure well and robust against correlation attacks. Further, the
effectiveness of the proposed algorithm is satisfactory when compared with other existing
encryption algorithms presented in Table 5.

Remark 3 The results of experiments and their corresponding security analysis show that
the security of the proposed modulus synchronization encryption algorithm is very high,
has a huge key space size, and is secure against different attacks.

7 Conclusions

This paper investigates the dynamical behaviors of the proposed fractional-order real and
complex hyper-chaotic systems. The modulus synchronization scheme has been suggested
for fractional-order hyper-chaotic complex and real systems by using non-linear controllers.
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Fig. 11 Correlation distributions between two adjacent pixels: (a) Horizontal, (b) Vertical (c) Diagonal
directions in Coronavirus image and (a1) Horizontal, (b1) Vertical (c1) Diagonal directions in encrypted
Coronavirus image respectively
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Table 5 Comparison of correlation coefficients of two adjacent pixels in different directions

Directions

Encrypted Lena image Horizontal Vertical Diagonal

The proposed algorithm 0.0039 0.0026 0.0030

Li et al. Ref. [26] 0.0054 0.0035 0.0016

Huang et al. Ref. [16] 0.0023 0.0049 0.0153

Kayalvizhi et al. Ref. [17] − 0.0028 − 0.0096 − 0.0030

Necessary and sufficient conditions are derived from achieving the proposed synchroniza-
tion and verified by numerical simulations. A novel modulus synchronization encryption
algorithm with a large key space for digital images has been proposed and demonstrated
numerically. Several tests have carried out the security and performance analysis of the pro-
posed algorithm. The obtained results prove that the proposed image encryption algorithm
has better performance than existing algorithms. Experimental results show that the pro-
posed encryption algorithm is suitable to protect the security of digital image information.
In future work, a novel encryption algorithm with higher level security will be constructed
based on fractional order dynamical systems to protect the medical image information over
the internet.
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