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Abstract
COVID-19 has engulfed over 200 nations through human-to-human transmission, either
directly or indirectly. Reverse Transcription-polymerase Chain Reaction (RT-PCR) has
been endorsed as a standard COVID-19 diagnostic procedure but has caveats such as low
sensitivity, the need for a skilled workforce, and is time-consuming. Coronaviruses show
significant manifestation in Chest X-Ray (CX-Ray) images and, thus, can be a viable
option for an alternate COVID-19 diagnostic strategy. An automatic COVID-19 detection
system can be developed to detect the disease, thus reducing strain on the healthcare
system. This paper discusses a real-time Convolutional Neural Network (CNN) based
system for COVID-19 illness prediction from CX-Ray images on the cloud. The imple-
mented CNN model displays exemplary results, with training accuracy being 99.94% and
validation accuracy reaching 98.81%. The confusion matrix was utilized to assess the
models’ outcome and achieved 99% precision, 98% recall, 99% F1 score, 100% training
area under the curve (AUC) and 98.3% validation AUC. The same CX-Ray dataset was
also employed to predict the COVID-19 disease with deep Convolution Neural Networks
(DCNN), such as ResNet50, VGG19, InceptonV3, and Xception. The prediction out-
come demonstrated that the present CNN was more capable than the DCNN models. The
efficient CNN model was deployed to the Platform as a Service (PaaS) cloud.
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1 Introduction

Coronaviruses are a big family of viruses identified in the mid-19th century [45]. They are
commonly associated with upper respiratory tract illnesses and affect many animal species.
Several known spill-over events have seen animal viruses transmitted among humans. Since its
outbreak in Wuhan-China, Severe Acute Respiratory Syndrome (SARS)-CoV-2 has spread
worldwide and infected masses [74]. The infection spreads from the COVID-19-affected
individual to the healthy by direct or indirect contact [41]. It shows no-specific symptoms
ranging from multi-organ malfunction in an asymptomatic state to acute respiratory syndrome,
sometimes leading to death. Commonly seen traits of COVID-19 comprise fever, headache,
sore throat, cough, breathlessness, fatigue, myalgia, and pneumonia. As a result, distinguishing
COVID-19 from other respiratory infections is difficult [65]. SARS-CoV-2 diagnostic meth-
odologies have been developed using serological, nanotechnology, and molecular approaches
[14]. Among these methods, RT-PCR, a test based on a molecular approach, is widely
accepted as a standard diagnostics method worldwide [76]. However, it is a time-consuming,
complicated operation requiring a specialised workforce [11].

CX-Ray scans have been used as a part of routine patient care to diagnose diseases and
injuries involving internal organs. X-Radiation is a form of high-energy electromagnetic
radiation that can penetrate the body [57]. Different tissues absorb this radiation differently,
forming the foundation for X-Ray Imaging (XRI). XRI is a well-established technology in
medical systems. According to research, viruses of the Coronavirus family display substantial
indications in radiographic pictures [40]. The CX-Ray of the patient’s thoracic cavity can help
distinguish an individual affected with COVID-19 from the rest of the population. It also gives
medical practitioners an insight into the extent of damage caused by the virus. CX-Ray
technology offers numerous advantages over other testing procedures. CX-Ray facilities are
widespread, consume less time, are affordable, and are non-invasive. These features highlight
the applicability of CX-Ray for detecting COVID-19 in this healthcare crisis. Quick and
precise identification of COVID-19 is crucial for controlling the virus’s rapid spread and
reducing the burden on healthcare systems.

A new round of development in pertinent technologies like deep learning (DL) and
image recognition has resulted in a breakthrough in Artificial Intelligence (AI) [37]. AI has
found a foot-hole in the medical industry for assisting professionals in diagnosis and
treatment processes. Machine learning (ML) can aid medical diagnosis by identifying
and detecting various ailments. ML can analyze a substantial amount of data in varied
forms and produce a predictive conclusion. This versatility makes ML applicable in all
manners of trials. The use of DL models like CNN in processing a large amount of data to
produce complex associations within its multiple dimensions has exemplified its ability
[57]. The advent of revved-up internet infrastructure has served as a boost for cloud
computing. In layman’s terms, it is the on-demand delivery of computing resources over
the internet [6]. These include services for data storage, computation, networking solution,
and other related utilities. Platform as a Service (PaaS) enables users to deploy software and
coding models in real time.

This paper explores the possibility of actualizing a cloud-based real-time COVID-19
detection system with the aid of CNN. The CNN model was trained using the CX-Ray images
dataset [8, 54]. Various investigations on the recognition of COVID-19 were reported in the
literature using ML and DL methods, but especially CNN and DCNN methods were suitable
for COVID-19 detection. At most conferences and reputed journals, CNN research is currently

29884 Multimedia Tools and Applications (2023) 82:29883–29912



a dominant subject, including the recognition of COVID-19 disease from the CXR or
computed tomography (CT) scans. CNN is much less reliant on feature extraction and
autonomously pulls features layer-wise to characterize input data with a hierarchical structure
of elements. Due to this, the use of CNN in medical diagnostics has recently received a lot of
interest. Several investigations have revealed that using DL clinical diagnosis in illnesses
involving tissue, blood vessels, and joints with excellent success. Studies have been conducted
on solutions based on medical imaging technologies such as magnetic resonance imaging
(MRI), CT scans, etc. CX-Ray and CT scans are further investigated as alternate diagnosis
techniques for COVID-19. Since the epidemic, research has focused on ways to check the
COVID-19 virus. COVID-19 was detected in CX-Ray using DL algorithms in medical image
processing. The CX-Ray assists clinicians in making critical decisions. The primary advan-
tages of CX-Ray over CT scans include quick screening, small size, and simple setup, but it is
difficult to identify persons with mild symptoms using CX-Ray. As performance aspects can
be delicate, there is higher variation between intra- and inter-observer data assessed by
professionals. As a result, there is a growing demand for computerized screening testing to
assist radiologists in creating good COVID-19 assessment decisions [53].

The study attempts to generate a new understanding of this challenge by thoroughly
exploring it with established models. The different sorts of research aid in better organizing
research and implementing the most suitable methods to identify COVID-19. The authors
tried the specialized applied research technique in this study. This study aims to improve
existing procedures by changing CNN frameworks to detect COVID-19 from CX-Ray
pictures. The authors employed a simple random sample strategy on the healthy and
COVID-19-infected X-Ray datasets. This exploratory research must be addressed since a
rapid illness forecasting system is required. CNN have shown positive performance and
generalization capabilities, which could contribute to its use in various applications,
including COVID-19 illness forecasting from photographs. Despite its remarkable perfor-
mance, CNN presents unique challenges, such as a trade-off between efficacy and opera-
tion time [21].

On the other hand, CNN requires a considerable memory space and has a high CPU
expense in categorization and testing, rendering its deployment in most scenarios impractica-
ble on IoT devices, smartphones, and single-board computers (SOC). The inexpensive CNN-
based solution is introduced to overcome the issues mentioned earlier. Additionally, due to the
trial-and-error aspect of CNN, establishing a well-performing CNN requires substantial
cognitive programming appropriate for a resource-constrained device [13, 26] and uploading
such CNN to the cloud.

The authors examine different network structure hyperparameter configurations of CNN to
ensure the highest trade-off between computational cost and predicting performance. The
authors investigate input image size variations, convolutional layers with filter size, optimizers,
dropout layers, batch normalization layers, etc., each with its own hyperparameters. Filters or
kernels created feature maps when a CX-Ray image was applied in CNN. The feature maps
draw attention to various visual components in the original CX-Ray image. As a result, the size
of the filter choice may allow cost-efficient COVID-19 illness forecasting systems to signif-
icantly lower the computing price of CNN-based systems. This study also focuses on the
learning rate context and reduction of vectors of input data. The CNN kernel size remains
lower for optimum feature extraction with average pooling levels. The authors produced
impressive results by evaluating the CNN on CX-Ray images to diagnose the disease
compared to the literature reported worm in terms of accuracy, the number of layers, and
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model size. Aside from that, the designed model is simple and may be accessed by mobile
phones or laptops.

The primary motivation here is to design a software solution that can support doctors using
android or any smartphone to identify COVID-19 disease to help physicians or doctors detect
COVID-19 disease. The disease-classified history documents can be utilized to learn new
connections and concepts in the future. This approach is helpful for COVID-19 diagnosis,
predicting behaviour, estimating diseases, and using medicines. This research might be
explored in other domains as well. It is beneficial to discover illness quickly if the health
forecasting system is available on a mobile phone or other embedded device. The X-ray
machine can snap pictures of the individual, which can then be submitted for the forecast. The
following is the primary contribution of this work:

& CNN and DCNN models were implemented in Python.
& Selection of hyperparameters and optimizers (RMSprop and Adam) for a CNN and DCNN

ideal for identifying COVID-19.
& Four state-of-the-art pre-trained DCNN (ResNet50, VGG19, InceptonV3, and Xception)

models were implemented to compare the results of CNN.
& The CNN model obtained a 99.94 per cent training and a 98.81 per cent validation

accuracy.
& The models’ results were evaluated using the confusion matrix and Receiver Operator

Characteristic (ROC) strategies, which resulted in 99 per cent precision, 98 per cent recall,
99 per cent F1 score, 100 per cent training AUC, and 98.3 per cent validation AUC.

& Compared to DCNN models, the proposed CNN model was compact and had fewer
parameters.

& The comparative outcomes highlight the efficiency of the CNN was better compared to
literature-reported models.

& The efficient model having a comparatively small memory size, was deployed to the PaaS
cloud. More importantly, this model is accessible through a mobile phone.

The paper is structured as follows: Section 2 discusses the related works, while Section 3
discusses dataset information. The COVID-19 diagnostic techniques with CNN and Cloud
computing discusses in Section 4. Section 5 presents the experiment and analyses the
outcomes, while Section 6 concludes the paper and discusses future work.

2 Related works

In this section, the authors discuss the recent work reported by the researcher. Recently, ML
and DL-based algorithms have been proposed by numerous investigators around the globe for
COVID-19 detection. Mansour et al. [41] introduced a COVID-19 determination approach
based on Feature Correlated Naïve Bayes (FCNB) and achieved a maximum of 99% detection
accuracy. The FCNBP was utilized to categorize patients using the weighted Naive Bayes
method with multiple variations as the feature correlation, and it was also compared to other
methodologies. Das et al. [11] proposed a DCNN (DenseNet201, Resnet50V2, and
Inceptionv3) model for differentiating COVID-19 from CX-Rays. The models then joined to
classify a class value using a novel weighted average ensembling approach and achieved 91.62
per cent accuracy, outperforming the state-of-the-art DCNNmodels. Reshi et al. [57] presented
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a DCNN model based on CX-Ray categorization for the diagnosis of COVID-19. The
preprocessing phases of the datasets include dataset balance, image analysis by medical
professionals, and data augmentation, achieving an overall accuracy of 99.5 per cent. The
CNN model was evaluated in two different schemes. In the first one, the model was tested
using 100 X-ray pictures from the training dataset and achieved 100% accuracy. The model
was evaluated using a separate dataset of COVID-19 CX-Ray scans in the second scheme and
reached 99.5 per cent accuracy. The DCNN model has 68 layers, while our proposed model
has 18 layers.

Das et al. [12] suggested an autonomous Covid-19 testing procedure that uses CX-
Rays to categorize individuals with this condition into 3 types: Covid-19 positive, other
pneumonia illness, and no sickness using CNN, VGG-16, and ResNet-50. The model’s
performance with the three learning methods has been assessed, and VGG-16
outperformed CNN and ResNet-50. The TLCoV model’s accuracy was 97.67%, the
precision was 96.65%, the recall was 96.54%, and the F1 score was 96.59%. The total
parameters used in this TLCoV is about 1,24,10,023, which is higher than our proposed
model of 6,447,138 parameters and is more accurate. Ayalew et al. [5] offer a recogni-
tion and prevention strategy (DCCNet) for rapid COVID-19 diagnostics utilizing patient
CX-Ray. CNN and histogram of oriented gradients (HOG) approach were suggested for
timely detection using CX-Ray images acquired from the University of Gondar and
online databases. The DCCNet model achieved 99.9 per cent training and 98.3 per cent
test accuracy, while HOG achieved 100 per cent training and 98.5 per cent test accuracy.
The hybrid model gained 99.97% and 99.67% training and testing accuracy, respectively.
Indumathi et al. [24] presented strategies to categorize COVID-19-impacted locations into
hazardous, moderate, and safe zones. Furthermore, they offer a DL-based technique for
predicting COVID-19-affected zones using the Virudhunagar district’s covid-19 dataset.
Compared to the C5.0 algorithm’s accuracy of 95.92 per cent and the error rate of 4.08
per cent, the DL efficiently forecasts the zones with a 98.06 per cent accuracy and an
error rate of 1.94 per cent.

As a preliminary screening tool, Salau et al. [60] suggested a Support Vector Machine
(SVM)-based approach for recognizing and categorizing COVID-19. The features were
extracted using the discrete wavelet transform (DWT) algorithm, and the extracted features
were identified using SVM and achieved a detection rate of 98.2 per cent. Yadessa et al. [72]
presented a microcontroller (Arduino) and ultrasonic-based sensing devices to construct a
touch-free hand-washing system for COVID-19 illness prevention. Natnael et al. [47] did
cross-sectional research to evaluate the percentage of taxi drivers who utilize facemasks for the
suggested precautionary efforts to manage viral transmission. Narin et al. [46] utilized DCNN
models: InceptionV3, ResNet50, and InceptionResNetV2 to identify COVID-19 sickness from
CX-Ray images. They constructed three distinct binary classifications with four classes
(COVID-19, healthy, viral pneumonia, and bacterial pneumonia) and applied 5-fold cross-
validation. Evaluation and performance findings, the ResNet50 model, delivers the best
classification accuracy of 96.1 per cent, 99.5 per cent, and 99.7 per cent for Dataset-1,
Dataset-2, and Dataset-3, respectively. The ResNet50 has 50 layers, and the model size was
also large compared to our study. To forecast COVID-19 disease using CX-Ray, Abbas et al.
[1] suggested the Decompose, Transfer, and Compose (DeTraC) model based on DCNN and
acquired an accuracy of 95.12%. The accuracy performance of this work reaches up to
95.12%, but in our case, it reaches up to 98.81%. Khan et al. [27] presented a DCNN model
(CoroNet) based on the Xception architecture for COVID-19 identification from CX-Ray.
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CoroNet got a total accuracy of 89.6 per cent, with precision and recall rates for COVID-19
cases of 93 per cent and 98.2 per cent for 4-class instances, respectively. The proposed
approach generated a classification accuracy of 95% for 3-class classification. The accuracy
is less compared to our work. Furthermore, Maghdid et al. [39] suggested the DL method
(AlexNet) to analyze COVID-19 cases effectively and quickly from CX-Ray and CT scans
and achieved 94.1% and 98% accuracy on the AlexNet network and modified CNN,
respectively. Sethy et al. [62] utilized ResNet50 to extract features from CX-Ray and the
SVM classifier to classify them and achieved accuracy, FPR, F1 score, MCC, and Kappa of
95.38 per cent, 95.52 per cent, 91.41 per cent, and 90.76 per cent, respectively. Rehman
et al. [56] examined the performance of AlexNet, VGG, SqueezeNet, GoogLeNet,
MobileNet, ResNet with its variants, and DenseNet in detecting COVID-19. The highest
level of accuracy was 98.75 per cent. Kumar et al. [29] demonstrated one study using CX-
Ray pictures to identify COVID-19. For COVID-19 identification, various TL models such
as EffcientNet, Xception, GoogLeNet and VGG16 plus DenseNet were used.
ResNet152V2 performed the best of the four current models, with 98.15 per cent accuracy,
and VGG16 plus DenseNet achieved 99.32 per cent accuracy. The proposed Ensemble
method achieved 99.28 per cent accuracy in two-class categorization. The models perform-
ed with perfect accuracy, but the number of layers and size of the models were enormous
compared to our study. A three-dimensional DL framework for the diagnosis of COVID-19
was discussed by Dadário et al. [10]. A total of 4356 chest CT scan images were utilized to
check the performance of the suggested strategy. The results indicate excellent sensitivity
and specificity. Ozturk et al. [50] used a DarkNet model as a classifier for you only look
once (YOLO) real-time object identification system for autonomous COVID-19 detection
employing CX-Ray images. The suggested approach was designed to offer reliable diag-
nostics for binary (No-Findings and COVID) and multi-class classification (No-Findings,
COVID, and Pneumonia) and achieved accuracy of 98.08 per cent and 87.02 per cent for
binary and multi-class classification, respectively. They created a model with 17
convolutional layers and employed numerous filtering for each one.

Yan et al. [73] built a multi-tasking AI framework for diagnosing COVID-19 in patient
lungs using CT scans, and it obtained an accuracy of 89%. A system for identifying COVID-
19 by classifying chest CT scans was proposed by Singh et al. [64]. CNN parameters were
determined with the help of differential evolution and achieved an accuracy of 98.24%. Due to
the promising results using CX-Ray and the affordability and availability of needed infra-
structure, Ng et al. [48] and Huang et al. [22], in their independent findings, concluded that
CX-Ray images were better than all other means of recognizing COVID-19. Zhang et al. [75]
utilized a one-class classification-based anomaly detection (CAAD) framework to identify
non-viral and viral pneumonia pictures. These CADD models include extracting features,
finding anomalies, and predicting modules. The decision whether a patient has viral pneumo-
nia or not was made if the anomaly result was high or the prediction score was lower. This
method achieved an AUC of 83.61% and a sensitivity of 71.70%. Apostolopoulos et al. [4]
created the TL-based method for classifying Covid19 from CX-Ray images. Two separate
datasets were used. The first contains 1427 CX-Ray images, 224 of which were infected with
COVID-19. The second dataset has 1442 CXR images, including 224 positive COVID-19
CXR images. The results indicate that DL combined with CX-Ray imaging may identify with
the accuracy, sensitivity, and specificity of 96.78%, 98.66%, and 96.46%, respectively. Farooq
et al. [15] presented a CNN framework (COVIDResNet) to forecast pneumonia and COVID-
19. They create quick and accurate residual neural networks using cutting-edge training
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approaches like cyclical learning rate discovery, progressive resizing, and discriminative
learning rates. This paper describes a three-step method for fine-tuning a ResNet50 framework
to increase model effectiveness and decrease training time. This is accomplished by resizing
input photos progressively to 229 × 229 × 3, 224 × 224 × 3, and 128 × 128 × 3 pixels and
fine-tuning the network at each level. This method achieved an accuracy of 96.23 per cent in
all classes. Kumar et al. [30] employed DL to train an intrusion detection system on the fog
layer to distinguish between attack and benign network traffic. M. V. MK et al. [44] presented
a complete investigation of COVID-19 detection using DL techniques and cost-effectiveness
evaluation. They also compare conventional methods to improve the identification process
utilizing DL techniques. Meraihi et al. [43] presented a comprehensive assessment of ML-
based studies for COVID-19 identification, diagnosis, and forecast. In this survey, DL was
employed in 79 per cent of the cases and supervised learning (Random Forest (RF), SVM, and
Regression methods) in only 16%. Alkhodari et al. [3] proposed DL models that depend on
hand-crafted features derived from original recordings and Mel-frequency cepstral coefficients
(MFCC), as well as deep-activated features knowledge gained by a conjunction of CNN and
bi-directional long short-term memory units (CNN-BiLSTM). The suggested DL approach
used shallow and deep recordings with an average classification accuracy of 94.58 per cent and
92.08 per cent, respectively. Additionally, it was performed to detect COVID-19 individuals
with a high sensitivity of 94.21 per cent, specificity of 94.96 per cent, and AUROC curves of
0.90. Guefrechi et al. [19] reported a DL system that detects COVID-19 from CX-Ray pictures
utilizing three DCNN models: ResNet50, InceptionV3, and VGG16. They also used data
augmentation approaches to produce an artificially huge number of CX-Ray images. This
framework achieves an accuracy of 97.20 per cent, 98.10 per cent, and 98.30 per cent for
Resnet50, InceptionV3, and VGG16, respectively. Table 1 depicts the details comparability of
the presented work with the literature.

From Table 1, it can be seen that most of the researchers used the DL method to detect
COVID-19 from CX-Ray images. Among these studies, few were complicated [5, 41], less
accurate [1, 3, 4, 11, 12, 15, 19, 24, 27, 39, 43, 50, 56, 57, 60, 62, 64, 73, 75] than our
proposed work, and achieved more accuracy [29, 46] than proposed work, but the number of
layers and size of the model is significant. The main highlight of the proposed CNN-based
method is that the CNN models have fewer parameters and layers than the literature-reported
work. Apart from this, the performance of the CNN model is also good.

3 Dataset description

The CX-Ray dataset of COVID-19-positive and NORMAL cases was built by an investigator
from the University of Dhaka and Qatar University in collaboration with Pakistan and
Malaysia medical doctors [9]. The dataset comprises 10,192 CX-Ray pictures of the NOR-
MAL patient and 3616 COVID-19 patients. Figure 1 shows the CX-Ray picture of COVID-19
and NORMAL patients.

4 Methodology

Figure 2 shows the workflow of the proposed CNN-based COVID-19 prediction system. The
workflow consists of image dataset collection, dataset split and image resizing, CNN
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and DCNN modelling, performance assessment, and model deployment to the PaaS cloud.
The COVID-19 and non-COVID-19 patients’ CX-Ray image datasets were employed in this
work. The dataset images were resized to 224 × 224 × 3. CNN and DCNN models were
implemented using Python. The confusion matrix technique was utilized to check the perfor-
mance of all models. Finally, the model was deployed to the Heroku cloud.

4.1 CNN architecture

A CNN can take in an input image and learn crucial aspects from the image (biases and
weights) that help to differentiate the images. As shown in Fig. 3, the CNN design
consists of various vital parts, including convolution layers, activation functions, pooling
layers, and dense or fully connected (FC) layers. The first block is the convolution layer,
the most crucial part of the entire architecture, extracting features from input. In the

Table 1 Comparison of the presented work with literature

Author Models Accuracy (%-per cent)

Mansour et al. [41] FCNB 99%
Das et al. [11] DenseNet201, Resnet50V2,

and Inceptionv3
91.62%

Reshi et al. [57] CNN 99.5%
Das et al. [12] CNN, VGG-16, and ResNet-50 97.67%
Ayalew et al. [5] DCCNet 99.67%
Indumathi et al. [24] DL 95.92%
Salau et al. [60] DWT and SVM 98.2%
Narin et al. [46] InceptionV3, ResNet50,

and InceptionResNetV2
95.12%

Abbas et al. [1] DeTraC 95.7%
Khan et al. [27] CoroNet 98.2%
Maghdid et al. [39] AlexNet 98%
Sethy et al. [62] ResNet50 and SVM 95.38%
Rehman et al. [56] SqueezeNet, AlexNet, MobileNet,

GoogLeNet, ResNet with its
variants, VGG, and DenseNet

98.75%

Kumar et al. [29] EfcientNet, XceptionNet,
GoogLeNet and VGG16 plus
DenseNet

99.32%

Ozturk et al. [50] DarkNet, YOLO 98.08%
Yan et al. [73] Multi-task AI 89%
Singh et al. [64] CNN 98.24%
Zhang et al. [75] CAAD 83.61% AUC and

71.70% sensitivity
Apostolopoulos et al. [4] TL 96.78%
Farooq et al. [15] COVIDResNet 96.23%
Alkhodari et al. [3] CNN-BiLSTM 94.58% and AUROC

curves of 0.90
Guefrechi et al. [19] ResNet50, InceptionV3, and VGG16 97.20%
Present work CNN 99.94% training and

98.81% validation accuracy.
100 Training AUC and

98.3% validation AUC

29890 Multimedia Tools and Applications (2023) 82:29883–29912



linear process, a 2-dimensional small array of numbers convolved across a 2-dimensional
input image [31, 33]. A CNN architecture can have multiple layers where the initial
layers capture the low-level features, such as colours, edges, gradient orientations, etc.
[31], whereas the subsequent layers are responsible for high-level features like large
shapes in the image. Hence kernels are also referred to as feature extractors. Zero
paddings must be done at the input image edges to coincide with the centre of the
kernel on the edge elements of the input image. Another critical parameter is the stride of
the convolution operation, which is the distance between two consecutive kernel posi-
tions on the input image.

4.1.1 Activation function

In general, the output of the convolution layer is transformed using nonlinear activation
functions such as sigmoid, rectified linear unit (ReLU), etc. In this work, ReLU was employed.
The output ReLU is the same as the input for positive inputs; otherwise, zero [18, 59]. Model
training using the ReLU function achieves better results. The below expression gives the
relationship for a ReLU function.

h tð ÞCX ¼ 0; t � 0
t; t > 0

�
ð1Þ

4.1.2 Pooling layer

The pooling layer, such as average and max-pooling, incorporates a down-sampling operation
and reduces the dimension of the feature map. Max pooling is widespread due to its improved
convergence and speed [23].

Fig. 1 COVID-19 and NORMAL patients CXR images
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Fig. 2 Proposed methodology

Fig. 3 Typical convolutional neural network architecture
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4.1.3 Dropout layer and batch normalization (BZ)

The dropout was employed to avoid over-fitting in a CNN or DCNN by randomly selected
neurons and ignored in the training process, hence the term dropout [66]. All the activation of
the downstream neurons on the forward pass corresponding to the dropped-out neuron was
removed effectively. Also, on the backward pass, the weight updates were not applied. The
dropout process helps to increase the accuracy, but not in all cases [36], while BN speeds the
training process and makes learning easier. BN is easily implementable by adding a BN layer,
which is popular in CNN architectures [25, 68]. This layer also enhances the accuracy of the
CNN. But this may come with some penalties for the training time [17].

4.1.4 Fully connected (FC) layer

FC layer input is attached to every one of the outputs hence the term “fully connected” and
also called a dense layer. These layers perform the conventional neural network operation and
comprise 88–90% of the parameters, and are responsible for taking the output of the last
pooling layer. This layer’s output is the number of user-specified classification classes [28].

4.2 CNN implementation and feature extraction

The framework of the CNN is shown in Fig. 4. The input image has a 224 × 224 × 3 input
shape. Details of the CNN and dense layers are summarized in Table 2.

The feature extraction process is essential in the DL system. Salau et al. [61]
discussed a detailed survey on the feature extraction process. This work uses CNN to
extract the informative features from the CX-Ray scans. In this feature extraction
process, the input image is propagated forward, halting at a predefined layer, and the
outputs of that layer are used as features. CNN has these powerful, discriminative
properties of feature extraction and helps forecast classes on which CNN has never
been trained. Figure 5 depicts the feature extraction process using CNN. CNN allows
an image to pass from the convolutional layer to the average pooling layer via the BN
layer, and then the output of the average pooling layer is again applied to the BN
layer. The exact process is continued up to fully-connected layers via flattened layer.
The input image size was 224 × 224 × 3. The first convolutional layer had a

Fig. 4 Proposed CNN model architecture
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volume shape of 224 × 224 × 16, and the average pooling layer had a volume shape
of 112 × 112 × 16. The third average pooling layer’s volume was 28 × 28 × 64
flattened to feature vector 50,176 (Flatten Layer output). Given an N-image dataset,
this feature extraction will repeat for all dataset photos, yielding a total of N x 50,176
feature vectors. These extracted features were then applied to the dense layers for
prediction/classification.

Fig. 5 CNN extracted features
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4.3 Deep convolutional neural networks (DCNN)

The ResNet50, VGG19, Xception, and DenseNet201 models were chosen for this work
because of their remarkable image identification performance. The Resnet50 model has 50,
VGG19 has 26, Xception has 126, and Inception V3 has 159 layers. These models have
different architectures and also variations in the layers. A brief introduction of these models is
as follows:

4.3.1 ResNet50

It is a pre-trained transfer learning (TL) model to simplify the training task. ResNet50 (Fig. 6)
or Residual Network 50 contains 50 layers of residual networks and is trained using the
ImageNet dataset. The network layers in this design are recast by learning with residual
functions concerning the layer inputs. To deal with the vanishing gradient problem, ResNet
proposes the skip connection concept, which prevents distortion [20, 70].

4.3.2 VGG19

VGG19 is a DCNN network consisting of convolution layers followed by FC layers. The
VGG architecture was primarily introduced for classification and localization problems on
images having high resolutions [63]. VGG networks consist of many convolutional layers with
increasing depth and small kernels of size 3 × 3 in each convolutional layer, as shown in
Fig. 7. In VGG19, the input layer has a standard input image size of 224 × 224 × 3. The most
notable achievement of VGG19 is obtaining a rate of 88% in the ImageNet database [42].

Fig. 6 Basic ResNet50 architecture

Fig. 7 Graphical representation of VGG19 (1:Conv 1–1, 2:Conv 1–2, 3:Pooling, 4:Conv 2 − 1, 5:Conv 2–2,
6:Pooling, 7:Conv 3 − 1, 8:Conv 3 − 2, 9:Conv 3–3, 10:Conv 3–4, 11:Pooling, 12:Conv 4 − 1, 13:Conv 4 −
2, 14:Conv 4 − 3, 15:Conv 4–4, 16:Pooling, 17:Conv 5 − 1, 18:Conv 5 − 2, 19:Conv 5 − 3, 20:Conv 5 − 4,
21:Pooling, 22: FC6, 23: FC7, 24: FC8 )
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4.3.3 Xception

Xception stands for Extreme inception CNN architecture, and depth-wise separable convolu-
tion is the main idea behind Xception [7]. It is a linear stack of depth-wise detachable
convolution layers containing residual connections. It consists of 36 convolution layers laid

Fig. 8 Basic architecture of the Xception model
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as 14 modules, excluding the first and last modules. In the Xception architecture (Fig. 8), the
spatial and depth-wise correlations are evaluated independently. Xception architecture
achieves better learning efficiency but cannot reduce the number of training parameters [38,
55].

4.3.4 Inception-V3

Inception-V3 was conceptualized as an extensive network of the popular GoogLeNet [67, 68].
Inception-V3 utilizes an inception model, which joins many different-sized convolutional
filters into a new filter. This approach reduces the number of training parameters, reducing
the overall computational complexity by employing a bottleneck layer and a 1 × 1
convolutional layer. In inception-V3 architecture, pooling layers replace the FC layers, which
reduces the overall number of parameters. Figure 9 shows the basic diagram of the Inception
V3 architecture [49].

4.4 Cloud computing

In today’s era, cloud computing has demonstrated excellent development [2]. It has promising
application capabilities in various technological and industrial endeavours. Being an entity
based on the internet, cloud computing, in simple words, is the on-demand availability of
integrated software, hardware, and other computational resources provided to the terminal and
portable devices [69]. Cloud computing combines parallel, distributed, and grid computing [2].
The user can access the available high-end computational resources from the cloud without
setting up a physical infrastructure. It provides access to high-performance computing on-
demand to those who do not possess the capital to acquire it. Cloud service providers offer a
variety of services that are built on a shared pool of computing resources. These resources can
be scaled up to meet the demand [58].

Fig. 9 Basic block diagram of Inception-v3
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4.4.1 Model deployment process

In this work, the model was deployed to the Heroku cloud. Figure 10 shows the flow diagram
of the proposed CNN model deployment process [33].

Fig. 10 CNN model deployment process on to the Heroku cloud
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5 Results and discussion

The dataset includes 13,808 CX-Ray scans of Covid-19 (3616) and Normal (10,192). The
database was separated into two portions (80:20): training (11,044 photos) and validation
(2764 photos). The Adam and RMSprop optimizers, categorical cross-entropy loss function,
and batch size of 32 were utilized.

5.1 Accuracy and AUC of CNN

Utilizing two optimizers (Adam and RMSprop), the suggested CNN model validates the
different design options. This study helps evaluate model performance with various parameters
and hyperparameters. As demonstrated in Fig. 11a and b, the CNN with Adam (CNN-A) and
RMSprop (CNN-R) optimizers obtained 99.94 per cent and 99.98 per cent training (TA) and
98.81 per cent and 98.41 per cent validation accuracy (VA), respectively. Figure 11c and d
illustrate the loss of the CNN models during training and validation, respectively. Figure 11e

Fig. 11 a Training and validation accuracy of CNN-A, b CNN-R, c training and validation loss of CNN-A,
d CNN-R, e training and validation AUC of CNN-A, and f CNN-R
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and f demonstrate the AUC of the CNN models during training and validation, respectively.
AUC varies from zero to one. A model with 100% erroneous identifications has an AUC of
zero, while a model with 100% correct forecasts has an AUC of one. The AUC in this work is
0.9999 for the training dataset, indicating that the model predicts 99.99 per cent correctly.

5.2 Confusion matrix

The confusion matrix was used to monitor the effectiveness of every CNN and DCNN
[31, 33].

AccCX ¼ TPCX þ TNCX

TPCX þ FPCX þ TNCX þ FNCX
ð2Þ

PrecCX ¼ TPCX
TPCX þ FPCX

ð3Þ

RCX ¼ TPCX
TPCX þ FNCX

ð4Þ

F1CX ¼ 2
1

RCX

� �
þ 1

PrecCX

� � ð5Þ

TNR ¼ TNCX

TNCX þ FPCX
ð6Þ

WhereAccCX-Accuracy, TPCX-Truly Positive, FPCX-False Positive, TNCX-Truly Negative, and
FNCX -False Negative, PrecCX - Precision, RCX -Recall, F1 score-F1CX , Specificity or True
Negative Rate (TNR).

5.3 Comparisons of CNN with DCNN

The performance of DCNN models was asses employing a confusion matrix with the
proposed CNN model and compared in terms of the training accuracy (TA) and validation
accuracy (VA) with loss is shown in Fig. 12. The training accuracy (TA) of ResNet50-A,
ResNet50-R, VGG19-A, VGG19-R Xception-A, Xception-R, Inception-V3-A, Inception-
V3-R CNN-A, and CNN-R models were 94.09%, 90.78%, 100%, 99.92%, 100%, 100%,
100%, 100%, 99.94% and 99.98%, respectively. On the other hand, the VA of ResNet50-A,
ResNet50-R, VGG19-A, VGG19-R Xception-A, Xception-R, DenseNet201-A,
DenseNet201-R, CNN-A, and CNN-R models were 93.31%, 91.21%, 98.26%, 97.87%,
95.62%, 95.55%, 94.93%, 94.57%, 98.81%, and 98.41%, respectively. The TA of all
models was above 99% except the ResNet50 model. The highest VA (98.81%) was
achieved by the CNN-A model. The training AUC (TAUC) of ResNet50-A, ResNet50-R,
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VGG19-A, VGG19-R Xception-A, Xception-R, Inception-V3-A, Inception-V3-R, CNN-
A, and CNN-R models were 98.54%, 97%, 100%, 100%, 100%, 100%, 100%, 100%,
99.99%, and 99.99%, respectively. The validation AUC (VAUC) of ResNet50-A,
ResNet50-R, VGG19-A, VGG19-R, Xception-A, Xception-R, Inception-V3-A, Incep-
tion-V3-R, CNN-A, and CNN-R models were 98.11%, 97.01%, 99.55%, 99.63%,
97.81%, 98.32%, 97.38%, 97.97%, 99.43%, and 98.78%, respectively. The AUC perfor-
mance of the VGG19-A, VGG19-R, and CNN-A was excellent. All models’ training loss
(TL) and validation loss (VL) were low. This performance indicated that CNN and DCNN
model’s performance was excellent without over-fitting.

0.00% 20.00% 40.00% 60.00% 80.00% 100.00% 120.00%

ResNet50-A

ResNet50-R

VGG19-A

VGG19-R

Xception-A

Xception-R

InceptonV3-A

InceptonV3-R

CNN-A

CNN-R
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R
VGG19-AVGG19-R

Xception-

A

Xception-

R

InceptonV

3-A

InceptonV

3-R
CNN-A CNN-R

VAUC 98.11% 97.01% 99.55% 99.63% 97.81% 98.32% 97.38% 97.97% 99.43% 98.75%

VL 0.1792 0.2265 0.067 0.061 0.2914 0.1907 0.3186 0.2359 0.1148 0.2152

VA 93.31% 91.21% 98.26% 97.87% 95.62% 95.55% 94.93% 94.57% 98.81% 98.41%

TAUC 98.54% 97% 100% 100% 100% 100% 100% 100% 99.99% 99.99%

TL 0.1527 0.2224 0.0014 0.0119 4.73E-05 4.23E-04 5.83E-05 8.33E-04 0.0024 7.14E-04

TA 94.09% 90.78% 100% 99.92% 100% 100% 100% 100% 99.94% 99.98%

VAUC VL VA TAUC TL TA

Fig. 12 Comparison of CNN and DCNN models
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5.4 CNN and DCNN performance measures

Tables 3 and 4 summarize the performance of the CNN and DCNN models using Eqs. (2–5).
Table 3 shows VGG19-A, VGG19-R, Xception-A, Xception-R, InceptonV3-A, InceptonV3-
R, CNN-A, and CNN-R predicted all CX-Ray images (11,053) correctly. The ResNet50-A
and ResNet50-R predicted 10,578 and 10,241 correctly and 475 and 812 images wrongly,
respectively. It indicated that all models predicted 100% correct results on the training dataset
except ResNet50-A and ResNet50-R models.

From Table 4, it can be seen that the ResNet50-A, ResNet50-R, VGG19-A, VGG19-R,
Xception-A, Xception-R, InceptonV3-A, InceptonV3-R, CNN-A, and CNN-R, were predicted
2579, 2521, 2716, 2705, 2641, 2624, 2614, 2731, and 2720, CX-Ray images correctly and
185, 243, 48, 59, 121, 123, 140, 150, 33, and 44, predicted wrongly on the validation dataset,
respectively. The CNN-A and CNN-R model predicted more images correctly compared to
other DCNN models. The VGG-19 models also performed well in the prediction, but the
Xception, InceptonV3, and ResNet50 performances were not up to the mark. The ResNet50-A
and ResNet50-R mispredicted 185 and 243 CX-Ray images.

Table 3 Model evaluation using confusion matrix on the training dataset

Models TP FP FN TN Correct Prediction Wrong Prediction

ResNet50-A 2563 336 139 8015 10,578 475
ResNet50-R 2668 231 581 7573 10,241 812
VGG19-A 2899 0 0 8154 11,053 0
VGG19-R 2899 0 0 8154 11,053 0
Xception-A 2899 0 0 8154 11,053 0
Xception-R 2899 0 0 8154 11,053 0
InceptonV3-A 2899 0 0 8154 11,053 0
InceptonV3-R 2899 0 0 8154 11,053 0
CNN-A 2899 0 0 8154 11,053 0
CNN-R 2899 0 0 8154 11,053 0

Table 4 Models evaluation using confusion matrix on the validation dataset

Models TP FP FN TN Correct Prediction Wrong Prediction

ResNet50-A 603 122 63 1976 2579 185
ResNet50-R 658 67 176 1863 2521 243
VGG19-A 700 25 23 2016 2716 48
VGG19-R 689 36 23 2016 2705 59
Xception-A 656 69 52 1987 2643 121
Xception-R 649 76 47 1992 2641 123
InceptonV3-A 637 88 52 1987 2624 140
InceptonV3-R 628 97 53 1986 2614 150
CNN-A 705 20 13 2026 2731 33
CNN-R 711 14 30 2009 2720 44
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Figure 13 depicts graphical representations of evaluation criteria such as accuracy,
precision, recall, and F1 score. The CNN-A (99%) and CNN-R (98%) models have
fantastic Accuracy. However, if the data set is unbalanced, accuracy may not always be
advantageous to model effectiveness. The precision measure aids in the monitoring of
classification results. For an effective classifier, the precision value must be 1 (high). The
precision of both the CNN-A and CNN-R models is 99 per cent and 98 per cent,
respectively, indicating that both models performed well. A recall is the ratio of correctly
identified positive cases to total positive instances. The recall value must be 1 (high) for
an effective classifier. The CNN-A and CNN-R models have recall values of 98 and 99
per cent, indicating that the model performs well. Both the precision and recall measures
reveal that only positive classes were examined, while the model should evaluate all
categories.

As a result, an action that considers both precision and recall is essential. F1-score
regards both precision and recall measurements. F1-score is the median of both measures
and a better statistic to analyze model performance than accuracy [58]. These indicators
aid in assessing the overall quality of the model. According to Fig. 13, the F1-score
measures for CNN-A (99%) and CNN-R (98%) models were more significant than the
other models. This gave a comprehensive that the suggested CNN models reliably
categorize COVID-19 CX-Ray pictures. Furthermore, the F1 score represents the overall
model performance. Regarding the F1-score measure, both CNN models perform more
effectively than the DCNN models.

5.5 Receiver operator characteristic (ROC) curve

The ROC curves for ResNet50-A, ResNet50-R, VGG19-A, VGG19-R, Xception-A,
Xception-R, InceptonV3-A, InceptonV3-R, CNN-A, and CNN-R on the training and

ResNet5

0-A

ResNet5

0-R

VGG19-

A

VGG19-

R

Xception

-A

Xception

-R

Incepton

V3-A

Incepton

V3-R
CNN-A CNN-R

Accuracy 93% 91% 98% 98% 96% 96% 95% 95% 99% 98%

Precision 93% 88% 98% 98% 95% 95% 94% 94% 99% 98%

Recall 90% 91% 98% 97% 94% 94% 93% 92% 98% 99%

F1-score 92% 89% 98% 98% 95% 94% 94% 93% 99% 98%

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

Accuracy Precision Recall F1-score

Fig. 13 CNN and DCNN models comparison
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validation datasets are shown in Fig. 14a and b. The ROC approach is an analytical method
for assessing the efficacy of ML and data mining [16]. The ROC curve is a graphical
representation of 2-class testing skills. The ROC curve should be closer to the upper left
for improved classification performance. Except for ResNet50, the effectiveness of all
models is good, as shown in Fig. 14a, and the curve is nearer the top left corner. As
shown in Fig. 14b, the CNN-A, CNN-R, VGG-A, VGG-19-R, Xception-A, and
Xception-R models function admirably. The plot demonstrates that the AUC for CNN-
A and CNN-R is greater among models. The CNN-A and CNN-R models significantly
outperformed in identifying COVID-19 CX-Ray pictures.

Fig. 14 a ROC curve for CNN-A, CNN-R, ResNet50, VGG-19, Xception, and InceptionV3 on training dataset
and b validation dataset
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5.6 Cloud computing

In this section, the effectiveness of the CNN model is examined and compared with DCNN
models in terms of layers, memory size, and parameters. The large-scale model causes
significant issues with equipment energy usage and running speed. As a result, the effective
implementation of a big-scale model in an embedded system or mobile device is problematic.
When DL or ML are deployed on mobile devices, the accuracy of the model’s outputs is not
the sole consideration. As a result, creating a model with lesser parameters and a smaller
memory capacity is necessary. These are critical when deploying the model to the cloud due to
the associated cost. Table 5 compares the CNN with DCNN models in depth, model size,
parameters, and F1 score.

The F1-score of the CNN models are 99 per cent, the highest among the models,
and the CNN models contain 18 layers, which are fewer than the ResNet50 (50
layers), VGG19 (26 layers), Xception (126 layers), and InceptionV3 (159 layers)
models. Generally, the number of layers enhances productivity, but a learning approach is
more complicated. Other DCNNmodels havemore parameters than the suggested CNNmodel.
The CNN has the least memory capacity among the models at 49.28MB. As a result of its small
size, fewer parameters, and overall efficiency, the CNN model is appropriate for the proposed
COVID-19 illness forecasting system using CX-Ray pictures and is suitable for deployment to
the Heroku cloud. This study deploys the CNN model with Adam optimizer (CNN-A) to the
cloud. The Heroku cloud link was created after the model was successfully deployed. The
website opens with a single click on the Heroku cloud link, accessible on mobile devices, to
submit a CX-Ray picture. The following step is to send the CX-Ray image. After sending the
image to the cloud, the algorithm successfully identifies the COVID of the non-COVID
individual.

Several computer-based methods have been developed for COVID-19 disease identifica-
tion. The literature review in the related work section clarified various methods for identifying
and classifying COVID-19 disease using CX-Ray and CT scans. Table 1 tabulates a systematic
comparison of the present work CNN model approach with other ML/DL approaches. In this
work, the authors use CNN and DCNN models for COVID-19 prediction due to automatic
feature extraction in the CNN framework. Most researchers used a similar methodology, but
either they achieved less accuracy, more parameters were used, or the model size was
significant compared to our work.

Table 5 Comparative analysis of CNN with DCNN

Models Layers Parameters Memory Size (MB) Execution time (Seconds) for 50 Steps

ResNet50-A 50 25,636,712 92.76 3000
ResNet50-R 50 25,636,712 92.02 3000
VGG19-A 26 143,667,240 77.05 3500
VGG19-R 26 143,667,240 76.86 3500
Xception-A 126 22,910,480 82.28 3000
Xception-R 126 22,910,480 81.51 3000
InceptonV3-A 159 23,851,784 85.19 2800
InceptonV3-R 159 23,851,784 84.8 2850
CNN-A 18 6,447,138 73.88 2500
CNN-R 18 6,447,138 49.28 2650
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Das et al. [11] used DenseNet201, ResNet50V2, and InceptionV3 models for differentiat-
ing COVID-19 from CX-Rays and achieved 91.62 per cent accuracy, but the size: 80 MB,
232 MB, and 92MB [71], number of parameters: 20.2 M, 25.6 M, and 23.9 M [71], and depth:
402, 307, and 189 [71] of these models were pretty high compared to our proposed CNN
model. The accuracy was also less compared to our method. These parameters are essential in
model deployment because of the speed and cost involved. Similarly, Narin et al. [46] utilized
DCNN models: InceptionV3, ResNet50, and InceptionResNetV2, Sethy et al. [62] utilized
ResNet50, but the size, layers, and parameters are more. Another work proposed by Guefrechi
et al. [19] used ResNet50, InceptionV3, and VGG16 and achieved an accuracy of 97.20 per
cent, 98.10 per cent, and 98.30 per cent, respectively, which have more parameters, size, and
depth and less accuracy. Rehman et al. [56] and Kumar et al. [29] also proposed a similar type
of work, but the accuracy is less.

Reshi et al. [57] presented a DCNN model for the diagnosis of COVID-19 with image
processing. They achieved 99.5 per cent, but the DCNN model has 38 layers, including six
convolutional (Conv2D), six max-pooling, six dropouts, eight activation functions, eight BN,
one flattens, and three dense layers. The accuracy of this method was higher than our work, but
our proposed model has a total of 18 layers, including 4 convolutional, 5 BN, 3 average
pooling, 4 dropouts, 1 flattened, and 2 dense layers.

Das et al. [12] suggested a CNN, VGG-16, and ResNet-50-based Covid-19 testing meth-
odology, achieving an accuracy of 97.67 per cent. The TLCoV accuracy was more diminutive,
and the total parameters used were 1,24,10,023, higher than our proposed model of 6,447,138.
Indumathi et al. [24] presented a DL-based technique for predicting COVID-19 and achieved
98.06 per cent accuracy, which is less than our work. Similarly, the researcher suggested an
SVM-based approach [60], DeTraC [1], CoroNet [27], AlexNet [39], Ozturk et al. [50], Yan
et al. [73], Apostolopoulos et al. [4], Farooq et al. [15], and Meraihi et al. [43], but the accuracy
was more diminutive.

Zhang et al. [75] used CAAD to identify non-viral and viral pneumonia pictures and
achieved an AUC of 83.61% and a sensitivity of 71.70%, lower than our proposed model.
Alkhodari et al. [3] proposed that CNN-BiLSTM achieved an average classification accuracy
of 94.58 per cent. It was also performed to detect COVID-19 individuals with a high
sensitivity of 94.21 per cent, specificity of 94.96 per cent, and AUCROC curves of 0.90,
which is less than our proposed method.

Most researchers employed CNN and DCNN approaches to determine COVID-19
illness, and some achieved greater than 99 per cent accuracy. However, these models’ size,
depth, and parameters were greater. As a result, the custom CNN model should be designed
to improve system accuracy and performance with a small size, fewer layers, and fewer
parameters.

The authors investigate various CNN network hyperparameter combinations to achieve
the best computational cost and performance. The input image size 224 × 224 was
selected. The kernel size of 3 × 3 was chosen for optimum feature extraction with an
average pooling layer [32]. BN layers were used to normalize the previous and subsequent
layer’s output after the convolutional layer and before the next convolutional layer. The
dropout layer with 0.2 ignores 20 per cent of neurons during training to help avoid the
overfitting problem. This research also focuses on the learning rate context and vector
reduction of input data vectors. The Adam optimizer is chosen with a learning rate of
0.0003. The CNNs flattened layer has 50,176 extracted features used for classification
using dense layers. In ML/DL, the results were often achieved at the 10th or 5000 epochs.
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In this work, initially, the authors initialize epochs equal to 300; the callback method was
employed to terminate the training when validation precision equals 98.81 per cent and
stopped after 106 iterations. A callback is an entity that can do tasks at different training
levels, like at the start or end of an epoch, before or after a single batch, etc. In ML/DL
techniques, the loss function must be minimized. ML/DL algorithms frequently become
trapped in local minima during model training. When there are substantial loss hurdles
between local minima, global optimization issues can be exceedingly challenging. To
address the problem of local minima, the authors carefully chose features, learning rate,
and the number of epochs. The learning rate was initially assigned from 0.1 to 0.00001,
and checked the model outcome. Additionally, the convolutional layers increased from one
to three, initializing a more considerable learning rate and settling on 0.0003 with the
Adam optimizer. The proposed CNN model performs well compared to the literature in
Table 1. Aside from that, the model is straightforward and may be accessed via mobile
phones or desktops.

6 Conclusion and recommendations

Detecting and diagnosing early-stage diseases in the health industry is always challenging. The
traditional approach to detection is time-consuming, so there is a need to develop an efficient
system small in size to detect COVID-19. The fundamental purpose of this effort is to support
health proficiency in regions where radiotherapists are in short supply. In this work, CNN and
DCNN were used to examine the COVID CX-Ray images of both COVID and non-COVID
patients. The selection of the CNN and DCNN parameters and hyperparameters is essential in
terms of performance, size, and computational time. These parameters were selected carefully
so that the model’s size should remain small with fewer CNN layers and parameters. First, the
CNN model was developed with 18 layers, and then four DCNN (ResNet50, VGG19,
InceptonV3, and Xception) models were implemented.

The performance of these models was compared, and it was found that the CNN model
performs very well. The CNN-R achieved a 98.41 per cent validation accuracy, 98.75 per cent
AUC and 98 per cent F1 score, which was small in size (49.28 MB) and had fewer parameters
(6,447,138) and had an execution time of 2650 s for 50 iterations. Similarly, the CNN-A
achieved a 98.81 per cent validation accuracy, 99.43 per cent AUC, and 99 per cent F1 score,
which was small in size (73.88 MB) and had fewer parameters (6,447,138) and had an
execution time of 2500 s for 50 iterations. The VGG-19 models also achieved similar results,
but the size (77.05 MB), parameters (143,667,240), and execution time of 3500. The CNN-A
is the most suitable model to deploy to the PaaS cloud. The main benefit of model deployment
is that the prediction system can be accessible on mobile or laptop. Due to this, the proposed
approach may help detect diseases efficiently and quickly. It reduces physicians’ burden and
speeds up the testing procedures for Covid-19 positive patients. This paper implemented the
cloud-based framework to classify COVID-19 diseases successfully. The CNN with the petite
size was deployed to the cloud successfully. The created deployed Heroku link was verified on
a mobile phone and performed well. The benefit of this method is that the model is accessible
anywhere on the mobile or embedded device [51, 52]. There is no need for extra hardware or
device required. The CX-Ray image can be taken using a CX-Ray machine, and the CX-Ray
image can be shared on any mobile. This CX-Ray image can be uploaded to the cloud to
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predict the COVID-19 disease. The smaller model was also deployed to the cloud, which none
of the authors did in the literature.

The authors will continue to extend this study to classify more types of CT scans with X-ray
images. Various research gaps can be addressed in additional articles based on the material
given. The limitation of this work is that it will predict only COVID-19 and non-COVID-19
patients. The proposed approach can be improved in the following ways:

& The CNN and ML classifiers, such as SVM, random forest, K nearest neighbour, etc., can
be integrated so that CNN-extracted features can be given to the classifiers [34, 35].

& The presented model can be developed even more to provide stage-specific COVID-19
diagnosis.

& This research could be expanded to include the classification of the chest cavity, pneu-
monia, lung cancer, and other respiratory illnesses.
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