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Abstract
The end-to-end approach provides better performance in speech recognition compared to
the traditional hidden Markov model-deep neural network (HMM-DNN)-based approach,
but still shows poor performance in abnormal speech, especially emotional speech. The
optimal solution is to build an acoustic model suitable for emotional speech recognition
using only emotional speech data for each emotion, but it is impossible because it is
difficult to collect sufficient amount of emotional speech data for each emotion. In this
study, we propose a method to improve the emotional speech recognition performance by
using the knowledge distillation technique that was originally introduced to decrease
computational intensity of deep learning-based approaches by reducing the number of
model parameters. In addition to its use as model compression, we employ this technique
for model adaptation to emotional speech. The proposed method builds a basic model
(referred to as a teacher model) with a number of model parameters using an amount of
normal speech data, and then constructs a target model (referred to as a student model)
with fewer model parameters using a small amount of emotional speech data (i.e.,
adaptation data). Since the student model is built with emotional speech data, it is
expected to reflect the emotional characteristics of each emotion well. In the emotional
speech recognition experiment, the student model maintained recognition performance
regardless of the number of model parameters, whereas the teacher model degraded
performance significantly as the number of parameters decreased, showing performance
degradation of about 10% in word error rate. This result demonstrates that the student
model serves as an acoustic model suitable for emotional speech recognition even though
it does not require much emotional speech data.

https://doi.org/10.1007/s11042-023-14680-y

* Jeong-Sik Park
parkjs@hufs.ac.kr

Hong-In Yun
gnlenfn@gmail.com

1 Department of English Linguistics, Hankuk University of Foreign Studies, Seoul, Republic of Korea
2 Department of English Linguistics & Language Technology, Hankuk University of Foreign Studies,

Seoul, Republic of Korea

Published online: 13 February 2023

Multimedia Tools and Applications (2023) 82:22759–22776

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-14680-y&domain=pdf
http://orcid.org/0000-0002-4213-8775
mailto:parkjs@hufs.ac.kr


Keywords Emotional speech recognition . Deep neural network .Model adaptation .Model
compression . Knowledge distillation

1 Introduction

Automatic speech recognition (ASR) performs two main functions: extracting the acoustic
features from audio signals and classifying them into appropriate text using acoustic models.
Many types of acoustic models have been introduced according to pattern recognition
approaches including dynamic time warping (DTW), support vector machine (SVM), hidden
Markov model (HMM) and deep neural network (DNN) [1, 14, 23, 36]. Since DTW, SVM
and HMM are simple but classic techniques, they are currently only used in limited speech
recognition domains [25, 33].

The HMM-based approach estimates the phonetic characteristics of speech signals by a
statistical measure with a Gaussian distribution, whereas the DNN-based approach aims to
estimate model parameters of multiple layers using a large amount of speech data. The hybrid
approach combining HMM and DNN has achieved much lower word error rate (WER) than
the HMM-based approach [8].

One state-of-the-art ASR approach is end-to-end (E2E) speech recognition, which outper-
forms the conventional HMM–DNN hybrid approach. The E2E approach merges the separate
acoustic and language models constructed by the conventional approach. Rather than concen-
trating on the specific tasks in each ASR procedure, E2E integrates the procedures into one
system. Therefore, it requires a tremendous amount of computation for training the DNN.

By virtue of the E2E ASR systems, the state-of-the-art performance of speech recognition
accuracy exceeds 95%. However, although ASR has considerably benefited from the technical
breakthroughs in deep learning approaches, its performance is excellent only on normal data,
and degrades on abnormal speech, especially emotional speech.

Like typical speech recognition models, emotional speech recognition was previously based
on HMM. However, the word recognition rate (WRR) of HMM-based emotional speech
recognition was only 30% [4]. In [28], the WRR was improved to 60%, but this performance
was still below that of standard speech recognition in that era [13]. Emotional speech
recognition usually weakens on standard speech models because emotional states cause
meaningful variations in the speech parameters such as pitch frequency [10].

A way to achieve a reliable performance is to collect a considerable amount of emotional
speech data and construct speech recognition module for each emotion [28]. This method
needs to build several emotion-dependent acoustic models using the corresponding emotional
speech data and requires an emotion-detection system at the front end to classify and assign the
emotions to proper models, as shown in Fig. 1. However, the construction of emotion-
dependent acoustic models is a difficult undertaking because it is not easy to obtain naturally
verbalized emotional utterances from multiple speakers.

Another solution is extracting the acoustic features appropriate for emotional speech
recognition. This requires knowledge of emotional expression through speech to extract useful
features that properly represent emotions. However, identifying the characteristics of emotion
from the speech is very ambiguous [16, 29]. Most studies analyze the speech characteristics
such as prosody, pitch, and formant, but emotional expressions (and sometimes emotional
states) are accompanied by facial expressions or other non-verbal languages. Classifying
emotions themselves is highly challenging. Many of the emotion detection studies report
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better accuracy than 80% for two classes of emotions, but rapid degradation to 50% for over
five classes of emotions [16, 30].

The last approach for emotional speech recognition is normalization of the features [20].
Emotional speech contains more information than typical automatic speech recognition. Normal-
izing these additional features can enhance the recognition accuracy. Cepstral parameters are
essential feature in speech recognition systems, but vary in complex ways when emotion enters
speech. For this reason, the cepstral characteristics are often difficult to normalize.

This study proposes an efficient emotional speech recognition approach based on an
adaptation technique. Although several adaption techniques have been successfully applied
to various pattern recognition problems, including image classification and speech recognition,
they need to be carefully handled in an emotional speech recognition task that has domain-
oriented ambiguity. In this study, we propose a knowledge distillation-based model adaptation
approach for emotional speech recognition.

The knowledge distillation technique was originally introduced to decrease computational
intensity of deep learning-based approaches by reducing the number of model parameters [15]. This
technique builds a teachermodelwith a number ofmodel parameters, and transfers the knowledge of
the teacher model to the student model that has fewer model parameters. Thus, the student model
performs similarly to the teacher model even with a relatively shallow model structure.

In this study, we attempt to build a student model that serves as an acoustic model suitable
for emotional speech recognition. A teacher model is constructed from a large amount of

Fig. 1 Emotion-dependent model-based approach
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normal speech data that can be easily collected, and then a student model is built with a small
amount of emotional speech data according to the knowledge distillation procedure. The
student model is expected to have the characteristics of acoustic model adapted to emotional
speech, because the model includes both the excellent speech recognition performance of the
teacher model trained with a large amount of normal speech data and the emotional knowledge
required for emotional speech recognition.

The main contributions of this study are summarized as follows:

(1) An efficient approach for emotional speech recognition is proposed.
(2) A new model adaptation technique based on knowledge distillation is proposed.
(3) The proposed approach efficiently performs both model compression and model

adaptation.
(4) The proposed adaptation technique can be applied to various speech recognition tasks

handling abnormal speech data that is difficult to obtain in large amounts, such as
emotional speech and accented speech.

2 Material and methods

Emotional speech recognition differs from usual speech recognition in one important respect:
its input data contain the emotional information. This additional information degrades the
performance of standard speech recognition models. This study attempts to enhance the ASR
model for emotional speech recognition by adapting the acoustic model to emotional speech
using the knowledge distillation-based model adaptation.

2.1 Model adaptation for emotional speech recognition

In general, model adaptation is associated with domain adaptation, which is an algorithm that
transfers information from a model trained in one or more “source domains” to a different but
related “target domain” for the purpose of constructing a model pertinent to the target domain
[9, 11, 22]. When trained on the source domain, a model can effectively deduce from a target
domain that is insufficient or non-existent. For example, domain adaptation has been applied to
diagnostic algorithms for artificial intelligence. A domain-adapted network trained on the
labeled data of previous diseases is applied to new unlabeled data associated with a new
disease like COVID-19.

Domain adaptation has recently gained much attention as a breakthrough technique that
arrests the performance degradation caused by differences between the learning data and real-
world data and the insufficient quality of benchmarking. Many domain adaptation approaches
maximize the domain confusion by minimizing the difference between the distributions of the
features extracted from the source and target domains [11, 22].

The domain adversarial neural network (DANN) is a representative adaptation method that
generates target-domain data through an adversarial method and retrains the model to improve
its performance [9]. However, this method has some shortcomings to be applied for emotional
speech recognition. First, it requires two training sessions. The DANN generates target-domain
data and is retrained for adaptation. Moreover, modifying the hyperparameters is difficult
while training the networks. Because the performances of the generator and discriminator in
DANN directly depend on the generated data quality, modifying the hyperparameters is costly.
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Finally, as the generated data depend on the input target dataset, a DANN-based method is not
easily generalizable.

This study proposes a domain adaptation approach based on knowledge distillation, which
offers several advantages over the adversarial methods in emotional speech recognition tasks.
First, it has a straightforward training process that reduces the cost. Furthermore, since models
are compressed by knowledge distillation, this technique can be efficiently applied for
emotional speech recognition that requires very complex model architecture to handle ambig-
uous emotional characteristics.

2.2 Acoustic model adaptation based on knowledge distillation

2.2.1 Knowledge distillation

In many cases, an ensemble model combining two or more networks provides a good
performance [26]. Although the ensemble strategy majorly enhances the performance of a
model, a whole ensemble model is cumbersome and demands excessive computational power
when accessed by many users, especially if each model employs a large neural network. [15]
proposed knowledge distillation to overcome the limitations of an ensemble-heavy model. The
performance of knowledge distillation almost matches that of the big teacher model on a
distilled student model but requires fewer parameters than the teacher model. Particularly,
knowledge distillation offers model compression.

qi ¼
exp zið Þ=T

∑i exp zið Þ=T ð1Þ

Neural networks typically compute the class probability in a softmax output layer that converts
the logit zi computed for each class into a probability qi, as described in (1). In this
computation, the zi is compared with other logits. The softmax function outputs a one-hot
binary vector indicating the class assignments of zi. This typical labeling system is called a
hard target shown in Fig. 2.

In (1), the temperature parameter T creates a soft label (for a standard softmax function, T =
1). As pointed out in [15], a hard target accepts only the highest probability and dumps the
others. The probability of abandonment might also play a role in transfer learning.

Typically, the softmax layer outputs an integer value. However, if T is greater than 1, the
probability distribution is softened over the classes. After training on the target data set with
assuming a soft target distribution of each case in the target data set, the softmax function of
the high-temperature teacher model transfers information to the student model. The student
model is trained on the same high-temperature softmax model, but in the post-training test
stage, the softmax function is reverted to a standard softmax with T = 1. Figure 3 and Eqs. (2)
to (5) show the calculation process of knowledge distillation loss.

Chard x; yð Þ ¼ −∑K
i¼1qilogPi xð Þ ð2Þ

Csoft x; qð Þ ¼ −∑K
i¼1qilogPi xð Þ ð3Þ

Loss ¼ 1−αð ÞChard x; yð Þ þ αCsoft x; qð Þ ð4Þ
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qi ¼
exp zi xð Þ=Tð Þ

∑K
j¼1exp zi xð Þ=Tð Þ ð5Þ

The total loss in the network is the sum of the distillation and student losses [15]. The
distillation loss is contributed by the soft label of the teacher model and the soft prediction
of the student model, and the student loss is contributed by the hard prediction of the student
model and the hard label of target domain data. The soft label from the teacher model and two
types of predictions from the student model are obtained according to softmax with different
temperatures.

The above equations are mathematical descriptions of knowledge distillation. In (2) and (3),
pi(x) is the output probability of the i-th class of the student model, and qi is a soft target of the
input feature x. Therefore, Chard(x, y) is a one-hot vector output by the softmax layer, and
Csoft(x, y) is a softly distributed one-hot vector of softmax probabilities. In (4), α is the weight
of the hard or soft label in the cross-entropy loss.

Fig. 2 Hard target and soft target

Fig. 3 Flowchart of knowledge distillation
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As described above, knowledge distillation transfers the excellent performance knowledge
of teacher models to shallow student models. After training on the extensive teacher knowl-
edge, the student model delivers its best performance. Thus, knowledge distillation has been
widely applied for model compression in DNN-based speech recognition tasks [7].

2.2.2 Knowledge distillation for end-to-end emotional speech recognition

Recent studies proposed knowledge distillation-based model compression approaches for E2E
speech recognition [18, 32, 37]. As introduced in Section 1, E2E is a state-of-the-art ASR approach,
which outperforms the conventional HMM–DNNhybrid approach. It is implemented as two types:
connectionist temporal classification (CTC) and listen, attend and spell (LAS) [6, 12].

Among the two types, CTC is advantageous for E2E emotional speech recognition because
it removes the need for post-processing; instead, the CTC decoder transforms the neural
network output into the final text. Additionally, it provides the correct alignment between
the training and transcript data, which is very important in emotional speech recognition, as it
ensures the correctness of the acoustic model. For this reason, the CTC-based ASR approach is
used as the baseline for emotional speech recognition in this study.

Knowledge distillation approaches typically transfer either the probability values of the
classes in the teacher model, or the hidden layers in the middle of the teacher model. This study
adopts the former approach. The equation that transfers the probability values of the frame
units to the CTC model for training is given by (6) where xt is the t-th frame from an input
sequence of total length T [27, 31].

LCTC−KDframe ¼ −∑x∈Z∑
T
t¼1∑k∈KPteacher k∣xtð ÞlnPstudent k∣xtð Þ ð6Þ

2.2.3 Model adaptation process via knowledge distillation for emotional speech
recognition

Knowledge distillation transfers the knowledge of the teacher model to the student model
through a particular loss function, as described in Section 2.2.1. From a certain perspective, the
loss Eq. (4) can be interpreted as model adaptation rather than as model compression. The first
term of (4) is the standard cross-entropy loss function. The other term can be understood as a
regularization term that restricts the student model from imitating the teacher model. From this
perspective, we can apply the knowledge distillation method to model adaptation.

In order to handle emotional speech recognition, this study proposes an efficient model
adaptation framework in which student models corresponding to emotions are respectively
constructed and model compression of knowledge distillation is considered along with model
adaptation. Figure 4 illustrates the conventional knowledge distillation concept and the
proposed framework combining model compression and model adaptation.

The general concept of knowledge distillation focuses on model compression where the
student model has fewer parameters than the teacher model, and the teacher and student
models have the same input data, as shown in Fig. 4a. Considering in terms of model
adaptation, the student model has the same model structure as the teacher model, and the
teacher model is built with the source domain data and the student model is built with the target
domain data, as shown in Fig. 4b.

In the proposed framework, the teacher models have a number of parameters trained with a
huge amount of source domain data (normal speech data), whereas the student model is
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considered as a simple network having fewer parameters trained with a small number of target
domain data (emotional speech data). We expect that this combined framework realizes two
usages of knowledge distillation at the same time.

When the compression and adaptation effects are applied simultaneously, we obtain a
model with fewer parameters that adapts to the target domain (emotional speech). To this end,
we alter the structure of the student model and set the input data of the student model as the
target-domain data for model adaptation, thus reducing the number of parameters of the
student model (obtaining a compressed model).

The adaptation process is focused on minimizing the knowledge distillation loss described
in (4). The first term in this equation ensures that the adapted model distinguishes in domain
data after training, while the second term allows the model to generalize by training on class-
similarity information from the source model.

Figure 5 shows the process of model adaptation based on knowledge distillation for
emotional speech recognition. The teacher model is firstly trained with source domain data.
It is used to make soft label for the knowledge distillation process. Then the student model is
trained with emotional speech data while minimizing the knowledge distillation loss. The loss
is calculated from labels and predictions, as described in Section 2.2.1. The soft label and the

Fig. 4 Knowledge distillation concept of model compression and domain adaptation, and a combined framework
in the proposed method
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two predictions are the outputs of the teacher and student models, respectively. Hard label is
obtained from the target domain data (i.e. emotional speech data).

The model adaptation task attempts to provide an adapted model matching the target domain
from a source domain model. Various model architectures have been introduced in terms of DNN
architecture, and each architecture provides different performance according to recognition target
data and tasks. In this study, we employ the RNN architecture that is known to be an efficient
model for sequentially varying data to construct teacher and student models for emotional speech.
The models are composed of convolutional layers, recurrent layers, and fully connected layers. In
particular, all training processes are conducted via the E2E speech recognition framework.

In the recognition process, a given emotional speech data is entered into each student model
as an input data, and then recognized with a result of a model that provides highest output
probability. The model is expectedly a target student model pertinent to the emotion of the
given speech data.

2.3 Advantages of model adaptation based on knowledge distillation in emotional
speech recognition

As described in Section 2.1, many domain adaptation methods have been applied to various
research fields. The DANN that is a well-known domain adaptation method has achieved

Fig. 5 Model adaptation process based on knowledge distillation for emotional speech recognition
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superior performance in many fields, but it has some drawbacks. The method is a two-step
process of generating new data and then training a model on the generated data. To accomplish
these tasks, it requires two models: a generator that creates the target-domain data and a
discriminator that distinguishes whether the generated data are target data or not.

To achieve outstanding performance, a robust discriminator is essential. Building a robust
discriminator for adversarial domain adaptation requires dataset-dependent parameter optimi-
zation. Such a corpus-dependent optimized model is expensive and difficult to generalize.
Therefore, it is unsuitable when models must be adapted to many domains or when a domain is
continuously changing. Building many-case or constantly evolving domains is prohibitively
expensive. In emotional speech recognition, a model is often built for each emotion. Applying
DANN to emotional speech recognition will thus incur a tremendous computational cost.

The proposed adaptation approach based on knowledge distillation offers two advantages
over the adversarial method. First, the knowledge distillation-based method requires only one
training process. Knowledge distillation employs two models: a teacher model and a student
model. Only the student model is adapted and the training of the teacher model is unrelated to
the domain adaptation process. The teacher model can be trained on a pre-trained model to
conserve time and resources. In DANN, building a model for each emotion requires a lot of
training processes, but knowledge distillation greatly reduces the cost of building respective
emotion models.

The second advantage of knowledge distillation is relaxation of the limitations on training
the target domain. The adversarial method requires dataset-specific hyperparameter optimiza-
tion when training the discrimination model. Accordingly, the generated data might be biased
toward the given target-domain data, and additional target-domain data might be rejected.
Adding more target-domain data is much easier in knowledge distillation than in the adver-
sarial method. Moreover, the adaptation dataset is smaller than the training set. The time and
cost of training the student model for adaptation are much reduced in knowledge distillation.

2.4 Experimental environments

To verify the efficiency of the proposed approach, we performed several experiments on
emotional speech recognition. Some information about experimental setup is addressed in this
section.

2.4.1 Data set

For the evaluation, we used LibriSpeech and interactive dyadic motion capture (IEMOCAP),
which are representative speech data in speech recognition and emotion recognition domains
[5, 19, 24]. First, we built the teacher model as the baseline model on LibriSpeech. The
IEMOCAP data were then used for the target data in the adaptation process and the training
data for the student model.

LibriSpeech is a corpus of English speech suitable for training and evaluating speech
recognition systems [24]. It is derived from audiobooks that are part of the LibriVox project
and contains 1000 h of speech. The corpus is divided into three subsets with approximate sizes
of 100, 360, and 500 h. The speakers in the corpus were ranked by the WERs of the wall street
journal (WSJ) model’s transcripts and were divided into two roughly equal parts: the lower-
WER speakers (“clean” group) and the higher-WER speakers (the “other” group). From the
“clean” pool, 20 male and 20 female speakers were drawn randomly and assigned to the
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development set. This process was repeated to form the test set. For each speaker in the
development and test sets, we extracted ~8 min of speech (approximate total time = 5 h and
20 min in each group; see Table 1).

The “other” pool was similarly split into test and development sets and a single training set
of ~500 h. However, the “other” pool was extracted from a subset with more challenging data
than the “clean” pool. The WER computed by the WSJ models ranks the speakers in order of
increasing difficulty of comprehensibility, and the speakers in the test and development sets
were randomly chosen from the third quartile of this sorted list. Table 1 summarizes the
subsets in the corpus. In this study, the baseline was trained on all 1000 h of speech.

The IEMOCAP corpus was designed for multi-modal emotion recognition [5]. It contains
the data of 10 adult actors recorded during dyadic sessions. The actors were asked to read three
selected scripts with explicit emotional content. The actors were also asked to improvise
dialogues in hypothetical scenarios that elicit specific emotions (happiness, anger, sadness,
frustration, and the neutral state). The speech data are augmented with the motion capture data
of the subjects’ faces (not used in this study). The database contains ~12 h of data in total. As
the adaptation data, we used the data of three emotions (i.e., anger, happiness, and sadness) as
representative emotion types. A total of 5 h and three emotions of speech data were finally
used as the adaptation data. Table 2 shows the total lengths of the speeches associated with
each emotion and the total number of audio files.

2.4.2 Experimental setup

The input feature was a 128-dimensional Mel-Spectrogram, and the answer label of CTC
comprised 28 labels, including alphabets, blank space, and an apostrophe. The teacher and
student models were based on Deep Speech2, and training was conducted with PyTorch. The
knowledge distillation was also encoded in Python.

The teacher model (based on Deep Speech2 as mentioned above) was composed of three
2D convolutional layers, five bi-directional gated recurrent unit (Bi-GRU) layers, and one fully
connected layer. Figure 6 shows the structure of Deep Speech2.

The teacher model was trained on a Titan Xp GPU for 30 epochs with a batch size of 10.
Optimization was performed using an Adam optimizer with an initial learning rate of 5e-4 that
gradually decreased every 5 epochs. The teacher model was configured as described in Table 3.
The initial learning rate was 0.01, with a weight decay of 0.03. In the knowledge distillation,
the temperature was set to 20. Training was performed for 20 epochs with a batch size of 10.

Table 1 Data subsets in LibriSpeech [24]

Subset Hours Per-spk
Minutes

Female
Spkrs

Male
Spkrs

Total
spkrs

Dev-clean 5.4 8 20 20 40
Test-clean 5.4 8 20 20 40
Dev-other 5.3 10 16 17 33
Test-other 5.1 10 17 16 33
Train-clean-100 100.6 25 125 126 251
Train-clean-360 363.6 25 439 482 921
Train-other-500 496.7 30 564 602 1166
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Model adaptation with knowledge distillation requires the same structure of the teacher and
student models. Both models were constructed with three convolutional layers and five Bi-GRU
layers. The pre-trained teacher model (identical to the baseline model) was used to train the
student model on additional adaptation data. In this experiment, we compared the WERs and
CERs of the baseline and student models. This experiment also aimed to confirm whether model
adaptation through knowledge distillation works properly for emotional speech recognition.

We additionally investigated the performance of emotional speech recognition when model
adaptation and model compression were conducted simultaneously. The procedure was
identical to the previous procedure, but the number of layers in the student model was reduced
to lower the number of parameters. We also compared the compression rates of the
convolutional and recurrent layers to determine which layer was most related to compression.
For this purpose, each layer of the student model was decreased to 2. The total number of
parameters was reduced by one-third.

Table 2 Size of adaptation set for
each emotion Train (min) Test (min) Total Files

Anger 73.103 9.86 1103
Happiness 102.104 23.79 1636
Sadness 80.117 19.135 1084

Fig. 6 Architecture of Deep Speech2 [3]
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We repeated the experiment for each of the five sessions of the IEMOCAP corpus. Each
session consists of a recording of a conversation between two speakers (male and female). The
overall length of the test data depends on the emotion type, as shown in Table 4.

3 Results

Table 5 shows the performance of emotional speech recognition experiments. The results in
the left two columns indicate that the student model (1) provided slightly lower performance
than the teacher model (1). But when the size of the baseline model is reduced, the student
model (2) gave similar performance to the student model (1), whereas the teacher model (2)
yielded significant performance degradation compared to the teacher model (1).

The best CER performance of the baseline (teacher model (1)) was 24.6% on anger speech
data, but the baseline achieved 39.4% CER on happiness speech data. Meanwhile, the best and
worst WER performances of the baseline were 27.8% (anger) and 42.7% (happiness), respec-
tively. When listening to the audio files, we did not recognize speech well because of lots of
laughter sounds in the happiness data, which in part explains the low recognition result of the
happiness category. Equally poor performance on sadness is due to the lower voice amplitude
while expressing sadness.

Meanwhile, the student model achieved its best performance on anger (CER = 25.9%;
WER = 29.1%) and its worst performance on happiness (CER = 41.4%; WER = 44.3%).
However, a notable performance was observed in the student model (2). When the model size
was reduced to about 40%, the performance of the student model was maintained, while the
performance of the teacher model was significantly degraded. The student model (2) achieved
a 25%, 9%, and 17% performance improvement in anger, happiness, and sadness, respective-
ly, compared to the teacher model (2). In particular, the teacher model required 24 hours of
training time, whereas the student model was trained in ~30 min. These results demonstrate
that the student model provides distinct advantages over the baseline model in terms of training
time and performance, and model adaptation with model compression via knowledge distil-
lation works well in emotional speech recognition.

Next, we conducted additional experiments to examine the efficiency of model adaptation
with model compression via knowledge distillation in more detail. For this work, we deleted
each layer one by one for reducing parameters to cause model compression effects. Table 6
shows the results. In this table, the numbers before and after the solidus refer to the numbers of
layers in the convolutional and Bi-GRU layers, respectively. Figure 7 represents average
performance of emotional speech recognition results for the three emotion types and the
number of parameters according to five model structures.

The Bi-GRU layer exerted little influence on the model compression. Reducing the number
of Bi-GRU layers did not alter the file size or the number of parameters in the model. In
contrast, the convolutional layer directly affected the number of parameters. Reducing the

Table 3 Configurations of the
teacher model Layer name Kernel Output channels Dropout Repeat

Conv1 (3,3) 32 0.1 3
Bi-GRU 512 0.1 5
FC 512 0 1

22771Multimedia Tools and Applications (2023) 82:22759–22776



number of convolutional layers reduced the model size. The number of parameters was not
reduced after decreasing the number of GRU layers but decreased rapidly after deleting a
convolutional layer. Despite their small size, these models outperformed the reduced baseline.
In fact, the performances were similar to those of the adapted model observed in Table 5. It
showed difference less than 2%p in all models. The compressed student model maintained the
performance of the original student model with minimal parameters.

4 Discussion

Table 5 is the performance of the first experiment conducted to evaluate whether model
adaptation works properly in the proposed approach. In this experiment, we configured two
experimental environments by making the teacher model and the student model of the same
size. In the first environment with a large network size (about 23.7 million parameters), the
performance of the student model was slightly lower than that of the teacher model. On the
other hand, in the second environment with a small size (about 9.5 million parameters), the
performance of the teacher model decreased significantly, while the performance of the student
model was maintained, indicating much better performance than that of the teacher model.

In the proposed approach, a relatively small amount of emotional speech data was added
when constructing the student model. Therefore, the results of this experiment indicate that the
characteristics of emotional speech were well reflected in the student model even though the
amount of emotional speech data was not large, so that the student model worked properly as
an adaptive model.

Table 6 is the performance of the second experiment conducted to check whether model
adaptation still works when model compression is performed by knowledge distillation. In this
experiment, we fixed the teacher model with a large network size (about 23.7 million param-
eters) and investigated the performance while changing the network structure of the student
model. In the experimental results, all student models with five types of networks showed
similar performance for both CER and WER. In particular, even in the simplest structure (two
convolutional layers and two Bi-GRU layers), the performance degradation was not significant.

Table 4 Total length of test data
Anger Happiness Sadness

Length (min) 9.86 23.79 19.13
Speakers 2 2 2

Table 5 The performance of emotional speech recognition

Models

File size
# of parameters

Teacher Model (1)
91 Mb
23,705,373

Student Model (1)
91 Mb
23,705,373

Teacher Model (2)
37 Mb
9,506,269

Student Model (2)
37 Mb
9,506,269

CER WER CER WER CER WER CER WER
Anger speech 24.6 27.8 25.9 29.1 34.6 40.5 26.0 29.9
Happiness speech 39.4 42.7 41.1 44.3 44.6 49.8 41.4 44.1
Sadness speech 39.1 39.2 42.3 41.4 50.2 51.8 42.4 41.4
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This experimental result demonstrates that model compression and model adaptation work
well at the same time through knowledge distillation in the emotional speech recognition task.
If the student model was built for the purpose of model compression according to the general
knowledge distillation procedure, and emotional speech data was not applied when building
the student model, the performance of the student model may have deteriorated significantly.
However, the student model built by the proposed method showed good performance, which
demonstrates that the student model serves as an acoustic model suitable for emotional speech
recognition even though it does not require much emotional speech data.

Regarding comparative verification with other research works, there are not many studies
on emotional speech recognition compared to speech recognition studies on standard speech.
Before 2010, there were studies based on HMM [35], a classical method, and recently, several
studies based on DNN have been published [17, 34]. One reason is that there are many speech
corpora for standard speech recognition, but few corpora for emotional speech recognition. In
[34], experiments were conducted using the IEMOCAP corpus used in this study, but in

Table 6 Result of adaptation and compression

Models 3/5 3/3 3/2
File Size 91 Mb 55 Mb 55 Mb
Parameters 23,705,373 14,251,805 14,233,053

CER WER CER WER CER WER
Anger 25.9 29.1 26.4 30.0 26.1 30.3
Happiness 41.1 44.3 42.5 44.4 41.2 44.2
Sadness 42.3 41.4 41.4 43.0 41.7 41.2
Models 2/3 2/2
File Size 37 Mb 37 Mb
Parameters 9,525,021 9,506,269

CER WER CER WER
Anger 26.9 29.8 27.9 31.1
Happiness 42.2 44.7 42.5 45.4
Sadness 42.3 41.5 41.4 42.3

Fig. 7 Average performance and the number of parameters for each model structure
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abnormal speech recognition tasks such as emotional speech recognition, learning and eval-
uating with the same data has limitations in terms of accuracy and reliability.

The main contribution of this study is to build a simple structure model (student model) that
reflects the characteristics of emotional speech with a small amount of emotional speech data
(IEMOCAP) from a complex structure model (teacher model) built with a large amount of
standard speech data (LibriSpeech) via an model adaptation technique based on knowledge
distillation. There are few studies related to model adaptation in DNN-based emotional speech
recognition. In [17], an acoustic model built by simply including emotional speech data rather
than a model using a specific model adaptation technique, is described as an adapted model.
Therefore, we think that it is meaningless to intuitively compare the performance of this study
with the results of the conventional research works. Meanwhile, in Table 5, teacher models (1)
and (2) with a complex neural network structure represent acoustic models built by the existing
DNN-based emotional speech recognition approach. For this reason, the superior performance
of the student model (2) compared to the teacher model (2) indicates the efficiency of the
proposed approach.

Based on the experiments, we confirmed that the proposed method works efficiently on the
emotional speech recognition task. Nevertheless, the emotional speech recognition perfor-
mance was still lower than the standard speech recognition performance with a WER of 5–8%
in Deep Speech2 proposed by Baidu [3]. This explains why it is difficult to recognize
abnormal speech such as emotional speech compared to standard speech. In this study, we
confirmed the possibility that the proposed method could play a role in building a deep
learning model reflecting the characteristics of abnormal data that are difficult to collect, such
as emotional speech.

Knowledge distillation is similar to transfer learning in that it creates another model from
one model, but the two techniques are distinctly different [2]. Recently, negative transfer is
treated as an important issue in transfer learning [21], but the problem of negative transfer in
knowledge distillation has not yet been identified. If knowledge is transferred negatively from
the teacher model to the student model in knowledge distillation, there is a possibility of
generating an incorrect student model, which may cause performance degradation. Thus, if this
is elucidated, it will be possible to create a more robust and correct student model.

5 Conclusions

In order to overcome the limitations of emotional speech recognition, where it is difficult to
obtain a large amount of data required to build a complete model, this study proposed an
efficient emotional speech recognition approach based on knowledge distillation.

Knowledge distillation was originally proposed for model compression. We employed this
technique to build an acoustic model suitable for emotional speech recognition, expecting that
the student model would have the characteristics of an acoustic model adapted to emotional
speech with a small amount of emotional speech data. For this task, we constructed the teacher
model having a number of model parameters with an amount of speech data of normal voice,
and then constructed the student models for respective emotions having fewer model param-
eters with a small amount of emotional speech data.

The experimental result showed that the performance of the teacher model significantly
decreased according to the compression, whereas the performance of the student model was
maintained. This result demonstrates that the proposed approach can be effectively applied for
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emotional speech recognition in terms of model compression and model adaptation. In
addition, the student model constructed in the proposed approach can be used as a deep
learning model reflecting the characteristics of abnormal data that are difficult to collect.

In further study, we will investigate the model adaptation performance, increasing the
number of adaptation data. In particular, if a sufficient amount of emotional speech data is
provided, we can also investigate the capability of the proposed approach by comparing the
performance with standard models constructed only with the target emotional speech data. In
addition, we will investigate the performance improvement by a hybrid approach with other
adaptation techniques used in different domains, such as DANN and transformer.
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