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Abstract

Breast cancer, though rare in male, is very frequent in female and has high mortality rate
which can be reduced if detected and diagnosed at the early stage. Thus, in this paper, deep
learning architecture based on U-Net is proposed for the detection of breast masses and
its characterization as benign or malignant. The evaluation of the proposed architecture in
detection is carried out on two benchmark datasets— INbreast and DDSM and achieved
a true positive rate of 99.64% at 0.25 false positives per image for INbreast dataset while
the same for DDSM are 97.36% and 0.38 FPs/I, respectively. For mass characterization,
an accuracy of 97.39% with an AUC of 0.97 is obtained for INbreast while the same for
DDSM are 96.81%, and 0.96, respectively. The measured results are further compared with
the state-of-the-art techniques where the introduced scheme takes an edge over others.
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1 Introduction

Breast cancer is one of the leading causes of deaths among women globally. As per World
Health Organization (WHO), breast cancer registers 2.09 million cases with 6,27000 deaths
globally in 2019 [41]. Among different types of cancers, approximately 13% of total cases
are diagnosed with breast cancer globally which clearly depicts its fatal nature. Detection
and diagnosis of breast cancer at the early stage can reduce the mortality rate by manifolds
[16]. Screening mammograms is preferred technique for detection of abnormalities [33, 43]
but at the same time, the assessment of mammograms is a challenging task due to variations
in anomalies, low contrast images, and less number of skilled radiologists which causes
fatigue due to continuous examinations of large number of mammograms. To overcome this,
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Computer aided detection/diagnosis (CADe/x) systems are evolved which acts as second
evaluator and improved the overall screening efficiency significantly [8].

Micro-calcification, architectural distortion, bilateral asymmetry, and masses are the
early symptoms of breast cancer but among all, detection and diagnosis of masses is a chal-
lenging task due to its variations in shape, margin and size. A mass with round or oval
shape and low density is generally benign while ill-defined shape, spiculated margin with
high density is categorized as malignant. To address this problem, many methodologies are
reported and treats the problem of detection and diagnosis separately, but fails to guaran-
tee complete success. Several researchers have introduced CAD systems, both traditional or
deep learning based, to improve the performance in the detection and diagnosis of mammo-
graphic masses [17, 18, 25, 31]. In traditional methods, Chakraborty et al. proposed radial
region growing method based on thresholding for mass detection and achieved a sensitivity
of 90.0% at 1.4 false positives per image (FPs/I) and an AUC of 0.87 with an accuracy (A..)
of 77.89% for the diagnosis of malignant masses when evaluated on 1257 mammograms of
DDSM database [11]. Casti et al. introduced combination of Gaussian curvature and gabor
filter responses for detection and contour independent features for diagnosis and reported a
sensitivity of 0.80 at 5.21 FPs/I for detection and an AUC of 0.61 when evaluated on 1662
DDSM images [10]. Laishram and Rabidas proposed a hybrid model of fast and robust
fuzzy c-means clustering (FRFCM) for the detection of masses on mini-MIAS dataset and
achieves sensitivity of 96.6% with 2.29 FPs/I while the same obtained an improvement of
74% in FPs/I after performing false positive reduction [24]. A comparison of traditional
CAD system and CNN networks is conducted by Kooi et al. on a private dataset where
CNN outperforms the traditional CAD systems and obtained an AUC of 0.87 [23]. Arevalo
et al. also compared the features extracted via CNN architecture against other hand crafted
measures like Histogram of Oriented Gradient (HOG) and Histogram Gradient Divergence
(HGD) methods[7] and obtained an AUC value of 0.86 on Breast Cancer Digital Repository
(BCDR) dataset. Sethy et al. performed a survey for the methods useful for the detection
and dignosis of breast cancer and also developed a robust and cost effective approach using
the HOG feature and SVM to detect and diagnose the breast cancer and achieved an accu-
racy of 99.64%.[40]. From the above literature , it can be observed that the majority of
the CAD systems with conventional machine learning methods mainly used hand crafted
features which is immensely dependent on the human experts. This restricts the complete
automation of CAD systems.

Deep learning models have shown promising performance in various biomedical appli-
cations such as diagnosis of breast cancer, coronavirus [39], arrhythmia [20] and myocardial
infarction [19] etc. In case of breast cancer, Dhungel et al. combines deep learning strat-
egy with random forest classifier for identifying the mass cases and achieved a true positive
rate (TPR) of 0.96 at 1.2 FPs/I on INbreast when tested on 115 images while the same
for DDSM-BCRP dataset is 0.75 at 4.8 FPs/I [13] using 79 images which is very lim-
ited size of dataset. Patch based CNN network is proposed by Agarwal et al. for mass
detection and obtained a TPR of 0.98 at 1.67 FPs/I on CBIS-DDSM dataset [2] while the
author improves the architecture by proposing Faster region based CNN (Faster R-CNN)
for mass detection and reported a TPR of 0.93 at 0.78 FPs/I on FFDM dataset and 0.95
at 1.14 on INbreast dataset [1]. The Faster R-CNN is further modified by Akselrod-Ballin
et al. where an accuracy of 72% and 78% is obtained for detection and diagnosis, respec-
tively [3] when examined on a private dataset. Transfer learning approach is utilized by
Ribli et al. where model based on Faster R-CNN is trained on DDSM dataset and tested
on INbreast dataset with an accuracy of 90% with 0.3 FPs/I [36]. However, Faster R-CNN
involves high computations while defining region boxes before classification. In[4], You
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only Look Once (YOLO) approach is introduced for mass detection, full resolution con-
volutional network(FrCN) for segmentation, and CNN network for benign-malignant mass
classification with A.. of 98.96%, 92.97%, and 95.64%, respectively. Similar approach of
YOLO based CAD model for detection and classification of masses proposed by Al-masani
et al. reported an A, of 99.7% and 97%, respectively using DDSM dataset [5].In YOLO
based approaches, YOLO algorithm struggles to identify small objects within the image
which is a matter of concern if the abnormality is of smaller size. Hassan et al. [21] pro-
posed classification of breast masses using transfer learning approach where pre-trained
AlexNet and GoogleNet models are utilized and achieved an accuracy of 100% for CBIS-
DDSM and INbreast datasets with AlexNet model while 98.46% and 92.5% for GoogleNet
model when tested on a combination of two datasets having 1920 (augmented) region of
interest (ROI) patches. Sarkar et al. developed deep hierarchical mass prediction network
for mass detection and utilized wavelet features using CNN for classification [38]. Mod-
ified VGG16 network with its fully connected layer replaced by a convolutional layer is
used and achieved a sensitivity of 94% and 1.13 FPs/I on 350 mammograms when tested
on DDSM dataset and 96% at 0.96 for INbreast dataset with 41 images. The classification
accuracy over DDSM dataset with 226 mammograms is 98.05% and for INbreast with 43
images is 98.14%. Mahmood et al. proposed deep learning based ConvNet for classification
of masses [28]. The method consists of preprocessing, data augmentation, feature extrac-
tion and classification steps and reported classification accuracy of 97.05% when tested on
a 2160(augmented) images which are a combination of mammograms acquired from mini-
MIAS as well as private dataset. Alanazi et al. developed three different CNN model with
variations in number of convolutional layers (i.e. 2, 6, and 5) for diagnosis of breast cancer
[6]. Out of these architectures, model with 5 convolutional layers achieved highest accuracy
of 87% when tested on about 275,000 image patches. Qiu et al. developed CAD system
for the classification of breast mass into benign and malignant [34]. The network consists
of 3 pairs of convolutional and max pooling layers as a feature extractor, one hidden layer
and one logistic regression layer are utilized as multiple layer perceptron (MLP). The over-
all AUC reported is 0.79 when tested on 560 images from full-field digital mammography
(FFDM).

From the above discussion, it is observed that the performance of CAD tools can achieve
high sensitivity, but at the cost of a relatively higher false-positive rate. Most of the previ-
ous works tries to address the detection and diagnosis problems separately hence limited
works is reported to address the two issues by an integrated CAD system. It is believed that
deep learning methods can obtain better performance in detection and diagnosis of masses,
as deep learning has ability to automatically learn features and avoiding complication of the
feature designing and selection procedure. Adding to it, only a few works based on deep
learning have been presented for mass detection as well as classification of masses from
mammograms which motivate to explore deep learning as the underlying framework. There-
fore, this paper introduces an integrated deep learning architecture based on U-Net for the
detection and diagnosis of mammographic masses as benign or malignant. The main feature
of U-Net architecture is that it is independent of dimensions of an input image as there is
no dense layer in the detection mode. It has capability to work exclusive of any preprocess-
ing techniques like noise removal, image enhancement and suppression of pectoral muscle
or pre-trained weights. The up-sampling and down-sampling operations were performed to
overcome the resolution loss of feature maps due to the multiple max-pooling and trans-
posed convolutional layers. The higher sensitivity and lower false positives (FPs) makes
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the introduced approach suitable for integration into clinical practice along with skilled
radiologists as a second examiner. The key contributions of the work can be summarized as:

® Integrated framework based on deep learning is proposed for automatic detection and
characterization of mammographic masses.

® U-Net architecture is introduced for mass detection which is independent of the
dimension of the input mammograms.

e  With the best of our knowledge, the efficiency of U-Net architecture in classification is
investigated for the first time.

® The performance is evaluated on two benchmark databases— INbreast and DDSM
dataset where it outperforms the other techniques in the state-of-the-arts with high
sensitivity and low FPs.

The paper is organized as follows. Section 2 discusses methodology for the detection
and classification of masses. Section 3 provides the experimental set up and an overview of
original datasets employed for performance evaluation of the proposed approach. Section 4
represents the performance analysis of proposed model through five-fold cross validation.
Section 5 presents analysis of the results obtained against other models and Section 6
concludes the paper.

2 Methodology

This paper presents an integrated deep learning (DL) architecture for the automated detec-
tion of mammographic masses followed by the characterization of identified masses as
benign or malignant. The DL architecture incorporates U-Net structure for both localization
and classification of mass lesions. The schematic diagram of proposed approach is illus-
trated in Fig. 1. The input mammogram is first applied to the U-Net architecture which
consists of encoder, decoder and bottleneck part. The detail description of proposed U-
Net model is discussed in Section 2.2. The model produces a feature map. The extracted
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Fig. 1 Schematic diagram of the proposed U-Net based deep learning network to detect and classify breast
cancer masses
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features are utilized for the accurate detection and location of mass lesion from the image.
To reflect the probability of predicting a mass or non mass, an activation function, sigmoid,
is used in the last layer of U-Net model. From the predicted mask, a bounding box is cre-
ated. Only the detected mass which is having a minimum of 50% overlapping between the
ground truth and the predicted boxes are then applied to next stage for characterization. The
features map again generated by the proposed U-Net model followed by two fully connected
(FC) layers which uses a classifier in the output layer. The classifier is a softmax activation
function with two nodes to distinguish between benign or malignant lesions.

2.1 Data preprocessing

Although the introduced approach can take full size mammograms, but to avoid the com-
putational complexity, which incurred due to the processing of large size mammograms, all
mammographic images are resized to 224 x 224 followed by normalization. To overcome
the requirement of large number of samples for training the deep learning architectures
which is a key issue in case of biomedical application, data augmentation is employed as
done in [32, 42] for both the datasets. Data augmentation is a process of increasing the num-
ber of images and diversity by applying different transformation to the original ones. In the
present work, the original mammograms are augmented four times (x4) by applying flip
in up-down directions with rotation by an angle of 90°. Similarly for eight times (x8), in
addition to the operations performed for x4, augmentation is done by applying flip in left-
right directions with rotation by an angle of 90°. The same with other details are provide in
Table 1.

2.2 U-Net based detection

The architecture of U-Net was first proposed by Ronneberger et al. for segmentation in
biomedical images [37]. U-Net is an end-to-end neural network architecture typically bears
a ‘U’ shape. It is also a Fully-convolutional network (FCN) which is independent of the size
of the input and the architecture of the same is demonstrated in Fig. 2.

Broadly, the U-Net structure can be divided into encoder and decoder part. The encoder
stage comprises of pooling layers which performs downsampling operation which reduces
the dimensions of each image retaining the salient information while the decoder does the
opposite of it i.e. upsampling and enable precise localization using transposed convolu-
tions. The feature maps, in encoder, after each downsampling step is combined with the
corresponding feature map after upsampling in the decoder network using concatenation
operation. The red and purple arrows shown in Fig. 2, indicate concatenation of two fea-
ture maps. The concept of U-Net in this sense is that while upsampling in the network, it

Table 1 Detailed description about images used for experimental purpose from DDSM and INbreast dataset

Data Original x4 Augmented x 8 Augmented
set mammogram Flip_-U_D with Rot 90°  Total ~ Flip_U_D+_L_R with Rot 90°  Total
INbreast  Benign 37 37 x4 =148 37 x4 +37 x4=296
Malignant 69 69 x 4 =276 424 69 x4+69 x4=552 848
DDSM Benign 300 300 x 4 = 1200 300 x 4 + 300 x 4 = 2400
Malignant 700 700 x 4 = 2800 4000 700 x 4 +700 x 4 = 5600 8000
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Fig.2 Proposed U-Net architecture for automatic detection of masses

is also concatenating the higher resolution feature maps from the encoder network in order
to learn better representations with following convolutions. Since upsampling is a sparse
operation, a good prior from earlier stages is good to represent the localization. The pro-
posed DL architecture incorporates U-Net for both mass detection as well as classification
with a few modifications in the respective stages. For mass detection, the full mammograms
are applied as input to the encoder of proposed U-Net architecture as it uses single convo-
lutional neural network to the entire image. At the end of the decoder, 1x 1 convolutional
layer is appended to obtain the final feature map. To reflect the probability of predicting a
mass or non mass, an activation function, sigmoid, is used on the last layer. From the pre-
dicted mask, a bounding box with the confidence score is calculated which expresses the
probability of identified region as mass multiplied with the percentage of the intersection
over union (IoU) between the ground truth and the predicted boxes. More details about the
encoder and decoder are presented in the upcoming subsections.

2.2.1 Encoder section

Encoder, also called as the contraction path, is used to extract the features from the image.
Encoder starts with an input image of size hjux X hjny X e where hi,y and h;y, are spatial
dimensions of the image with n. as channel dimension. In the present work, the values of
hinx X hiny X n. are set as 224 x 224 x 1, respectively. A 3 x 3 convolution is combined
with the batch normalization and Rectified linear unit (ReLU) as an activation function. The
rectified feature map is further operated with 2 x 2 max pooling function which is useful for
extracting the extreme features such as edges. The operators of convolution, ReLU, and max
pooling is applied iteratively and the feature map obtained at each iteration is concatenated
to the decoder module as shown in Fig. 2. This concatenation operation helps to avoid loss of

@ Springer



Multimedia Tools and Applications (2023) 82:44819-44840 44825

significant information. Moreover, a drop out of 0.5 is also added to the network of encoder
to avoid overfitting problems.

2.2.2 Decoder section

Decoder, also called as the expansion path, is used to provide precise localization using
transposed convolution. In contrast to the encoder, it does upsampling with convolutional
block of transposed convolution. The up-sampling stage allows network to transfer context
information from the low spatial resolution layer to the higher spatial resolution layer. The
depth of the image is decreases gradually with increase in the dimensions of the image.
The upsampling stage retrieves the information in addition to the measures provides by the
concatenation of its counterpart from encoder. The last layer employs a 1 x 1 convolution
to map each 16-component feature vector to the desired number of classes. The proposed
architecture for automatic detection of mammographic masses using U-Net is illustrated in
Fig. 2. The number of encoder and decoder blocks is kept equal while the number of filters
increase and decrease in encoder and decoder parts, respectively. The output of a decoder is
also of size hyyr X hin x n and the relationship between #;, and h,,; can be expressed as:
how = M2 ()
s
where, h;, and h,,; represents number of input and output features, respectively with n as
convolutional kernel size of 3 x 3, p indicates convolutional padding of same while the
convolutional stride size of 2 is represented by s.

2.3 U-Net based classification

The characterization of correctly identified mass lesions are conducted via same U-Net
structure with slight modifications in the architecture. The correctly detected mass regions
are cropped automatically and fed as an input to the encoder part of U-Net. The encoder path
consists of two consecutive 3x3 convolutional layers, batch normalization, and ReLU as an
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Fig.3 Proposed U-Net architecture for characterization of masses
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activation function followed by max pooling operation with a stride of 2. So, in encoder
path, the feature maps get doubled at each step and becomes 256 from 16. The decoder part,
also called as upsampling path, consists of 2x2 convolutional transpose layer and concate-
nation layer which add features from equivalent encoder path as shown in Fig. 3. This is
followed by two consecutive 3x3 convolutional layers with batch normalization and ReLU
as an activation function. In decoder path, the feature maps go down at each step from 256
to 16. Drop out of 0.5 is also added at every step in encoder and decoder to avoid overfitting
of the model. At the end of the decoder path, flatten, drop out of 0.5 and two fully connected
layers with 128 and 64 nodes are used followed by the softmax layer which is used to pre-
dict the masses as benign or malignant. The introduced network for diagnosis is represented
in Fig. 3.

3 Experimental set up

The proposed deep learning architecture for the localization and characterization of mam-
mographic masses is examined on a workstation with Intel(R) Xenon(R) processor clocked
at a speed of 3.60 GHz with 64GB RAM and NVIDIA Quadro RTX 4000 GPU. The
implementation is done using Python, OpenCv, and Keras, where CUDA , cuDNN library
developed by NVIDIA using Tensor flow. The evaluation is conducted on the benchmark
datasets— DDSM and INbreast with data augmentation as discussed in Section 2.1. The
augmented dataset is randomly splitted in the ratio of 60:20:20 for training, testing, and
validation purposes, respectively. The 5-fold cross validation is performed for all detection
deep learning models: Faster R-CNN [35], RetinaNet [27], and the proposed U-Net. For
training all these models, Adam optimizer with binary cross entropy loss function is used
where the number of epochs is set to 100. In the detection stage, the probable region of mass
may be decided on different values of threshold but in the present study, the threshold value
is set to 0.3 as lower than this value will result in higher FPs while the values greater than
this will have high missed cases as observed from various experiments. However, the final
call of a mass detected (True positive) is done by considering intersection over union (IoU)
criteria [9]. Intersection over Union (IoU) is an assessment metric which is used to measure

the accuracy of detection algorithm on a dataset. IoU can be defined as:
IoU=7|A|ﬁ|BI 2

|AlUB|

Where A is the bounding box drawn on ground truth mask, B is the bounding box drawn
on predicted mask from model. Bounding box indicates a rectangular region formed by the
coordinates of its top left and the bottom right point of the contour of the ground truth as
provided along with the dataset and the indentified mass lesions. So, IoU is simply the ratio
of area of intersection with respect to area of union among ground truth mask and predicted
mask. The aim of model would be to keep improving the prediction so that the IoU between
the two boxes becomes equal to 1. AUC ROC is a curve [29] which shows the performance
of a classification model at all classification thresholds and free-response operating charac-
teristic (FROC) curve shows the accuracy of detected mass which is plotted between true
positive rate versus false positive per image. F1-score sums up the predictive performance
of a model by combining two competing matrices— precision and recall. Precision is one
indicator of a model’s performance which refers to the number of true positives divided
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by the total number of positive predictions. The Recall is the measure of model correctly
identifying True Positives. The expressions for the same are as follows:

o TP

Precision = ———— 3

TP+ FP

o TP
Sensitivity = Recall = ———— 4
TP+ FN

Specificit N (5)

ecificity = ———

p YT INYFP

2xTP

F1 —score = (6)

2*TP+FP+FN

where TP indicates true positive; TN is true negative; FP is false positive, and FN is false
negative. Adding to these, FPR, MCC and Kappa co-efficient are also measured. FPR (false
positive rate) defines how many incorrect positive results occur among all negative samples
available during the test, MCC(Mathew’s correlation coefficient) shows the ineffective-
ness of the classifier in classifying especially the negative class samples and k (Kappa
co-efficient) is a measure of how closely the classified label matched with ground truth [12].
So, the higher the kappa coefficient, the more accurate the classification is. The definitions
for all the metric are as follows:

TP+TN
Acuuracy = (7
TP+TN+FP+FN
FP
FPR= —— ®)
FP+TN
TP+«TN —-FPxFN
MCC = - - ®
VTP+FP)x(TP+FN)«x(TN+ FP)x(TN + FN)
2%x(TPxTN — FPxFN)
(10)

k:
(TP+ FP)x(TN+ FP)+(TP+ FN)*x(TN+ FN)
3.1 Materials
3.1.1 INbreast

The INbreast database is prepared in Centro Hospitalar de S. Joao (CHSJ) hospital, Breast
Centre, Porto [30]. The images are acquired by MammoNovation Siemens FFDM having a
pixel size of 70 um , 14 bit resolutions, and image sizes of 3328 x 4084 or 2560 x 3328.
Database consists of a total of 115 cases of women with mediolateral oblique (MLO) and
craniocaudal (CC) views accounting to a total of 410 mammograms. Out of these, there are
106 mammograms with mass lesions (37 benign and 69 malignant cases) which has been
considered in the current work. The annotations about the anomalies, defined by skilled
radiologists, are provided along with the database.

3.1.2 DDSM
The Digital Database of Screening Mammography (DDSM) dataset is also a publicly

available dataset [22] managed by the University of South Florida. The mammograms
are digitized at spatial resolutions of 50 pum/pixel, 43.5 pum/pixel, and 42 pwm/pixel with
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gray-level resolution of 16 and 12 bits/pixel. DDSM also contains MLO and CC views.
The present work employs 1000 mammograms selected randomly out of which 300 cases
belongs to benign while the remaining are malignant in nature. The annotations about
the abnormalities are also available along with the dataset. The sample mammograms for
DDSM as well as INbreast dataset are shown in Fig. 4.

(c) (d)

Fig. 4 [a-b] illustrates the sample mammograms from INbreast dataset while [c-d] represents the images
from DDSM dataset. Blue color contour indicates the mass region containing benign cases in [a] and [c]
while malignant cases in [b] and [d]
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4 Results
4.1 Mass detection

The proposed U-Net deep learning model is investigated on publicly available database
namely INbreast and DDSM and the outcomes for mass detection obtained with five-fold
cross validation are provided in Tables 2 and 3 for respective datasets. Tables 2 and 3
present a comparative analysis of the proposed approach in mass identification with and
without data augmentation. Initial study without data augmentation obtained a sensitivity
of 91.71%, with precision, F-1 score and FPs/I are 85.87%, 85.69% and 0.53, respectively
for the INbreast dataset while the same for the DDSM are 89.86%,87.60% , 88.71% and
0.62 respectively. When the analysis is extended with data augmentation of 4 times, Sen-
sitivity (Sen), precision, F1, and FPs/I for INbreast improved to 93.82%, 90.71%, 92.10%
and 0.40, respectively and the same for DDSM dataset are 90.46%, 90.24%, 90.35% and
0.55. The 4x augmentation has shown slight improvement in the performance. Therefore, 8
x augmentations is performed where 99.64%, 99.64%, 99.63% and 0.25 is observed as Sen,
precision, F1, and FPs/I respectively for INbreast dataset while the same for DDSM are
97.36%,98.06%, 97.71% and 0.38, respectively. It can be observed that the performance
with 4 times augmentation doesn’t improve much as compared to 8 times on both the
datasets. But the analysis is limited to 8 times to avoid computational complexity. In case
of detection, it is necessary to achieve high value of recall than precision because the recall
measures the model’s ability to detect positive samples and the same can be observed from
Tables 2 and 3 which establishes the efficiency of the proposed model. The same observa-
tion at different augmentation is compared in terms of FROC curves are illustrated in Figs. 5
and 6 for the INbreast and DDSM datasets, respectively. The FROC curve represents the
tradeoff between the FPs/I and TPR and the curve between the two is expected to cover the
maximum region. The more is the area the better is the performance in detection. Ideally,

Table 2 Mass detection results obtained via proposed approach for 5-fold cross validation using INbreast
dataset

Parameters Ist Fold  2ndFold 3rdFold 4thFold  Sthfold  Average
Original Sen=Rec (%) 80 92.86 92.86 92.86 100 91.71
Data Precision (%) 80 86.67 92.86 76.47 93.33 85.87
set Fl-score (%) 80 86.19 91.65 76.33 94.28 85.69
FPs/Image 0.60 0.50 0.50 0.50 0.57 0.53
Data Sen=Rec (%) 96.36 83.64 94.55 100 94.55 93.82
Augmentation Precision (%) 85.48 93.88 88.14 94.83 91.23 90.71
(x4) Fl-score (%) 90.60 88.46 91.23 97.35 92.86 92.10
FPs/Image 0.40 0.39 0.42 0.36 0.42 0.40
Data Sen=Rec (%) 99.09 100 99.09 100 100 99.64
Augmentation Precision (%) 99.09 100 100 100 99.09 99.64
(x8) Fl-score (%) 99.09 100 99.54 100 99.54 99.63
FPs/Image 0.27 0.23 0.28 0.23 0.23 0.25

Bold values indicate the average value performance of proposed approach U-Net for mass detection via 5-
fold cross validation using INbreast dataset for Original dataset, with 4 times data augmentation and 8 times
data augmentation technique
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Table 3 Mass detection results obtained via proposed approach for 5-fold cross validation using DDSM
dataset

Parameters Ist Fold  2nd Fold  3rd Fold  4th Fold  5Sthfold  Average
Original Sen=Rec (%) 88.57 88.57 89.29 90 92.86 89.86
Data Precision (%)  86.11 86.71 87.41 88.73 89.04 87.60
set Fl-score (%) 87.32 87.63 88.34 89.36 90.91 88.71
FPs/Image 0.64 0.64 0.62 0.61 0.57 0.62
Data Sen=Rec (%) 88.39 91.07 90.54 90.36 91.96 90.46
Augmentation Precision (%)  89.19 89.63 90.21 91.17 90.99 90.24
(x4) Fl1-score (%) 88.79 90.35 90.37 90.76 91.47 90.35
FPs/Image 0.63 0.54 0.55 0.56 0.49 0.55
Data Sen=Rec (%) 96.96 97.32 97.41 97.32 97.77 97.36
Augmentation Precision (%) 97.31 98.2 98.11 98.29 98.38 98.06
(x8) Fl-score (%) 97.14 97.76 97.76 97.8 98.07 97.71
FPs/Image 0.40 0.38 0.38 0.38 0.36 0.38

Bold values indicate the average value performance of proposed approach U-Net for mass detection via 5-
fold cross validation using DDSM dataset for Original dataset, with 4 times data augmentation and 8 times
data augmentation technique

the curve along Y-axis should be straight and have less bending towards X-axis that indi-
cates higher TPR with minimum FPs/I which is desired from every system performance.
The same can be observed with x8 augmentation having a TPR of 99.64% with 0.25 FPs/I
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Fig. 5 Performance of the introduced mass detection scheme in terms of FROC curve for INbreast dataset
with different variations of data augmentation
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Fig. 6 Performance of the introduced mass detection scheme in terms of FROC curve for DDSM dataset
with different variations of data augmentation

for INbreast dataset and the same for DDSM are 97.36% and 0.38 as shown in Figs. 5 and
6, respectively. The outcome of the proposed model in detection over some sample mam-
mograms is demonstrated in Figs. 7 and 8 for INbreast and DDSM datasets, respectively.
Blue contour indicates the ground truth while the rounding box represents the indentified
mass region. The IoU mentioned over the output mammograms indicates the close fit of the
rounding box over the mass lesions. Higher the value of IoU, the better is the case for detec-
tion and the same can be observed from Figs. 7 and 8 where IoU value observed is greater
than 0.9. The proposed method is unable to detect only 4 masses out of 848 for INbreast
dataset and 255 masses out of 8000 for DDSM dataset.

4.2 Mass classification

Since, the performance of the dataset augmented 8 times (x8) gives the optimal tradeoff
between the sensitivity and computational complexity hence the correctly identified mass
cases for both the INbreast and the DDSM datasets are considered for the diagnosis. The
total number correctly identified mass lesions for INbreast is 844 and for DDSM dataset is
7745 which are splitted in the ratio of 60:20:20 for training, validation, and testing respec-
tively with 5-fold cross-validation technique. The obtained results in terms of confusion
matrix, sensitivity, specificity, accuracy, AUC, Fl-score, FPR, MCC and k for each fold
are summarized in Tables 4 and 5, respectively. The proposed system provide better results
over all 5-fold cross validations in all measurements as can be seen from Tables 4 and 5. In
an average, 97.07% of malignant masses are diagnosed correctly with 97.98% for benign
in case of INbreast dataset while the same for the DDSM are 97.67% and 94.69%, respec-
tively. The overall sensitivity, specificity, accuracy, and AUC over INbreast mammograms
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are 97.07%, 97.97%, 97.39%, and 0.97, respectively. The same respective parameters when
evaluated on the DDSM datasets are 97.66%, 94.68%, 96.81%, and 0.96. In case of uneven
class distribution, F1 Score is more critical parameter than accuracy. From Tables 4 and 5, it
can be observed that F1 Score is higher for both the datasets than the accuracy i.e. 98% for
INbreast dataset and 97.8% for DDSM dataset. A correlation of 94.37% for INbreast and
92.25% for DDSM dataset signifies that the predicted class and the true class are strongly
correlated. k value obtained for INbreast and DDSM dataset are 0.94 and 0.92 shows the
classification is almost perfect. The results of classification show the feasibility of the pro-
posed system, minimizing the false positive and negative rates. A ROC curve of the same
for both the datasets is depicted in Fig. 9. The area with the curve and the X-axis as the
boundaries is called AUC. An AUC score of 0.97 for INbreast and 0.96 for DDSM dataset
means that the model is able to successfully distinguish the benign and malignant masses
with high sensitivity and low false positives.

Fig. 7 Mass detection results on images of INbreast dataset with [a],[c] and [e] represents the ground truth
whereas [b],[d] and [f] represent the detected mass. Blue contour represents the groundtruth and red box
represent the detection of mass.It also shows the IoU value in each case

@ Springer



Multimedia Tools and Applications (2023) 82:44819-44840 44833

(b) (d) 0

Fig. 8 Mass detection results on images of DDSM dataset with [a],[c] and [e] represents the ground truth
whereas [b],[d] anf [f] represent the detected mass. Blue contour represents the ground truth and red box
represent the detection of mass.It also shows the IoU value in each case

4.3 Statistical analysis and performance comparison

The analysis is extended further and a comparative study of the performance of the pro-
posed model against some of the competitive schemes, Faster R-CNN and RetinaNet, is
performed. The experimental set up, dataset, and performance evaluation parameters are
kept same as done in case of proposed model. The performances in detection presented in
Table 6 is the average of the all the values obtained from each fold of testing. The proposed
U-Net based deep learning model undoubtedly performed better than other methods. Simi-
lar observation can be made from Table 7 where classification performance of the proposed
U-Net model against Faster R-CNN and RetinaNet is provided. Again, the performance of
the proposed approach is better against both the methodologies. Moreover, a various statis-
tical analysis test are conducted such as t-test , Kolmogorov-Smirnov Predictive Accuracy
(KSPA) test ,Wilcoxon sign rank test[15], Friedman test [44] and Branin, Extended Beale
test [26] etc. In this paper t-test is carried out to establish the superiority of the proposed
approach. Smaller value of p indicates more confident about the null hypothesis being false.
If p value is below significance level of 0.05 then we can reject the null. From Table 6, p
values of 0.02, 0.04, and 0.04 for FPs/I, sensitivity, and precision can be observed when
compared against RetinaNet while for Faster R-CNN, the values are 0.006, 0.04 and 0.05
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Table4 Experimental results of proposed model for mass classification in INbreast dataset with 5-fold cross
validation

Fold Actual Predicted Classes Sen Spe Acc AUC Fl-score FPR MCC k

No. classes Benign Malignant (%) (%) (%) (%) (%)

Ist Benign 100 0 9537 100 97.04 097 98 0 93.89 0.94
Malignant 4.63 95.37

2nd Benign 98.18 1.82 98.24 98.18 9822 0.98 99 0.02 9598 0.96
Malignant 1.75 98.25

3rd Benign 98.15 1.85 9739 98.14 97.63 097 98 0.02 94.64 0.95
Malignant 2.61 97.39

4th Benign 96.77 3.23 98.13 96.77 97.63 0.97 98 0.03 9491 0.95
Malignant 1.87 98.13

Sth Benign 96.77 3.23 96.22 96.77 9642 0.96 97 0.03 9241 0.92
Malignant 3.77 96.23

Average Benign 97.98 2.02 97.07 9797 97.39 097 98 0.02 94.37 0.94
Malignant 2.93 97.07

Bold values indicate the average value of experimental results using 5-fold cross validation for proposed
models in mass classification in INbreast dataset

which signifies that the proposed model is statistically significant . Similar analysis is con-
ducted in case of classification and results are mentioned in Table 7 where, again, it can be
observed that for both Faster R-CNN and RetinaNet, model probability of no difference is
very small, so the null hypothesis can be rejected. Figure 10 shows the mean value obtained

Table 5 Experimental results using 5-fold cross validation for proposed model in mass classification of
DDSM dataset

Fold Actual Predicted Classes Sen Spe Acc AUC Fl1-Score FPR MCC k

No. classes Benign  Malignant (%) (%) (%) (%) (%)

Ist Benign 82.30 17.70 92.01 8229 89.28 0.87 93 0.18 73.70 0.74
Malignant 7.99 92.01

2nd Benign 97.59 2.41 98.53 97.59 9825 098 99 0.02 95.83 0.96
Malignant 1.47 98.53

3rd Benign 97.41 2.59 99.35 974 98.77 098 99 0.03 97.07 0.97
Malignant 0.64 99.36

4th Benign 97.64 2.36 99.07 97.63 98.64 098 99 0.02 96.78 0.97
Malignant 0.92 99.08

Sth Benign 98.51 1.49 99.35 98.51 99.09 0.98 99 0.01 97.86 0.98
Malignant 0.65 99.35

Average Benign 94.69 5.31 97.66 94.68 96.81 096 97.8 0.05 92.25 0.92
Malignant 2.33 97.67

Bold values indicate the average value of experimental results using 5-fold cross validation for proposed
models in mass classification in DDSM dataset
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Table 6 Comparison of detection performance of proposed system with other methods on the test set

Detection Parameter

Dataset Method Sensitivity FPI Precision
Faster R-CNN 0.92 0.76 0.94
INbreast Proposed 0.99 0.25 0.99
Faster R-CNN 0.91 0.90 0.92
DDSM Proposed 0.97 0.38 0.98
p value 0.04 0.006 0.05
INbreast RetinaNet 0.91 0.82 0.92
Proposed 0.99 0.25 0.99
DDSM RetinaNet 0.9 1 0.9
Proposed 0.97 0.38 0.98
p value 0.04 0.02 0.04

during testing with respect to both the competitive schemes where it can be observed that
the mean value for each parameter of the proposed approach is better with respect to the

other method.
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Fig.9 ROC curve showing the performance of the proposed architecture in mass classification for the DDSM

and INbreast dataset
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Fig. 10 Box plot showing a comparison of mean value of all parameters observed from the proposed
approach against RetinaNet and Faster R-CNN model

5 Discussion

In this paper, a new automatic deep learning based U-Net architecture is designed for detec-
tion and classification of mammographic masses. The architecture is investigated on two
publicly available datasets— INbreast and DDSM. The analysis includes the incorporation
of data augmentation to increase the number of samples to train the models more efficiently.
This resulted in enhanced performance of the proposed architecture. Not only in detection
stage, the first time investigated U-Net architecture in classification has also demonstrated
promising performance and achieved an accuracy of 97.39% with an AUC and F1-score
of 0.97 and 98%, respectively for the INbreast dataset. For the DDSM dataset, accuracy of
96.81% is measured with AUC of 0.96 and F1-score of 97.8%. The best results are compared

Table 7 Comparison of classification performance of proposed system with other methods on the test set

Classification parameter

Dataset Method Accuracy AUC
Faster R-CNN 0.87 0.91
INbreast Proposed 0.97 0.97
Faster R-CNN 0.85 0.89
DDSM Proposed 0.96 0.96
p value 0.03 0.04
INbreast RetinaNet 0.86 0.9
Proposed 0.97 0.97
DDSM RetinaNet 0.84 0.88
Proposed 0.96 0.96
p value 0.02 0.04

@ Springer



Multimedia Tools and Applications (2023) 82:44819-44840 44837

Table 8 Comparison of proposed system with some of the existing methods for DDSM dataset

Detection Parameter Classification Parameter

Reference TPR at FPI Acc(%) AUC
Dhungel et al. [13] 0.75 at 4.8 - -
Dhungel et al. [14] 0.95at5 0.91 0.76
Casti et al. [10] 0.96 at 1.83 - -
Chakraborty et al. [11] 09at14 83.30% 0.92
Agarwal et al. [2] - 84.16% 0.93
Proposed method 0.97 at 0.38 96.81% 0.96

Bold values indicate the proposed approach performs better than some of the competing schemes for DDSM
dataset

with the results reported in the state-of-the-art for detection and diagnosis of masses as men-
tioned in Tables 8 and 9, respectively. Moreover, the performance of the proposed approach
is further compared with the other competing schemes— Faster R-CNN and RetinaNet
where the efficiency of these methodologies are measures keeping the same experimental
set up, dataset, and parameters as in the case of proposed approach and the outcomes are
provided in Tables 6 and 7 for detection and diagnosis of mass cases, respectively over both
the datasets. It can be observed from Tables 6 and 7 that the proposed approach takes an
edge over methods. Also, the statistical analysis conducted establishes the supremacy of the
proposed approach. Although the efficiency of the proposed framework is satisfactory, but
still in high density regions where the areas in and around the mass cases are difficult to dif-
ferentiate and in case of tiny lesions, more emphasis should be given. This may be overcome
by incorporating data augmentation by higher folds.

6 Conclusion

In this paper, a deep learning based integrated system for automatic detection and diagno-
sis of mammographic masses is proposed. The deep learning network incorporates U-Net

Table 9 Comparison of proposed approach with some of the existing methods for INbreast dataset

Detection Parameter Classification Parameter
Reference TPR at FPI Acc(%) AUC
Dhungel et al. [13] 0.96 at 1.2 - -
Agarwal et al. [2] 0.98 at 1.67 - -
Ribli et al. [36] 09at0.3 - 0.95
Al. Antari et al. [4] 0.98 95.64% 0.94
Agarwal et al. [1] 0.95at 1.14 - -
Proposed method 0.99 at 0.25 97.39% 0.97

Bold values indicate the proposed approach performs better than some of the competing schemes for INbreast
dataset
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architecture for the detection while the same is examined for the first time in classification.
The evaluation is conducted on two different standard databases— [Nbreast and DDSM. The
assessment includes data augmentation and studies its significance in model training and
efficiency of the system. With increase in the number of the samples for training and testing
due to augmentation, the performance has also improved which outperforms some of the
recent competitive schemes in the state-of-the-art. Although the performance is satisfactory,
but there is still a scope of improvement by the minimizing the FPs/I and improving the sen-
sitivity especially in case of DDSM database. Hence, Future work may incorporate deeper
architecture to detect the missed cases and also can be investigated to perform multiclass
classification of normal, benign, and malignant masses.
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