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Abstract
The rapid development of machine learning has increased interest in the use of deep
learning methods in medical research. Deep learning in the medical field is used in
disease detection and classification problems in the clinical decision-making process.
Large amounts of labeled datasets are often required to train deep neural networks;
however, in the medical field, the lack of a sufficient number of images in datasets and
the difficulties encountered during data collection are among the main problems. In this
study, we propose MediNet, a new 10-class visual dataset consisting of Rontgen (X-ray),
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, and
Histopathological images such as calcaneal normal, calcaneal tumor, colon benign colon
adenocarcinoma, brain normal, brain tumor, breast benign, breast malignant, chest
normal, chest pneumonia. AlexNet, VGG19-BN, Inception V3, DenseNet 121, ResNet
101, EfficientNet B0, Nested-LSTM + CNN, and proposed RdiNet deep learning algo-
rithms are used in the transfer learning for pre-training and classification application.
Transfer learning aims to apply previously learned knowledge in a new task. Seven
algorithms were trained with the MediNet dataset, and the models obtained from these
algorithms, namely feature vectors, were recorded. Pre-training models were used for
classification studies on chest X-ray images, diabetic retinopathy, and Covid-19 datasets
with the transfer learning technique. In performance measurement, an accuracy of
94.84% was obtained in the traditional classification study for the InceptionV3 model
in the classification study performed on the Chest X-Ray Images dataset, and the
accuracy was increased 98.71% after the transfer learning technique was applied. In the
Covid-19 dataset, the classification success of the DenseNet121 model before pre-trained
was 88%, while the performance after the transfer application with MediNet was 92%. In
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the Diabetic retinopathy dataset, the classification success of the Nested-LSTM + CNN
model before pre-trained was 79.35%, while the classification success was 81.52% after
the transfer application with MediNet. The comparison of results obtained from experi-
mental studies observed that the proposed method produced more successful results.

Keywords MediNet . Medical images . Classification . Transfer learning . RdiNet . Deep neural
networks

1 Introduction

Availability of data consisting of images [1], high level of distinguishing ability of deep
convolutional neural networks (CNNs), artificial intelligence (AI) technologies produce inno-
vative solutions with convolutional neural network-based deep learning algorithms in medical
researches [52]. Artificial intelligence technologies are essential in detecting current diseases or
predicting possible future diseases [39].

Artificial neural networks have been applied in many disciplines for cancer detection and
recently to detect and prevent COVID-19 disease [11, 38, 41]. Deep convolutional neural
networks from artificial neural networks have been proven successful in image processing
applications [3]. The deep learning algorithm is a supervised machine learning technique to
find the correct match between input data and output data with the relevant labeled data during
the training of a model with a labeled dataset [29]. Machine learning methods are a common
solution technique in classification problems and one of the leading research topics [31].
Machine learning methods are widely discussed for use in therapeutic applications [31]. One
of the machine learning methods, training of CNN-based deep learning architecture generally
performs well when done with large amounts of labeled datasets [27]. Deep neural networks
have been a frequently used method in problem-solving because they effectively solve
complex linear or nonlinear problems [40]. Deep learning in medical image analysis is
generally used in classification, segmentation, registration, detection, and localization studies
[24, 32]. It is possible to see examples of these studies in the literature. Researchers conducted
a six-class classification and segmentation study with 13,673 fundus images [33]. Another
research group used 129,450 clinical data to generate dermatologist-level results using deep
neural networks for a skin cancer classification study [16]. The researchers conducted a
classification study using pre-trained deep learning models on a brain dataset consisting of
3064 MRI images [42]. In general, for deep learning studies to be successful, large amounts of
labeled datasets containing hundreds of thousands of samples can be used [43]. However;
There are more unlabeled datasets in many areas, including the medical imaging field; many of
the labeled datasets that can be used in the medical field are limited, and labeling requires
expert radiologists or experts’ knowledge, meeting these needs is time-consuming and costly
[15]. For example, in a manual segmentation study with brain magnetic resonance (MRI)
images of six-month-old babies in the iSeg2017 competition, an experienced neuroradiologist
spent an average of one week for segmentation of each brain MRI data [51]. As a result, new
and efficient approaches are needed in order to produce high-performance results with a small
amount of data in studies to be carried out in the medical field.

Data augmentation method for increasing synthetic data in order to overcome the problem arising
from the insufficient datasets in medical image processing studies and solving the overfitting problem
in CNN algorithms [3, 46], semi-supervised learning, which is a method where the network trained
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with a small amount of labeled data, where predictions are produced for untagged data, then the most
appropriate ones among the predicted tags are selected, the network is retrained with the labeled data,
and the training process continues in this way [8] and inspired by human thought processes [4],
training a model on a source dataset (big data) and transferring the learned information to be used in a
target dataset (small size data) and techniques such as the transfer learning method [44], which is a
deep learning application, can be applied. The focus is on using pre-trained networks with transfer
learning to increase the success/performance of deep learning algorithms trained from scratch in
detecting Covid-19, detecting the severity level of eye diabetic retinopathy, and detecting brain tumors
[14, 36, 37, 50]. To achieve more successful results in image processing, it can often be necessary to
have large datasets. However, collecting and classifying these data is a time-consuming and costly
process. In addition, these data should be categorically separated to be used in image processing, and
specialists are needed here. To overcome the problem caused by the insufficiency of available data sets
in medical image processing studies, a heterogeneous MediNet dataset consisting only of medical
images has been proposed. In other words, with this project, we present a dataset that can be used in
transfer learning studies.

In this study, we introduce MediNet, a visual database consisting only of medical images
for transfer learning applications. MediNet dataset has ten classes consisting of foot, colon,
brain, breast, and chest images. MediNet dataset was trained one by one with deep learning
algorithms AlexNet, VGG19-BN, InceptionV3, DenseNet121, RdiNet, ResNet101,
EfficientNetB0, Nested LSTM + CNN models. Feature sets and weight vectors obtained from
pre-training models with transfer learning were retrained with the fine-tuning method for chest,
diabetic retinopathy, and Covid-19 datasets with all transfer learning algorithms and used in
disease detection. By transfer learning, we have pre-training a network with one dataset and
applying it to another dataset. The experimental results in the study are presented in the form of
products before and after transfer learning. Accuracy, Sensitivity, Specificity, Confusion
Matrix, ROC-AUC metrics were used to evaluate the models’ performance. As a result, we
believe that the proposed method will contribute significantly to medical image processing
studies. The general framework for the study is given in Fig. 1.

The contributions of our work can be summarized as follows:

1. The 10-category MediNet dataset consisting of only medical images that can be used in
the transfer learning process in medical imaging applications has been introduced.

Fig. 1 Framework of study
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2. In the evaluation of the transfer learning application proposed with the MediNet dataset;
AlexNet, VGG19-BN, InceptionV3, DenseNet121, ResNet101, EfficientNetB0, Nested-
LSTM + CNN, and proposed RdiNet deep neural networks and LSTM, GRU (eg,
DenseNet121 + LSTM, InceptionV3 + GRU, etc.), deep neural networks (eg.,
DenseNet121 + RdiNet, InceptionV3 + DenseNet121, etc.) recommended hybrid
methods were used.

3. The proposed transfer learning method has been evaluated in binary classification
studies with three datasets consisting of chest X-ray (Chest X-Ray Images Dataset)
and CT (COVID19-CT Dataset, Diabetic Retinopathy Dataset) medical imaging
techniques.

4. A training and validation testing approach was used in the classification studies with deep
neural networks. In addition, the K-fold cross-validation method was applied in the
transfer learning study conducted with the chest X-ray (CXR) dataset and the
InceptionV3 model. Experimental results in the application are given before and
after pre-training.

5. Another contribution within the scope of the study, the RdiNet deep neural network, for
which residual networks and additional feature vectors are developed, is proposed. The
proposed neural network can offer an alternative view of the vanishing gradient problem.

6. Fine-tuning method was applied in the transfer learning process.
7. Experimental results in the study are given comparatively before pre-trained (random

initialization) and after pre-trained (MediNet-based model).

The study has been designed under the following headings;
MediNet dataset is introduced in the second section; material and methods are explained in

Section 3, and experimental results are presented in Section 4. Next, Section 5 describes the
limitations of the study and the solution methods. Then, a discussion in Section 6 and
conclusions and future work are given in Section 7.

2 MediNet dataset

Data from five different imaging techniques, foot dataset as CT data, colon dataset as
pathology data, brain dataset as MRI data, breast dataset as ultrasound data, and chest dataset
as X-ray data were used. Each dataset has two categories within itself. In other words, there is a
dataset with ten classes in total and there are also 4348 medical images in the MediNet dataset.
In the pre-processing study, each of the images was resized to 224 × 224 with the image
module’s resize function in the PIL library. During the training phase, the data was divided
into 9: 1 (training dataset 3913; validation dataset 435 for model training). Table 1 shows the
medical imaging techniques of the data used in the MediNet dataset, the categories in the
dataset, the labels determined for ten categories, and the number of images belonging to each
category are given.

2.1 Description of images in MediNet dataset

Computed Tomography (CT): CT-scan consists of foot images. Calcaneus bone, one of the
foot bones, has 94 CT-images positive for calcaneal tumors and 155 CT -images negative. The
CT images in the dataset have different sizes, such as 784 × 862, 743 × 874, 868 × 880, and
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all images used in the study were resized to 224 × 224 [45]. Histopathology: For histopa-
thology data, the LC25000 dataset was used. This dataset contains colon_image_sets and
lung_image_sets datasets. There are 25,000 images in total. All images are 768 × 768 in size
and .jpg format. In the colon dataset; there are two classes: colon adenocarcinoma and benign
colon tissue. There are 5000 images in colon adenocarcinoma and 5000 images in Colon
benign tissue. There are a total of 10,000 images in the colon dataset. In the lung dataset; there
are three different classes: lung adenocarcinoma, lung benign tissue, and lung squamous cell
carcinoma. There are 5000 images in Lung adenocarcinoma, 5000 images in benign lung
tissue, and 5000 images in lung squamous cell carcinoma. There are a total of 15,000 images
in the lung dataset. However, due to the RAM capacity of our personal computer, the data
numbers are used as follows. 800 images were used in the Colon adenocarcinoma class, and
800 images were used in the Colon benign tissue class. All images used in the MediNet dataset
were resized to 224 × 224 [6, 7]. Magnetic Resonance Imaging (MRI): brain MRI-
images was used. It consists of two classes as tumorous and non-tumorous (i.e., healthy)
data according to the condition of the tumor. The number of tumor data is 155, and the
number of healthy data is 98. The medical images in the dataset are in different sizes,
such as 630 × 630, 300 × 168, 200 × 252, and all images used in the study were
resized to 224 × 224 [9, 26]. Ultrasound; It consists of breast images. There are two
types of classes in the Breast dataset: Breast Benign and Breast Malignant. There are 437
images in the Breast Benign dataset and there are 210 images in the Breast Malignant
dataset. All images in the dataset used in the study were resized to 224 × 224 [2]. X-ray:
Chest X-Ray images were used for the X-ray dataset. The dataset consists of two
categories: 5856 X-Ray images in .jpg format and Pneumonia / Normal. There are
1583 data in the normal images, 4273 images in the Pneumonia dataset, and 5856
images in total. In the project, 800 images were used in the Normal and 800 images
were used in the Pneumonia dataset. The dataset consists of different sizes such as 712
× 439, 1240 × 840, 2090 × 1358. All images in the dataset used in the study were
resized to 224 × 224 [23, 25]. MediNet dataset is a database of medical images. We aim
to use the dataset in transfer learning applications. In Fig. 2, examples of images used in
the database are given. While 3922 medical images in the MediNet visual database were
used in the training of the deep neural networks within the scope of the study, 436
medical images were used for the validation dataset of the deep neural networks
(Table 2).

Table 1 MediNet Data Category Labels

Medical Imaging Technique Label Category Number of Images Year

Computed Tomography (CT) 0 calcaneal healthy (tumor no) 155 2017
1 calcaneal tumor (tumor yes) 94

Microscopic Imaging 2 colon benign tissue 800 2020
3 colon adenocarcinoma 800

Magnetic Resonance Imaging (MRI) 4 brain healthy (tumor no) 98 2019
5 brain tumor (tumor yes) 154

Ultrasound 6 breast benign 437 2018
7 breast malignant 210

X-ray 8 chest normal 800 2018
9 chest pneumonia 800
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3 Material and method

The MediNet dataset, by ten classes, was trained with deep learning algorithms. Then we used
these pre-training models for classification applications in the chest, Covid-19, and eye
datasets. Ten-classes training was carried out with deep learning algorithms AlexNet,
VGG19-BN, InceptionV3, DenseNet121, ResNet101, EfficientNetB0, Nested-LSTM +
CNN with the Medinet dataset. A binary classification study was carried out on three separate
datasets consisting of medical images with the transfer learning study of the obtained weight
vectors. Accuracy, Sensitivity, Specificity, Confusion Matrix, and ROC AUC metrics were
used to evaluate the results of binary classification studies.

In Section 1, datasets used in binary classification are introduced in the following. Infor-
mation about the deep learning models used in the study is given in Section 2. Section 3, the
theoretical framework for training deep neural networks, is given. Then, in Section 4,
hyperparameters used in deep neural networks are given. The transfer learning study is
explained in Section 5. In Section 6, the hybrid models suggested in the study are given. In
Section 7, the Fine-Tuning application is explained. In section 8, the theoretical framework of
the K-fold cross-validation method is given and in section 9, information about the perfor-
mance metrics used.

3.1 Datasets used in the classification

In this study, datasets consisting of chest X-ray and CT images were used. Chest X-ray images
[25] consist of chest X-ray images (1547); it consists of normal, pneumonia categories and
randomly selected data.

COVID-19 CT-Scans [19] consist of CT images consisting of non-COVID-19, COVID-19
categories, and 746 images. Another dataset of CT images used is Diabetic Retinopathy
images (915) [17]; It consists of two categories, symptoms and no symptoms. In the
classification, 90% of the chest X-ray and CT dataset samples (training dataset +
validation dataset) were used to train the models, and 10% of the data was used in the
testing process (Table 3). Sample data of Chest X-ray and CT images are shown in
Fig. 3.

Fig. 2 Medical image examples
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3.2 Deep learning models

In obtaining weight vectors and classification in the study, AlexNet [30], VGG19-BN [47],
InceptionV3 [48], DenseNet121 [21], ResNet101 [18], EfficientNetB0 [49], Nested-LSTM
[35] + CNN, and proposed RdiNet deep learning algorithms were used. The flow chart of
VGG19-BN, InceptionV3, Nested-LSTM + CNN, ResNet101, and DenseNet121 architectures
is given in Fig. 4.

3.2.1 AlexNet

Krishevsky et al. (2012) proposed the AlexNet model, 5 convolution layers, it is a
Convolutional Neural Networks (CNN) based architecture with 1000 classes in its initial
architecture, consisting of 3 pooling layers and 3 fully connected layers. The output layer of
the architecture consists of the softmax layer.

The image input size of the architecture is 227 × 227.

Fig. 3 Examples of chest x-ray images, covid-19 CT images and diabetic retinopathy images
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Fig. 4 Architectures of the four CNN base classifiers: (a) VGG19-BN, (b) InceptionV3, (c) Nested-LSTM +
CNN, (d) ResNet101, and (e) DenseNet121
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3.2.2 VGG19

According to Simonian et al. (2014) is a CNN-based architecture with 16 convolution layers,
three fully connected layers, five max-pooling, and 1000 classes in the initial architecture. The
output layer of the architecture consists of the softmax layer. The image input size of the
architecture is 224 × 224.

3.2.3 InceptionV3

Szegedy et al. (2014) is the GoogLeNet architecture introduced in the ILSVRRC ImageNet
competition.

The architecture was the most successful model with the lowest error value in the
competition.

Additional feature vectors have been proposed to solve the gradient disappearance problem
in hierarchical feed-forward neural networks. The architecture consists of approximately 24
million parameters and consists of 154 layers. The image input size of the architecture is 299
× 299. The backbone of the Inception architecture consists of Inception modules A, B, C
modules and Reduction modules.

In Inception module A, there are four 1 × 1, three 3 × 3 convolution layers, and 3 × 3
average pooling. Inception module B includes 4 1 × 1, three 7 × 7 convolutions, and 3 × 3
average pooling. The symmetrical 7 × 7 convolution layer in the module is divided into
asymmetrical 7 × 1 and 1 × 7 convolution layers. There are 4 1 × 1, 3 × 3
symmetric convolution layers and 3 × 3 average pooling in Inception module C. The
symmetrical 3 × 3 convolution layer is divided into asymmetrical 3 × 1 and 1 × 3
convolution layers.

The reduction module includes an asymmetric convolution network, max pooling, and a
parallel symmetric convolution network method is applied in the module.

3.2.4 DenseNet121

Huang et al. (2017) suggested a proposed method that increases features’ use in solving the
gradient disappearance problem. In architecture, each layer is directly linked to all previous
layers. Attributes collected in a specific layer are combined with the concatenate layer.
DenseBlock in the DenseNet-121 architecture forms the backbone of the architecture. The
architecture consists of 224 × 224 input size, 121 layers, four dense blocks, three transition
layers, a softmax, and an output layer.

3.2.5 ResNet101

He et al. (2016) proposed the residual network method in ResNet architecture to solve the
gradient disappearance problem. ResNet architecture consists of 50, 101, and 152 layers
according to the number of layers. In this study, ResNet-101 architecture was used. The
architecture consists of approximately 45 million parameters and consists of 224 × 224 input
sizes and 101 layers.
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3.2.6 EfficientNetB0

According to Tan et al. (2019) suggested. The architecture is built using the squeeze-and-
excitation blocks and inverted bottleneck residual blocks structures in the MobileNetV2
architecture. The authors proposed the Swish (product of linear and sigmoid activation)
activation function within the scope of the study. The architecture, which consists of approx-
imately 5.3 million parameters, consists of a 224 × 224 input size.

3.2.7 Nested-LSTM

Moniz et al. (2018) suggested. Nested LSTM architectures are used to solve the vanishing
gradient problem experienced in the proposed architecture RNN architecture. Nested LSTMs
increase the depth of LSTM architectures over stacked LSTM. The proposed architecture
outperforms LSTM and stacked LSTM architectures.

3.2.8 Proposed RdiNet model

Deep convolutional neural networks have produced high performances in image processing
[22].

Here, the depth of the architectures is generally increased for the performance increase in
the classification, detection, and segmentation studies of the architectures. However, as the
depth of the deep neural networks increases, the problem of gradient loss arises in the
backpropagation process. As a result, the weights cannot be updated in the networks due to
the gradients lost in the backpropagation process, and in this case, the training of the
architectures will be difficult. The RdiNet deep neural network architecture proposed in this
study is developed with residual networks and additional feature vectors, offering an alterna-
tive view of solving gradient disappearance. RdiNet architecture is designed using the
TensorFlow Keras library. RdiNet architecture is basically developed with Residual Blocks
(ResBlocks), Inception module, Dense Blocks, and Transition Layer. The flow chart of the
RdiNet architecture is given in Fig. 5, and the technical information of the architecture is
shown in Table 4.

3.3 Training of deep learning algorithms

In this section, the theoretical framework of the training and testing phases of deep neural
networks is given.

3.3.1 Implementation details

90% of the datasets consisting of CXR and CT images were used in training (the validation
dataset consists of 20% of the training dataset), and 10% were used in the test set. In the study,
input shape 224x224x3, number of epochs = 50, batch size = 64, patience = 2, factor = 0.5,
save best only = true, mode = min, monitor = “val_loss”, metrics = [‘accuracy’ in deep
neural networks], loss = categorical crossentropy, optimization = adam, and learning rate =
1e−06 parameters were used (Table 5). The learning rate value of the models was reduced by
0.5 (factor) in training in cases where learning did not occur (if the validation loss value does
not decrease during 2 (patience = 2) cycles). The categorical cross-entropy loss function used
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in deep neural networks measures the difference between the actual and the predicted value.
The man optimization function used in deep neural networks is one of the standard and most
effective method used in gradient descent optimization to reduce cross-entropy loss. Gradient
descent optimization is a popular method used to minimize the training error of models. Deep
neural networks were trained with the training/validation dataset for 100 cycles on 50 CT
medicine images from CXR medical images. Among the weight vectors obtained from
the loop, the lowest vector according to the validation loss value was used for the
test.

Fig. 5 Architecture of the proposed RdiNet algorithm
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3.3.2 A performance audit of their architecture

Binary classification of datasets consisting of deep neural network architectures CXR and CT
medical images were also used. In classification, deep neural networks were trained and tested
with the train-validation-test approach. To improve the performance of deep neural networks,
the proposed MediNet medical dataset and transfer learning technique, LSTM, and GRU from
RNN methods, hybrid method, and hybrid methods in which deep learning algorithms are
used together were applied. In addition, the K-fold cross-validation method with CXR medical
images was applied to evaluate the transfer learning approach proposed with the MediNet
dataset. Confusion metrics (CM), accuracy (ACC), sensitivity (SN), positive predictive value
(PPV), cohen’s kappa (κ), f1-score (F1), training loss/training accuracy, validation loss in
empirical outcome evaluation of deep neural networks /validation accuracy graphs were used.

3.4 Deep learning algorithms hyper-parameters

This section gives the theoretical background of the hyperparameters used in the proposed
deep convolutional neural networks. Hyperparameters are given in Table 5. The
hyperparameters used were determined as a result of the experimental process.

Input Shape; Input layer size in deep neural networks. Epoch; The number of cycles in
training deep neural networks. Batch size; is the number of subsamples used simultaneously in
forward/backward propagation of deep neural networks during training. It may vary depending

Table 4 The detailed structure of the proposed RdiNet. The “@” represents the kernel size value, and the “&”
represents the strides value. “||” or connector. BN: BatchNormalization. The output size values in the 4 x RdiNet
module are the outputs of the latest module

Stages Layers Output size

Input Image Input Layer 224x224x3
Stem Layer Conv2D(64) @5×5 &2×2+BN+ReLU 112x112x64

MaxPooling2D 37×37×64
4 x RdiNet Block ResNet-Inception Blok (64, 128, 156, 128, 64, 32) @1×1||3×3||5×5 &1×1 37x37x316

Transition Katmanı (128, 196, 256) @5×5 &2×2+BN+ReLU 37x37x128
Concatenate Katmanı 37x37x772

Classification
Block

GlobalMaxPooling2D 772
Softmax 2

Table 5 Parameters Used in Deep
Learning Models Hyper parameters Value

Input Shape 224x224x3
Epoch 50/100
Batch size 64
Patience 2
Factor 0.5
Save Best Only true
Mode ‘min’
Monitor ‘val_loss’
Metrics ‘accuracy’
Loss ‘categorical_crossentropy’
Optimizer ‘adam’
Initial learn rate 1e-06
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on the ram capacity. Patience; the number of cycles in which the loss value does not decrease
(training stops). After the patience value, the learning rate value decreases with the factor
value. Factor; The amount that the learning rate will decrease. Metrics; list of metrics evaluated
by models. Monitor_SaveBestOnly_Mode; deep neural networks generate a weight vector at
the end of each cycle. Here, the weight vector with the lowest (mode: “min”) validation loss
(monitor: ‘val_loss’) value according to the Monitor_SaveBestOnly_Mode parameters was
recorded (save best only) and evaluated empirically with the test dataset. Learning rate; rate of
convergence of backpropagation. Loss Function; It is called minimizing the objective function
value. Within the scope of the study, categorical cross-entropy was used. The mathematical
output of the categorical cross-entropy function is:

LCCE y;by
� �

¼ −
1

N
∑
m

i¼0
∑
n

j¼0
yij * log byij

� �� �
ð1Þ

where; ŷ prediction and y real value.
In this study, Kingma et al. (2014) proposed the Adam (Adaptive Momentum) optimization

function [28]. The Adam function is a Gradient Descent algorithm used to reduce the cross-
entropy loss. The Adam optimization function has been developed with a hybrid approach
with momentum and Adagrad methods. As a result of the use of the Adagrad function, a
learning problem has arisen. Here, the Root Mean Square Propagation (RMSprop) method has
been applied to solve the problem. The pseudocode of the Adam function is given in Table 6.

3.5 Transfer learning and pre-training

Transfer learning study is a method that enables the use of pre-training models in a new
problem. In this study, the MediNet database was created to be used in transfer learning
studies. The aim of the study is to analyze the success of pre-training models with the MediNet
dataset. The transfer learning and classification process: Deep learning models were trained

Table 6 Pseudocode for Adam algorithm

α : step size
β1ve β2 :exponential decay rates
0 : initial parameter vector
m0←0 (initialize 1st moment vector)
v0←0 (initialize 2st moment vector)
t←0 (initialize timestep)
while t not converged do
t← t+1
gt←∇ ft ( t−1) (compute gradients)
mt←β1mt−1+ (1−β1)gt (update biased first moment estimate)

vt←β2vt−1 þ 1−β2ð Þg2t update biased second moment estimateð Þ

m
0
t ← mt

1−βt
1

correct bias in first moment estimateð Þ

v
0
t ← vt

1−βt
2

correct bias in first moment estimateð Þ

tþ1← t− αffiffiffi
v0t

p
þε

m
0
t (update parameters)

end while
return t (resulting parameters)
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using the MediNet dataset. The weight vectors of the pre-training model were retrained with
new datasets prepared for binary classification with transfer learning, and then performance
analysis was performed for binary classification. The weight vector of the pre-training models
and the number of parameters used in each deep convolutional neural network are given in
Table 8.

3.6 Hybrid models

Deep neural networks and deep neural network RNN (LSTM, GRU) methods and hybrid
methods have been proposed in the performance evaluation of the transfer learning application
proposed with the MediNet dataset. Experimental results of hybrid method studies are given
comparatively before pre-trained and after pre-trained. The flowchart of LSTM, GRU, and
hybrid methods is given in Fig. 6.

3.6.1 Hybrid application of deep neural networks and LSTM, GRU

LSTM [20] architecture is one of the RNN architectures that provides unidirectional informa-
tion flow and can store all helpful information thanks to the powerful memories in their
architecture.

Fig. 6 LSTM, GRU, Hybrid method
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GRU [10] is proposed to prevent memory loss in RNN architectures. The study applied
hybrid methods with LSTM, GRU layer, and DenseNet121, InceptionV3 deep neural
networks.

LSTM Hochreiter et al. It is an RNN architecture proposed by (1997). It is proposed to solve
the gradient disappearance problem, a significant problem for RNN systems. They used
memory cells to solve the gradient problem. Memory cells form the decision mechanisms of
the LSTM architecture.

Gates consisting of the sigmoid function and the dot product are the decision mechanisms
of the memory cells. Each memory cell consists of 3 gates: input, forget and output. The
gateway decides which of the current or current information to keep. The unit responsible for
information transport is updated at the cell state entrance gate. Forget the door; the unit
responsible for the selection of login information.

The output gate determines what information will pass to the following memory cells or the
output layer.

The mathematical equations in LSTM architecture:

it ¼ σ Wixt þ Uiht−1 þ bið Þ ð2Þ

f t ¼ σ W f xt þ U f ht−1 þ bf
� � ð3Þ

čt ¼ tanh Wcxt þ Ucht�1 þ bcð Þ ð4Þ

ct ¼ f t � ct�1 þ it � čt ð5Þ

ot ¼ σ Woxt þ Uoht−1 þ boð Þ ð6Þ

ht ¼ ot⊙tanh ctð Þ ð7Þ

where; it ft ot; respectively; input/update, forget and output gate Wi, Wf, Wo, Wc; input, forget,
output gate and cell state weight matrices, bi, bf, bo, bc input, forget, output and cell
state bias value, σ sigmoid function, xt; input vector, U; m x m matrix, čt; cell input
activation vector, ct, ct − 1; t and t-1 cell states, ⊙ vector multiply and ht is the
hidden state value are shown.

GRU It is a variant of LSTM that combines GRU input port, forget port, hidden state, and
memory state [61].

GRU architecture consists of reset and update ports. The reset gate decides which infor-
mation to forget.

The update gate is similar to the forget and input gates in LSTM architectures. This gate
decides which information can and cannot be deleted.
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Equations of architecture;

zt ¼ σ Wzxt þ Uzht−1 þ bzð Þ ð8Þ

rt ¼ σ Wrxt þ Urht−1 þ brð Þ ð9Þ

bht ¼ ϕ Whxt þ Uh rt⊙ht−1ð Þ þ bhð Þ ð10Þ

ht ¼ 1−ztð Þ⊙ht−1 þ zt⊙bht ð11Þ
where;

zt, rt,update and reset gate, bht, ht expected activation and output vector, σ, ϕ sigmoid and
hyperbolic tangent activation function,Wweight vector, xt input vector,Um x m vector, b bias
value, ⊙ vector multiplication.

3.6.2 Hybrid application of deep neural networks

This method combines feature vectors obtained from deep neural networks and applies them to
the classification problem. In this study, InceptionV3 + RdiNet, InceptionV3 +
DenseNet121, InceptionV3 + AlexNet, DenseNet121 + RdiNet hybrid methods are
proposed.

3.7 Fine tuning/frozen

It is frequently used to take advantage of the latest improvements in deep convolutional neural
networks trained with large datasets. Frozen operation is performed according to the similarity
between the datasets used in the pre-trained models and the datasets used in the studies [13, 34].

3.8 Cross-validation

Cross-validation is a vital model validation technique in revealing the accuracy and classifi-
cation success of the model. Cross-validation is a crucial method in identifying under-learning
and overlearning during the development of a model. In this method, the original clusters are
divided into k parts.

While the “k-1” part is used in the training of the model, the remaining amount is used in
the testing process of the model. The process here repeats k number of times. The flowchart of
the cross-validation method applied in this study is given in Fig. 7.

3.9 Performance metrics for binary classification

In binary classification studies, CM is 2-dimensional (Table 7). The CM is determined by
comparing the actual and predicted class labels. In Table 7, the rows show actual and columns
the predicted class examples. According to Table 7, in the problem of diagnosis of pneumonia;
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in the estimation made with a data set with normal and pneumonia tags; Determining that the
data sample with TP: accurate pneumonia class label is pneumonia as a result of the estimation,
TN: accurate class label is normal, predicted class label is normal, FP: The real class label is
normal, but the prediction result is pneumonia, FN: Detection that the true class label is
pneumonia, but the prediction result is normal.

According to Table 8, ACC: is the ratio of the number of correct predictions to the total
number of samples; PPV: is the ratio of the prediction result to the number of positive samples
correctly predicted to the number of all samples predicted positively. SN: ratio of the
prediction result to the number of positive predicted samples to the number of negatively
and positively predicted samples. F1: a hybrid performance proposed combining the PPV and
SN metrics criterion.

4 Experimental results

In this section, the experimental results of the deep learning algorithms trained with the
MediNet dataset, the experimental results of the classification studies with CT, CXR medical
images (for example, before and after the pre-trained networks, applied hybrid methods, fine-

Fig. 7 5 fold cross validation

Table 7 Binary classification confusion matrix

Predicted Class

Negative (N) Positive (P)

Actual Class Negative (N) True Negative (TN) False Positive (FP)
Positive (P) False Negative (FN) True Positive (TP)
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tuning studies, etc.) are given. Classification datasets with CT and CXR medical images were
split into 9:1 (training, testing). The validation set consists of 20% of the training set.

4.1 Results of transfer learning study with MediNet data set

MediNet dataset consists of 4358 images. Deep neural networks and my hybrid methods were
trained with AlexNet, VGG19-BN, InceptionV3, InceptionV3 + LSTM, InceptionV3 +
GRU, DenseNet121, DenseNet121 + LSTM, DenseNet121 + GRU, RdiNet, ResNet101,
EfficientNetB0, Nested-LSTM+CNN algorithms. During the training phase, the data was
divided into 9:1 (train: validation). The training dataset consists of 3922; the validation dataset
consists of 436 images. The size of the weight vectors of deep neural networks and the number
of parameters are given in Table 9.

In Fig. 8, the artificial neural network for transfer learning in the AlexNet model was trained
with a MediNet dataset with ten categories. Classification has been made for Chest/X-ray,
Covid-19 and Diabetic Retinopathy images, which are a new dataset of the trained artificial
neural network. The loss/validation loss and accuracy/validation accuracy metric results of the
weight vectors of the lowest training loss values of the deep neural networks trained with the

Table 8 The performance metrics
of the binary classification Metric Formula

Accuracy
ACC ¼ TPþTN

TPþTNþFPþFN

Positive Predictive Value
(Precision) PPV ¼ TP

TPþFP

Sensitivity (Recall)
SN ¼ TP

TPþFN

F1-Score
F1 ¼ 2 x PPV x TPR

PPVþTPR

Cohen’s Kappa
Kappa ¼ k ¼ po�pe

1�pe
; po ¼ ACC

pe ¼
PN

c¼1
TPcþFPcð Þ x TPcþFNcð Þ
TPþTNþFPþFNð Þ2

Table 9 Deep Convolutional Neu-
ral Network Features Model Size Total params

AlexNet 39.6 MB 3.461.002
VGG19-BN 231 MB 20.213.450
InceptionV3 250 MB 21,823,274
InceptionV3+LSTM 312 MB 27.162.538
InceptionV3+GRU 296.7 MB 25.823.530
DenseNet121 81 MB 7.047.754
DenseNet121+LSTM 123.5 MB 10.824.394
DenseNet121+GRU 114.5 MB 9.878.602
RdiNet 51.2 MB 4.442.038
ResNet101 488 MB 42.678.666
EfficientNetB0 46.7 MB 4.062.374
Nested-LSTM+CNN 47.5 MB 4.145.738
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MediNet dataset are given in Table 10. Loss graphs of MediNet training models are shown in
Fig. 9.

4.2 Classification performance on chest X-ray images

In order to test the success of the transfer learning study conducted with the MediNet dataset in
classification, first, a binary classification was made with the Chest X-ray dataset. The chest X-
ray dataset consists of two categories as normal and as pneumonia. There are 1547 images, 683
in the normal images and 864 in the Pneumonia images. In the binary classification study
conducted with the Chest dataset, 90% of the total data was used for training, while 10% was
used for testing (Table 11). Applications were made with AlexNet, VGG19-BN, InceptionV3,
DenseNet121, ResNet101, EfficientNetB0 and Nested-LSTM + CNN deep learning algo-
rithms. In all studies performed with a Chest X-ray dataset (for example, w/o pre-training, w/o
pre-training, fine-tuning) 50 epochs were used.

The success of the model in deep learning algorithms is directly proportional to the number
of data used in the training dataset. Using the Chest dataset before pre-training, a different
number of training sets/test sets were used with the AlexNet model. Training set / test set 90% /
10% accuracy when using data at 92.9%, when 70% / 30% data is used, the accuracy is 90.5%
and when using 50% / 50% data, the accuracy was 88.8% (Table 12).

Classification study without transfer learning is presented for the Chest dataset. Before pre-
training, the accuracy values were achieved in AlexNet, VGG19-BN, InceptionV3,

Fig. 8 Transfer Learning Flowchart for AlexNet model

Table 10 Loss and ACC Values of Models

Model Training Loss Validation Loss Training Accuracy Validation Accuracy

AlexNet 0.0562 0.1631 0.9867 0.9586
VGG19-BN 0.1369 0.1587 0.9456 0.9494
InceptionV3 0.0568 0.1861 0.9811 0.9448
DenseNet121 0.1076 0.1912 0.9619 0.9448
RdiNet 0.0172 0.1054 0.9992 0.9609
ResNet101 0.0886 0.1885 0.9663 0.9448
EfficientNetB0 0.0785 0.2384 0.9711 0.9379
NestedLSTM+CNN 0.0227 0.0769 0.9990 0.9747
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DenseNet121, RdiNet, ResNet101, EfficientNetB0 and Nested-LSTM + CNN algorithms,
respectively, while the accuracy values were 92.9%, 92.9%, 94.8%, 91.6%, 91.6%, 89.7%,
85.2%, 92.3%, respectively. The pre-training weight vectors with the MediNet dataset were
used in the breast dataset with the transfer learning application. After pre-training, the accuracy
values were 95.5%, 95.5%, 98.7%, 96.1%, 91.6%, 91.0%, 92.9%, respectively (Table 13).

Fig. 9 Pre-training loss graphs for models: (a) RdiNet, (b) NestedLSTM+CNN, (c) AlexNet, (d) InceptionV3

Table 11 Image Distribution in
Dataset Category Training Set Test Set

Normal 614 69
Pneumonia 778 86
Total 1392 155

Table 12 Sample Training Set and Test Set Result for the AlexNet Model

Sample Image Training Set /
Test Set

ACC PPV SN Kappa

90%–10% 0.9290 0.9213 0.9535 0.8557
70%–30% 0.9054 0.8836 0.9529 0.8073
50%–50% 0.8876 0.8404 0.9811 0.7690
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InceptionV3 algorithm has been the most successful model in the chest-X-ray dataset with an
accuracy rate of 94.8% before pre-training and 98.7% after pre-training.

The comparison of accuracy values in the pre-and post-transfer learning studies during the
testing process of deep neural networks is given in Fig. 12. The Roc graphs of the algorithms
are shown in Fig. 13.

In Fig. 10a, before transfer learning, the InceptionV3 architecture correctly diagnosed 147
data out of 155 test data and misdiagnosed 8 data. Accordingly, while the F1-score produced a
value of 94% in the predictions made for 69 normal patients, the F1-score produced a value of
95% from the predictions of 86 pneumonia patients. Finally, 95% accuracy was obtained on
155 test data. In Fig. 10b, after transfer learning, the InceptionV3 architecture made correct
diagnoses for 153 data in 155 test data and misdiagnosed for 2 data. Accordingly, while the f1
score produced a value of 99% in the predictions made for 69 normal patients, the f1 score
produced a value of 99% from the predictions of 86 pneumonia patients. Finally, 99%
accuracy was obtained on 155 test data. In Fig. 11, pre-trained and post-pre-trained loss
graphs of the InceptionV3 algorithm are given.

Table 13 Classification Performance Before and After Pre-Training

Network Class ACC Kappa AUC PPV SN F1

Random Initialization (w/o pre training)
AlexNet NORMAL 0.9290 0.8557 0.9260 0.9400 0.9000 0.9200

PNEUMONIA 0.9200 0.9500 0.9400
VGG19-BN NORMAL 0.9290 0.8557 0.9260 0.9400 0.9000 0.9200

PNEUMONIA 0.9200 0.9500 0.9400
InceptionV3 NORMAL 0.9484 0.8961 0.9506 0.9200 0.9700 0.9400

PNEUMONIA 0.9800 0.9300 0.9500
DenseNet121 NORMAL 0.9161 0.8309 0.9173 0.8900 0.9300 0.9100

PNEUMONIA 0.9400 0.9100 0.9200
RdiNet NORMAL 0.9161 0.8295 0.9172 0.8800 0.9200 0.9000

PNEUMONIA 0.9400 0.9100 0.9300
ResNet101 NORMAL 0.8968 0.7916 0.8969 0.8700 0.9000 0.8900

PNEUMONIA 0.9200 0.9000 0.9100
EfficientNetB0 NORMAL 0.8516 0.7000 0.8505 0.8300 0.8400 0.8300

PNEUMONIA 0.8700 0.8600 0.8700
NestedLSTM + CNN NORMAL 0.9226 0.8428 0.9202 0.9300 0.9000 0.9100

PNEUMONIA 0.9200 0.9400 0.9300
MediNet-based model (w/ pre training)
AlexNet NORMAL 0.9548 0.9084 0.9536 0.9600 0.9400 0.9500

PNEUMONIA 0.9500 0.9700 0.9600
VGG19-BN NORMAL 0.9548 0.9087 0.9550 0.9400 0.9600 0.9500

PNEUMONIA 0.9600 0.9500 0.9600
InceptionV3 NORMAL 0.9871 0.9739 0.9869 0.9900 0.9900 0.9900

PNEUMONIA 0.9900 0.9900 0.9900
DenseNet121 NORMAL 0.9613 0.9216 0.9608 0.9600 0.9600 0.9600

PNEUMONIA 0.9700 0.9700 0.9700
RdiNet NORMAL 0.9290 0.8557 0.9304 0.9000 0.9400 0.9200

PNEUMONIA 0.9500 0.9200 0.9400
ResNet101 NORMAL 0.9161 0.8290 0.9115 0.9400 0.8700 0.9000

PNEUMONIA 0.9000 0.9500 0.9300
EfficientNetB0 NORMAL 0.9097 0.8161 0.9057 0.9200 0.8700 0.9000

PNEUMONIA 0.9000 0.9400 0.9200
NestedLSTM + CNN NORMAL 0.9290 0.8565 0.9289 0.9100 0.9300 0.9200

PNEUMONIA 0.9400 0.9300 0.9400
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According to Fig. 12, the Inception architecture before pre-trained was the most successful
model with an accuracy of 94.8%, and after being pre-trained, the Inception architecture with
an accuracy of 98.7%. EfficientNetB0 architecture had the lowest accuracy with 85.2% and
91.0% accuracy before and after pre-trained, respectively.

Retraining the entire training model is not always good in terms of process, time, and
efficiency. Big dataset of data used in classification has a small size-dataset and the similarity
of the data used in the classification to the dataset used in the training model, or fine-tuning
work can be done according to different situations [13]. In this study, fine-tuning work was
performed by training certain layers of the architectures used in the study after pre-training
(Tables 14, 15, 16). In the fine-tuning work done in AlexNet architecture after pre-training in
Table 14, the training made with the convolutional layer generally performed better than the
training made with the fully connected layer (fcc). 68.4% accuracy was achieved when only
the output layer of the previous training neural network was trained. When part of the
classification layer (f6, f7, f8) is trained, the accuracy results are between 60% - and 68.4%.
Accuracy values between 56.1% - and 91.0% were obtained in studies performed with the
convolutional layers. In the Conv4-f8 run, the performance of the model turned out to be very
low. In the Conv1-conv3-f8 study, the model showed the best performance.

Fig. 10 Confusion matrix of InceptionV3 architecture before (a) and after (b) pre-training

Fig. 11 Loss plots of Inception V3 architecture before (a) and after (b) pre-training
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In the first four results in Table 15, the learning level during the model’s training is
deficient. The model performed relatively well in the works conv5-conv3-f8 and conv5-
conv2-f8. In the conv5-conv1-f8 layer, learning is again at a low level.

The first 30% of the InceptionV3, DenseNet121, RdiNet, ResNet101, and EfficientNetB0
models launched with MediNet weights were frozen. The experimental results of the study
performed with the Nested-LSTM layer in the Nested-LSTM + CNN model and the results of
the classification study using MediNet weights (unfrozen) are given in Table 16. The results of
unfrozenda, ACC, PPV, SN metrics with DenseNet121 architecture were 96.1%, 96.5%,

Fig. 12 Chest X-ray dataset pre and after pre-training accuracy values (Bar Chart)

Table 14 Fine Tuning for Alexnet Model After Pre -Training

Fine-tuning ACC PPV SN Kappa

Shallow-tuning: only f8 0.6839 0.6370 1.0000 0.3117
FT: f7-f8 0.6000 0.5811 1.0000 0.1113
FT: f6-f8 0.6581 0.6187 1.0000 0.2509
FT: conv5-f8 0.7032 0.6515 1.0000 0.3568
FT: conv4-f8 0.5613 0.5584 1.0000 0.0161
FT: conv2-conv5-f8 0.8452 0.8780 0.8372 0.6883
FT: conv2-conv4-f8 0.6710 1.0000 0.4070 0.3793
FT: conv2-conv3-f8 0.7290 0.6746 0.9884 0.4181
FT: conv1-conv5-f8 0.7677 0.7717 0.8256 0.5258
FT: conv1-conv4-f8 0.8903 0.9600 0.8372 0.7814
FT: conv1-conv3-f8 0.9097 0.9390 0.8953 0.8182

Table 15 Fine Tuning for VGG19-BN Model After Pre -Training

Fine-tuning ACC PPV SN Kappa

Shallow-tuning: only f8 0.5548 0.5548 1.0000 0.0000
FT: f7-f8 0.5548 0.5548 1.0000 0.0000
FT: f6-f8 0.5548 0.5548 1.0000 0.0000
FT: conv5-conv4-f8 0.5548 0.5548 1.0000 0.0000
FT: conv5-conv3-f8 0.7613 0.7168 0.9419 0.4973
FT: conv5-conv2-f8 0.6968 0.7241 0.7326 0.3853
FT: conv5-conv1-f8 0.5613 0.5584 1.0000 0.0161
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96.5%, respectively, and the results of ACC, PPV, SN metrics in the frozen study performed
with DenseNet121 architecture were 94.2%, 96.5%, and 93.3%, respectively.

According to Fig. 13, Inception architecture before pre-trained was the most successful
model with a roc value of 95.1%, and after pre-trained, Inception architecture with a roc value
of 98.7%.

EfficientNetB0 architecture had the lowest roc value with 85.1% and 90.6% roc values
before and after pre-trained.

4.2.1 Hybrid working with deep learning algorithms LSTM and GRU

In this method, feature extraction is done with InceptionV3 and DenseNet121 algorithms.
LSTM and GRU algorithms are used for binary classification in the “Chest X-Ray Images
dataset” dataset, the feature vectors obtained from the algorithms. The experimental results of
the applied hybrid study are given in Table 17 in the form of pre-trained and pre-trained
MediNet weights.

In this study, ACC, PPV, and SN values were 93.5%, 96.5%, and 92.2%, respectively, in
the hybrid application made with the DenseNet121 model, which was started with random
weights (before pre-training) and the GRU algorithm.

In the hybrid application made with the DenseNet121 model, which was started with
MediNet weights (after pre-training) and the GRU algorithm, the ACC, PPV, and SN values
were 95.5%, 96.5%, 95.4%, respectively.

Table 16 Deep Learning Models After Pre-Training; Fine Tuning Application for InceptionV3, DenseNet121,
RdiNet, ResNet101, EfficientNetB0, Nested-LSTM+CNN (Only FCC Layer)

Model Unfrozen Frozen

ACC PPV SN ACC PPV SN

InceptionV3 0.9871 0.9884 0.9884 0.9226 0.9535 0.9111
DenseNet121 0.9613 0.9651 0.9651 0.9419 0.9651 0.9326
RdiNet 0.9290 0.9535 0.9213 0.9032 0.9302 0.8989
ResNet101 0.9161 0.9011 0.9535 0.8387 1.0000 0.7748
EfficientNetB0 0.9097 0.9000 0.9419 0.5548 1.0000 0.5548
Nested-LSTM+CNN (only Nested-LSTM layer) 0.9290 0.9412 0.9302 0.7419 0.6855 0.9884

Fig. 13 Comparison of the roc curves obtained from the binary classification study with the before (a) and after
(b) pre-training deep neural networks
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4.2.2 Hybrid working with deep learning algorithms

In this method, InceptionV3-RdiNet, InceptionV3-DenseNet121, InceptionV3-ResNet101,
and DenseNet121-RdiNet hybrid methods were applied for binary classification in the “Chest
X-Ray Images dataset” dataset. The experimental results of the applied hybrid study are given
in Table 18 in the form of pre-trained and pre-trained MediNet weights.

In the hybrid study performed with the InceptionV3 and DenseNet121 model, which was
started with random weights (before pre-training), the ACC, PPV, and SN values were 94.2%,
96.5%, 93.3%, respectively.

In the hybrid study with the InceptionV3 and DenseNet121 model initiated with MediNet
weights (after pre-training), the ACC, PPV, and SN values were 95.5%, 96.5%, 95.4%,
respectively.

Fold cross-validation performance The 5-fold cross-validation (CV) method was applied to
evaluate the classification success of the transfer learning study proposed with the MediNet
medical visual database. Experimental results of 5-fold CV application are given before pre-
trained (Random Initialization (w/o pre-training)) and after pre-trained with MediNet weights
(MediNet-based model (w/ pre-training)) (Table 19). The loss and accuracy graphs of the
InceptionV3 model on 2-class using the Fold-1-5 “Chest X-Ray Images dataset” train and
validation dataset are given in Fig. 14.

While the InceptionV3 model showed 93.7% (average) success before being pre-trained, it
showed 93.9% (average) success after being pre-trained.

4.2.3 Hyperparameter Selection

In this section, experimental results of hyperparameters used in deep neural networks are given
(Table 20).

Table 17 Deep Learning Algorithms with LSTM and GRU

Model Before After

ACC PPV SN ACC PPV SN

InceptionV3+LSTM 0.9226 0.9419 0.9205 0.9419 0.9651 0.9326
InceptionV3+GRU 0.9097 0.9419 0.9000 0.9226 0.9419 0.9205
DenseNet121+LSTM 0.9355 0.9535 0.9318 0.9419 0.9419 0.9529
DenseNet121+GRU 0.9355 0.9651 0.9222 0.9548 0.9651 0.9540

Table 18 Hybrid Working with Deep Learning Algorithms

Model Before After

ACC PPV SN ACC PPV SN

InceptionV3+RdiNet 0.9290 0.9186 0.9518 0.9355 0.9535 0.9318
InceptionV3+DenseNet121 0.9419 0.9651 0.9326 0.9548 0.9651 0.9540
InceptionV3+AlexNet 0.9290 0.9186 0.9518 0.9484 0.9535 0.9535
DenseNet121+RdiNet 0.9355 0.9535 0.9318 0.9548 0.9767 0.9438
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Epoc: 50, batch size: 64, Learning Rate Update: factor = 0.5, patience = 2 ve factor = 0.2,
patience = 2, Optimizer: Adam metrics have been the most successful hyperparameters.

4.2.4 Convergence speed analysis

The proposed RdiNet architecture has been experimentally tested with different training test
rates and different optimization algorithms and the loss values obtained during the test phase

Table 19 Performance of the proposed InceptionV3 on 5-fold cross-validation using three and two class
categories

Network Transfer Learning Fold ACC PPV SN Kappa

InceptionV3 Random Initialization
(w/o pre training)

Fold 1 0.9484 0.9535 0.9535 0.8955
Fold 2 0.9290 0.9213 0.9535 0.8557
Fold 3 0.9355 0.9318 0.9535 0.8690
Fold 4 0.9355 0.9318 0.9535 0.8690
Fold 5 0.9355 0.9419 0.9419 0.8694
Average 0.9368 ± 0.0063 0.9361±0.0109 0.9512±0.0047 0.8717±0.0130

InceptionV3 MediNet-based
model
(w/ pre training)

Fold 1 0.9355 0.9318 0.9535 0.8690
Fold 2 0.9484 0.9432 0.9651 0.8952
Fold 3 0.9419 0.9231 0.9767 0.8816
Fold 4 0.9419 0.9326 0.9651 0.8819
Fold 5 0.9290 0.9121 0.9651 0.8553
Average 0.9394 ± 0.0066 0.9285 ± 0.0104 0.9651 ± 0.0074 0.8766 ± 0.0135

Fig. 14 The loss/validation loss and accuracy/validation accuracy graphs of the InceptionV3 model on 2-class
using the Fold-1-5 (with before (a) and after (b) pre-training)
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(validation loss values) during the training and the convergence analysis of the RdiNet model
to the optimum loss point are given in Figs. 15 and 16. In Table 21, the experimental results of
the analysis study with different training test rates and different optimization algorithms are
given.

In Fig. 15, a comparison of the convergence speed with the MediNet dataset before and
after pre-trained in terms of train/test data numbers in the RdiNet model and the Chest Dataset
is given.

Model Adam optimization algorithm was trained with Chest Dataset for 50 cycles using 64
batch size values. While converging towards the optimum loss value (the loss value is 0) in
every five studies before transfer learning, In the study where the training test ratio was 70/30,

Table 20 Hyperparameter selection of the AlexNet model

Epoch ACC PPV SN Kappa

10 Epoch 0.6129 1.0000 0.5890 0.1427
30 Epoch 0.9226 0.9419 0.9205 0.8428
50 Epoch 0.9290 0.9213 0.9535 0.8557
100 Epoch 0.9290 0.9186 0.9518 0.8570

Batch Size
32 0.9226 0.9070 0.9512 0.8442
64 0.9290 0.9213 0.9535 0.8557
128 0.8710 0.9767 0.8235 0.7327
256 0.8065 0.8488 0.8111 0.6059
512 0.7548 0.9186 0.7182 0.4860

Learning Rate Update (lr: 0.000001)
factor=0.7, patience=10 0.9226 0.9186 0.9405 0.8437
factor=0.7, patience=5 0.9226 0.9535 0.9111 0.8424
factor=0.7, patience=2 0.9226 0.9070 0.9512 0.8442
factor=0.5, patience=10 0.8903 0.8721 0.9259 0.7796
factor=0.5, patience=5 0.9161 0.9186 0.9294 0.8305
factor=0.5, patience=2 0.9290 0.9213 0.9535 0.8557
factor=0.2, patience=10 0.9097 0.8837 0.9500 0.8187
factor=0.2, patience=5 0.9097 0.9302 0.9091 0.8166
factor=0.2, patience=2 0.9290 0.9186 0.9518 0.8570

Optimizer
Adam 0.9290 0.9213 0.9535 0.8557
RMSprop 0.9226 0.9651 0.9022 0.8419
AdaDelta 0.7935 0.9884 0.7328 0.5633
AdaGrad 0.9161 0.9535 0.9011 0.8290
SGD 0.9226 0.9419 0.9205 0.8428

Fig. 15 Convergence speed comparison in terms of number data on Chest Dataset of RdiNet model (with the
before (a) and after (b) pre-training)
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the RdiNet model converged much faster when compared to other training/test ratios. How-
ever, during the training, oscillations towards the optimum were observed in the RdiNet
model. At the end of the training, the RdiNet model converged towards the exact optimum
in studies where the training test ratio was 90/10 and 80/20. After transfer learning, it
converged towards the optimum loss value in every five studies; In the study where the
training test ratio was 50/50, the RdiNet model converged much faster when compared to other
training/test ratios. However, during the training, oscillations towards the optimum were
observed in the RdiNet model.

In Fig. 16, the convergence speed comparison of the RdiNet model and the MediNet dataset
in the Chest Dataset and the optimization algorithms before and after pre-trained is given. The
model was trained with the Chest Dataset for 50 cycles using the training test ratio with 90/10,
64 batch size values. Before transfer learning, Adam, RMSProp, AdaGrad, and SGD con-
verged towards the optimum loss (the loss value being 0); In the AdaDelta algorithm,
oscillations towards the optimum were observed during the training. The RdiNet model trained
with the RMSprop algorithm before transfer learning converged much faster compared to other
optimization algorithms. At the end of the training, the RdiNet model trained on Adam,
RMSProp, and SGD algorithms converged towards the same optimum.

Fig. 16 Comparison of the convergence of Adam, RMSProp, AdaDelta, AdaGrad and SGD on binary
classification problems (with before (a) and after (b) pre-training)

Table 21 RdiNet modeli hiperparamters (Rndm: Random Initialization (w/o pre training), TL: MediNet-based
model (w/ pre training))

Epoch Optimizar ACC PPV SN Kappa
Rndm TL Rndm TL Rndm TL Rndm TL

90–10 Adam 0.9161 0.9290 0.9419 0.9535 0.9101 0.9213 0.8295 0.8557
80–20 Adam 0.9129 0.9258 0.9101 0.9270 0.9364 0.9429 0.8228 0.8487
70–30 Adam 0.8989 0.9140 0.9059 0.9098 0.9094 0.9317 0.7960 0.8268
60–40 Adam 0.8401 0.8901 0.9622 0.9593 0.7938 0.8594 0.6672 0.7742
50–50 Adam 0.7442 0.7842 0.9858 0.9953 0.6852 0.7189 0.4585 0.5460
Optimizer Train/Test ACC PPV SN Kappa

Rndm TL Rndm TL Rndm TL Rndm TL
Adam 90–10 0.9161 0.9290 0.9419 0.9535 0.9101 0.9213 0.8295 0.8557
RMSprop 90–10 0.9097 0.9226 0.9419 0.9419 0.9000 0.9205 0.8161 0.8428
AdaDelta 90–10 0.6774 0.7484 0.8140 0.7791 0.6731 0.7701 0.3297 0.4899
AdaGrad 90–10 0.9097 0.9161 0.9419 0.9535 0.9000 0.9011 0.8161 0.8290
SGD 90–10 0.8903 0.9032 0.9302 0.9186 0.8791 0.9080 0.7764 0.8038
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After transfer learning, Adam, RMSProp, AdaGrad, and SGD converge towards the
optimum loss (the loss value is 0); In the AdaDelta algorithm, oscillations towards the
optimum were observed during and at the end of the training. After transfer learning, the
RdiNet model trained with the RMSprop algorithm converged much faster compared to other
optimization algorithms. At the end of the training, the RdiNet model trained on Adam,
RMSProp, and SGD algorithms converged towards the same optimum.

In addition, it was observed that the RdiNet model, which was trained with the AdaGrad
algorithm before and after the transfer, converged towards the optimum at the end of the
training.

4.3 Classification performance on COVID19-CT dataset

In order to test the success of the transfer learning study conducted with the MediNet dataset in
classification, a binary classification was made with another dataset, the Covid-19 dataset.
Covid-19 dataset consists of two categories, Covid-19 and nonCovid-19.

In a binary classification study, 90% of the total data is used for training, while 10% is used
for testing (Table 22). Applications were done with AlexNet, VGG19-BN, InceptionV3,
DenseNet121, RdiNet, ResNet101, EfficientNetB0 and Nested-LSTM + CNN deep learning
algorithms. In all applications with Covid-19 datasets (for example, w / o pre-training, w / pre-
training, fine-tuning), 100 epochs were used.

In the pre-training study, AlexNet, VGG19-BN, InceptionV3, DenseNet121, RdiNet,
ResNet101, EfficientNetB0 and Nested-LSTM + CNN algorithms achieved 74.7%, 77.3%,
80.0%, 88.0%, 77.3%, 58.7%, 66.7%, 78.7%, respectively, after pre-training, the accuracy
values were again 80.0%, 78.7%, 89.3%, 92.0%, 82.7%, 77.3%, 78.7%, 80.0%, respectively
(Table 23). DenseNet121 algorithm was the most successful model in the covid-19 study with
an accuracy rate of 88.0% before pre-training and 92.0% after pre-training. The comparison of
accuracy values in the pre-and post-transfer learning studies during the testing process of deep
neural networks is given in Fig. 19. The Roc graphs of the algorithms are shown in Fig. 20.

In Fig. 17a, before transfer learning, the DenseNet121 architecture correctly diagnosed 66
data out of 75 test data and misdiagnosed 9 data. Accordingly, while the F1-score produced a
value of 90% in the predictions made for 44 Non-COVID-19 patients, the F1-score produced a
value of 85% from the predictions of 31 COVID-19 patients. Finally, 88% accuracy was
obtained on 75 test data. In Fig. 17b, after transfer learning, the DenseNet121 architecture
made correct diagnoses for 69 data in 75 test data and misdiagnosed for 6 data. Accordingly,
while the f1 score produced a value of 93% in the predictions made for 44 Non-COVID-19
patients, the f1 score produced a value of 90% from the predictions of 31 COVID-19 patients.
Finally, 92% accuracy was obtained on 75 test data. In Fig. 18, the pre-trained and post-pre-
trained loss graphs of the DenseNet121 algorithm are given.

In Fig. 19, the DenseNet121 architecture, before pre-trained, was the most successful model
with an accuracy of 88.0%, and after pre-trained, the DenseNet121 architecture was with an

Table 22 Image Distribution in
The Dataset Category Training Set Test Set

NonCOVID 353 44
COVID 318 31
Total 671 75
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Table 23 Classification Performance Before and After Pre-Training

Network Class ACC Kappa AUC PPV SN F1

Random Initialization (w/o pre training)
AlexNet Non-COVID-19 0.7467 0.4751 0.7364 0.7800 0.8000 0.7900

COVID-19 0.7000 0.6800 0.6900
VGG19-BN Non-COVID-19 0.7733 0.5392 0.7735 0.8300 0.7700 0.8000

COVID-19 0.7100 0.7700 0.7400
InceptionV3 Non-COVID-19 0.8000 0.5816 0.7867 0.8100 0.8600 0.8400

COVID-19 0.7900 0.7100 0.7500
DenseNet121 Non-COVID-19 0.8800 0.7490 0.8691 0.8700 0.9300 0.9000

COVID-19 0.8900 0.8100 0.8500
RdiNet Non-COVID-19 0.7733 0.5212 0.7724 0.8600 0.7800 0.8200

COVID-19 0.6500 0.7700 0.7000
ResNet101 Non-COVID-19 0.5867 0.2185 0.6191 0.7600 0.4300 0.5500

COVID-19 0.5000 0.8100 0.6200
EfficientNetB0 Non-COVID-19 0.6667 0.2747 0.6301 0.6700 0.8400 0.7500

COVID-19 0.6500 0.4200 0.5100
NestedLSTM + CNN Non-COVID-19 0.7867 0.5601 0.7801 0.8200 0.8200 0.8200

COVID-19 0.7400 0.7400 0.7400
MediNet-based model (w/ pre training)
AlexNet Non-COVID-19 0.8000 0.5816 0.7867 0.8100 0.8600 0.8400

COVID-19 0.7900 0.7100 0.7500
VGG19-BN Non-COVID-19 0.7867 0.5559 0.7753 0.8000 0.8400 0.8200

COVID-19 0.7600 0.7100 0.7300
InceptionV3 Non-COVID-19 0.8933 0.7821 0.8948 0.9300 0.8900 0.9100

COVID-19 0.8500 0.9000 0.8800
DenseNet121 Non-COVID-19 0.9200 0.8335 0.9128 0.9100 0.9500 0.9300

COVID-19 0.9300 0.8700 0.9000
RdiNet Non-COVID-19 0.8267 0.6339 0.8312 0.9100 0.8200 0.8600

COVID-19 0.7100 0.8500 0.7700
ResNet101 Non-COVID-19 0.7733 0.5477 0.7830 0.8600 0.7300 0.7900

COVID-19 0.6800 0.8400 0.7500
EfficientNetB0 Non-COVID-19 0.7867 0.5381 0.7562 0.7600 0.9300 0.8400

COVID-19 0.8600 0.5800 0.6900
NestedLSTM + CNN Non-COVID-19 0.8000 0.5934 0.8010 0.8500 0.8000 0.8200

COVID-19 0.7400 0.8100 0.7700

Fig. 17 Confusion matrix of DenseNet121 architecture before (a) and after (b) pre-training
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accuracy of 92.0%. On the other hand, the ResNet101 architecture had the lowest accuracy
with 58.7% and 77.3% accuracy before and after pre-trained. MediNet weights were started by
freezing the first 30% of AlexNet, VGG19-BN, InceptionV3, DenseNet121, RdiNet,
ResNet101, and EfficientNetB0 models. The results of the classification study (unfrozen)
are given in Table 24. In the unfrozen study with AlexNet architecture, ACC, PPV, and SN
metrics were 80.0%, 78.6%, and 71.0%, respectively. In the frozen study performed with

Fig. 18 Loss plots of DenseNet121 architecture before (a) and after (b) pre-training

Fig. 19 Covid-19 dataset pre and after pre-training accuracy values (Bar Chart)

Table 24 Deep Learning Models After Pre-Training; Fine Tuning Application for AlexNet, VGG1—BN,
InceptionV3, DenseNet121, RdiNet, ResNet101, EfficientNetB0, Nested-LSTM+CNN (Only FCC Layer)

Model Unfrozen Frozen

ACC PPV SN ACC PPV SN

AlexNet 0.8000 0.7857 0.7097 0.7867 0.7742 0.7273
VGG19-BN 0.7867 0.7586 0.7097 0.6933 0.6452 0.6250
Inceptionv3 0.8933 0.8485 0.9032 0.5467 0.3226 0.4348
Densenet121 0.9200 0.9310 0.8710 0.8267 0.8065 0.7812
RdiNet 0.8267 0.7097 0.8462 0.8133 0.8065 0.7576
Resnet101 0.7733 0.6842 0.8387 0.6933 0.6129 0.6333
EfficientNetB0 0.7867 0.8571 0.5806 0.4133 1.0000 0.4133
Nested-LSTM+CNN (only Nested-LSTM layer) 0.8000 0.7353 0.8065 0.6400 0.5909 0.4194
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AlexNet architecture, ACC, PPV, and SN metrics were 78.7%, 77.4%, and 72.7%,
respectively.

According to Fig. 20, the DenseNet121 architecture before pre-trained was the most
successful model with a roc AUC value of 86.9%, and after pre-trained, the DenseNet121
architecture with a ROC- AUC value of 91.3%. The DenseNet121 architecture after pre-
trained was the least unsuccessful model, with a ROC-AUC of 61.9% and a post-pre-trained
EfficientNetB0 architecture of 75.6%.

4.4 Classification performance on diabetic retinopathy dataset

To test the transfer learning study’s success with the MediNet dataset in classification, a binary
classification was made with the last dataset, the Diabetic Retinopathy dataset. The Diabetic
Retinopathy dataset consists of two categories: no symptoms and symptoms. There are 915
images, 320 in the No symptoms dataset and 595 in the Symptoms dataset. In the binary
classification study conducted with the Diabetic Retinopathy dataset, 90% of the total data was
used for training, while 10% was used for testing (Table 25). Applications were made with
AlexNet, VGG19-BN, InceptionV3, DenseNet121, RdiNet, ResNet101, EfficientNetB0 and
Nested-LSTM + CNN deep learning algorithms. 100 epochs were used in all processes (w/o
pre-training, w/o pre-training, fine-tuning) performed with the Diabetic Retinopathy dataset.

Before pre-training, AlexNet, VGG19-BN, InceptionV3, DenseNet121, RdiNet,
ResNet101, EfficientNetB0 and Nested-LSTM + CNN algorithms achieved 72.8%, 73.9%,
66.3%, 75.0%, 78.3%, 75.0%, 72.8%, 79.4%, respectively, after pre-training, the values were
78.3%, 75.0%, 70.7%, 77.2%, 79.4%, 77.2%, 73.9%, 81.5%, respectively (Table 26).
NestedLSTM + CNN algorithm has been the most successful diabetic retinopathy study with
an accuracy rate of 79.4% before pre-training and 81.5% after. The comparison of accuracy
values in the pre-and post-transfer learning studies during the testing process of deep neural
networks is given in Fig. 23. The Roc graphs of the algorithms are shown in Fig. 24.

In Fig. 21, before transfer learning, the Nested-LSTM + CNN architecture correctly
diagnosed 73 data out of 92 test data and misdiagnosed 19 data. Accordingly, while the F1-
score produced a value of 71% in the predictions made for 31 No symptoms patients, the F1-
score produced a value of 84% from the predictions of 61 Symptoms patients. Finally, 79.3%
accuracy was obtained on 91 test data. In Fig. 21b, after transfer learning, the Nested-LSTM +
CNN architecture made correct diagnoses for 75 data in 92 test data and misdiagnosed for 17

Fig. 20 Comparison of the roc curves obtained from the binary classification study with the before (a) and after
(b) pre-training deep neural networks
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data. Accordingly, while the f1 score produced a value of 71% in the predictions made for 31
No symptoms patients, the f1 score produced a value of 96% from the predictions of 61
Symptoms patients. Finally, 81.5% accuracy was obtained on 91 test data. In Fig. 22, before
pre-trained and post-pre-trained loss, the Nested-LSTM + CNN algorithm graphs are given.

In Fig. 23, the NestedLSTM + CNN architecture before pre-trained was the most successful
model, with an accuracy value of 79.4%. After pre-trained the NestedLSTM + CNN archi-
tecture with an accuracy of 81.5%. InceptionV3 architecture had the lowest accuracy with
66.0% and 70.6% accuracy before and after pre-trained, respectively. MediNet weights were

Table 25 Dataset Distribution
Representation Category Training Set Test Set

Nosymptoms 289 31
Symptoms 534 61
Total 823 92

Table 26 Classification Performance Before and After Pre-Training

Network Class ACC Kappa AUC PPV SN F1

Random Initialization (w/o pre training)
AlexNet Nosymptoms 0.7283 0.4151 0.7158 0.5800 0.6800 0.6300

Symptoms 0.8200 0.7500 0.7900
VGG19-BN Nosymptoms 0.7391 0.3659 0.6684 0.6700 0.4500 0.5400

Symptoms 0.7600 0.8900 0.8200
InceptionV3 Nosymptoms 0.6630 0.0000 0.5000 0.0000 0.0000 0.0000

Symptoms 0.6600 1.0000 0.8000
DenseNet121 Nosymptoms 0.7500 0.4076 0.6925 0.6700 0.5200 0.5800

Symptoms 0.7800 0.8700 0.8200
RdiNet Nosymptoms 0.7826 0.4805 0.7681 0.5500 0.7400 0.6300

Symptoms 0.9000 0.8000 0.8500
ResNet101 Nosymptoms 0.7500 0.3870 0.6766 0.7000 0.4500 0.5500

Symptoms 0.7600 0.9000 0.8300
EfficientNetB0 Nosymptoms 0.7283 0.2971 0.6285 0.7100 0.3200 0.4400

Symptoms 0.7300 0.9300 0.8200
NestedLSTM + CNN Nosymptoms 0.7935 0.5486 0.7808 0.6800 0.7400 0.7100

Symptoms 0.8600 0.8200 0.8400
MediNet-based model (w/ pre training)
AlexNet Nosymptoms 0.7826 0.5135 0.7567 0.6800 0.6800 0.6800

Symptoms 0.8400 0.8400 0.8400
VGG19-BN Nosymptoms 0.7500 0.4699 0.7480 0.6100 0.7400 0.6700

Symptoms 0.8500 0.7500 0.8000
InceptionV3 Nosymptoms 0.7065 0.2927 0.6359 0.5900 0.4200 0.4900

Symptoms 0.7400 0.8500 0.7900
DenseNet121 Nosymptoms 0.7717 0.4591 0.7168 0.7100 0.5500 0.6200

Symptoms 0.7900 0.8900 0.8400
RdiNet Nosymptoms 0.7935 0.5265 0.7712 0.6500 0.7100 0.6800

Symptoms 0.8700 0.8300 0.8500
ResNet101 Nosymptoms 0.7717 0.4591 0.7168 0.7100 0.5500 0.6200

Symptoms 0.7900 0.8900 0.8400
EfficientNetB0 Nosymptoms 0.7391 0.3548 0.6605 0.6800 0.4200 0.5200

Symptoms 0.7500 0.9000 0.8200
NestedLSTM + CNN Nosymptoms 0.8152 0.5764 0.7813 0.7500 0.6800 0.7100

Symptoms 0.8400 0.8900 0.8600
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started by freezing the first 30% of AlexNet, VGG19-BN, InceptionV3, DenseNet121,
RdiNet, ResNet101, and EfficientNetB0 models, and the experimental results of the study
with the Nested-LSTM layer in the Nested-LSTM + CNN model and using MediNet weights.
The results of the classification study (unfrozen) are given in Table 27. In the unfrozen with

Fig. 21 Confusion matrix of Nested-LSTM + CNN architecture before (a) and after (b) pre-training

Fig. 22 Loss plots of Nested-LSTM + CNN architecture before (a) and after (b) pre-training

Fig. 23 Accuracy values of Diabetic Retinopathy dataset before and after pre-training (Bar Chart)
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RdiNet architecture, ACC, PPV, and SN metrics were 79.3%, 86.9%, and 82.8%, respectively.
In the frozen performed with RdiNet architecture, ACC, PPV, and SN metrics were 80.4%,
91.8%, and 81.2%, respectively.

According to Fig. 24, NestedLSTM + CNN architecture was the most successful model,
with a ROC-AUC value of 78.1% before pre-trained and 78.1% after pre-trained NestedLSTM
+ CNN architecture.

The InceptionV3 architecture after pre-trained was the most unsuccessful model, with a
ROC-AUC of 50.0% and a ROC value of 63.6% after pre-trained.

5 Limitations, future research directions

This study has some limitations:

(i) Due to the lack of technical equipment, the MediNet data set consists of a limited number
of data samples and ten categories. To improve the classification success of the transfer
learning method proposed with MediNet, the number of data samples and the number of
categories in the MediNet dataset can be increased.

Table 27 Deep Learning Models After Pre-Training; Fine Tuning Application for AlexNet, VGG1—BN,
InceptionV3, DenseNet121, RdiNet, ResNet101, EfficientNetB0, Nested-LSTM+CNN (Only FCC Layer)

Model Unfrozen Frozen

ACC PPV SN ACC PPV SN

AlexNet 0.7826 0.8361 0.8361 0.8043 0.9016 0.8209
VGG19-BN 0.7500 0.8519 0.7541 0.7283 0.8852 0.7500
Inceptionv3 0.7065 0.7429 0.8525 0.6630 1.0000 0.6630
Densenet121 0.7717 0.7941 0.8852 0.7500 0.8689 0.7794
RdiNet 0.7935 0.8689 0.8281 0.8043 0.9180 0.8116
Resnet101 0.7717 0.7941 0.8852 0.6630 1.0000 0.6630
EfficientNetB0 0.7391 0.7534 0.9016 0.6630 1.0000 0.6630
Nested-LSTM+CNN (only Nested-LSTM layer) 0.8152 0.8438 0.8852 0.6630 0.6630 1.0000

Fig. 24 Comparison of the roc curves obtained from the binary classification study with the before (a) and after
(b) pre-training deep neural networks
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(ii) The medical images used in the MediNet dataset and the medical images used in the
classification studies consist of raw data. Here, preprocessing techniques can be applied
to separate the heart, text areas, and bone regions from the lung images in the CXR
dataset. As a result, the performance of the proposed transfer learning application can be
improved by preprocessing the medical dataset samples.

(iii) The proposed transfer learning method has been developed to be applied only to the
binary classification problem. Here, the performance of the transfer learning method
proposed by expanding the MediNet visual database can be investigated in binary and
multiple classification problems.

(iv) The RdiNet model proposed in the study was successful according to the experimental
results applied to the binary classification problem, but its effectiveness against modern
architectures remained low. Here, the depth of the architecture and the use of additional
feature vectors can be increased to increase efficiency in the classification applications of
the architecture.

6 Discussion

Deep neural networks from artificial intelligence technologies are essential in detecting various
diseases that cause severe complications in humans, such as cancer, lung diseases, and
Alzheimer’s [12].

Extensive data are generally needed for deep neural networks with complex structures and
high parameters to be successful [43]. However, obtaining labeled data is challenging in many
areas, such as image processing. Deep learning algorithms trained from scratch face current
problems such as overfitting, underfitting, and gradient disappearance. Here, (i) data augmen-
tation method can be applied to solve the problems experienced [3], (ii) deep neural networks
can be developed with residual networks or additional feature vectors (iii) transfer learning
technique can be applied [4]. Transfer learning practice between solutions draws attention as
an essential solution technique. The transfer learning process is a method that generally
focuses on the reuse of neural networks that have been previously trained with large amounts
of datasets. ImageNet dataset is frequently used in the transfer learning process [5]. The
literature has observed that transfer learning studies proposed with ImageNet generally
produce high performance [5]. The ImageNet dataset consists of heterogeneous data samples.
Therefore, in the transfer learning process proposed with ImageNet in image processing,
models focus on learning with heterogeneous data. In medical image processing applications,
the disease diagnosis/diagnosis process is one of the applications that require high precision.
Therefore, transfer learning applications made with datasets of very different categories, such
as ImageNet, can be disadvantageous in the disease detection process. A transfer learning
application is proposed with the MediNet dataset, which consists of only medical images from
the main contributions of this study. Therefore, the study focuses only on the performance of
the MediNet dataset, which consists of medical images, in the transfer learning process. The
proposed transfer learning technique is given a comparative analysis before and after pre-
trained with AlexNet, VGG19-BN, InceptionV3, DenseNet121, RdiNet, ResNet101,
EfficientNetB0, Nested LSTM + CNN models from deep neural networks. In the light of
experimental results, it has been observed that the proposed method produces successful
results. However, the proposed database needs to be developed with big data in
different categories. Therefore, another contribution of this work, deep neural
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network-based RdiNet architecture is proposed. The RdiNet architecture is a practical
network that data scientists can benefit from. It can provide an alternative view to the
gradient disappearance problem in deep neural networks with residual networks and
additional feature vectors.

In this research, we present MediNet, a visual database consisting of different medical
images for transfer learning applications. MediNet dataset was trained one by one with deep
learning algorithms, which are AlexNet, VGG19-BN, InceptionV3, DenseNet121, ResNet101,
EfficientNetB0, Nested LSTM + CNN, RdiNet models. Classified medical big data in real life
is almost non-existent. With the MediNet project, we presented a new visual database
consisting of medical data used in transfer learning research. With the MediNet study, we
achieved good results with the small dataset. As demonstrated by his experimental results, it is
shown to achieve more successful results using transfer learning technic in the medical field.
Two significant obstacles that limited us in this study; are the small-data size and lack of
technical equipment (the study was done with a personal computer).

7 Conclusion and future work

This research proposes a transfer learning method with a MediNet visual dataset consisting of
different medical images. The proposed transfer learning method has been applied in detecting
pneumonia, COVID-19, and eye diabetes from datasets consisting of CXR and CT images.
AlexNet, VGG19-BN, InceptionV3, DenseNet121, ResNet101, EfficientNetB0, Nested
LSTM + CNN architectures, and hybrid methods are proposed to be used together with the
proposed CNN-based RdiNet deep neural network in the transfer learning process and solving
the classification problem. Within the scope of the study, firstly, deep neural networks were
trained with the MediNet dataset. In the second stage, the trained neural networks
were applied to detect pneumonia, COVID-19, and eye-diabetes from datasets
consisting of CXR and CT images. In the disease detection process, hybrid methods
were used using deep neural networks and LSTM, GRU, and deep neural networks
within the scope of the study. Experimental results are given comparatively before
and after transfer learning. Our research findings; showed that the transfer learning
application proposed with MediNet was successful in the disease detection process. In
the first stage of the study, NestedLSTM+CNN and RdiNet architectures trained with
the MediNet dataset were the most successful models, with validation accuracy values
of 97.5% and 96.1%, respectively. In the study of pneumonia detection from CXR
images before transfer learning, the InceptionV3 model was the most successful, with
an accuracy value of 94.8% during the test phase.

In the post-transfer-learning pneumonia detection study, the InceptionV3 model produced
an accuracy value of 98.7% during the testing phase. In detecting COVID-19 from CT images,
the ResNet101 architecture produced an accuracy of 58.7% during the test phase before
transfer learning, while it produced 77.33% accuracy after transfer learning. In detecting eye
diabetes from CT images, AleNet architecture produced 72.8% accuracy during the test phase
before transfer learning, while it produced 78.3% accuracy after transfer learning. MediNet
database will continue to be developed and expanded for future studies. For this, we need
classified data (especially .dicom format), and we need the help of scientists/researchers.
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Appendix

Details of AlexNet, VGG19-BN, and Nested-LSTM+CNN architectures are given in Ta-
bles 28, 29 and 30.

Table 28 AlexNet Architecture

Stages Layers Output size

Input Image Input Layer 224x224x3
Conv Layers Conv2d (96) @ 11×11 & 5×5+BN+ReLU 45x45x96

MaxPooling2d @ 3×3 15x15x96
Conv2d (256) @ 3×3+BN+ReLU 15×15×256
MaxPooling2d @ 3×3 5x5x256
Conv2d (384) @ 3×3+BN+ReLU 5×5×384
Conv2d (384) @ 3×3+BN+ReLU 5x5x384
Conv2d (256) @ 3×3+BN+ReLU 5×5x256
MaxPooling2d @ 3×3 1x1x256

Classification Block Flatten 256
FullyConnected (256)+BN+ReLU 256
Dropout (rate=0.2) 256
FullyConnected (128)+BN+ReLU 128
Dropout (rate=0.2) 128
FullyConnected (2)+Softmax 2

The value after “@” is the kernel_size value. In Max Pooling, it is the pool_size value. The value after the “&” is
the strides value. BN: BatchNormalization.

Table 29 VGG19-BN Architecture

Stages Layers Output size

Input Image Input Layer 224x224x3
Conv Block Conv2d (64) @ 3×3 & 3×3+BN+ReLU 75x75x64

Conv2d (64) @ 3×3 & 2×2+BN+ReLU 38x38x64
MaxPooling2d @ 2×2 & 2×2 19x19x64
2 x Conv2d (128) @ 3×3+BN+ReLU 19x19x128
MaxPooling2d @ 2×2 & 2×2 9x9x128
4 x Conv2d (256) @ 3×3+BN+ReLU 9x9x256
MaxPooling2d @ 2×2 & 2×2 4x4x256
4 x Conv2d (512) @ 3×3+BN+ReLU 4x4x512
MaxPooling2d @ 2×2 & 2×2 2x2×512
4 x Conv2d (512) @ 3×3+BN+ReLU 2×2x512
MaxPooling2d @ 2×2 & 2×2 1x1x512

Classification Block Flatten 512
FullyConnected (256)+BN+ReLU 256
Dropout (rate=0.2) 256
FullyConnected (128)+BN+ReLU 128
Dropout (rate=0.2) 128
FullyConnected (2) 2

The value after “@” is the kernel_size value. In Max Pooling, it is the pool_size value. The value after the “&” is
the strides value. BN: BatchNormalization.
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