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Abstract
Lung cancer has the highest incidence in the world. The standard tests for its diagnostics are
medical imaging exams, sputum cytology, and lung biopsy. Computed Tomography (CT)
of the chest plays an essential role in the early detection of nodules since it can allow for
more treatment options and increases patient survival. However, the analysis of these exams
is a tiring and error-prone process. Thus, computational methods can help the specialist
in this analysis. This work addresses the classification of pulmonary nodules as benign or
malignant on CT images. Our approach uses the pre-trained VGG16, VGG19, Inception,
Resnet50, and Xception, to extract features from each 2D slice of the 3D nodules. Then,
we use Principal Component Analysis to reduce the dimensionality of the feature vectors
and make them all the same length. Then, we use Bag of Features (BoF) to combine the
feature vectors of the different 2D slices and generate only one signature representing the
3D nodule. The classification step uses Random Forest. We evaluated the proposed method
with 1,405 segmented nodules from the LIDC-IDRI database and obtained an accuracy of
95.34%, F1-Score of 91.73, kappa of 0.88, sensitivity of 90.53%, specificity of 97.26% and
AUC of 0.99. The main conclusion was that the combination by BoF of features extracted
from 2D slices using pre-trained architectures produced better results than training 2D and
3D CNNs in the nodules. In addition, the use of BoF also makes the creation of the nodule
signature independent of the number of slices.
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1 Introduction

Lung cancer is one of the most preventable causes of death as long as it is detected early
[23]. For both sexes, lung cancer is the most commonly diagnosed cancer in the world, with
11.6% of all cases, being also the leading cause of death, accounting for 18.4% of all cancer
deaths [10]. The Computed Tomography (CT) exam is the preferred method by specialists
to perform the non-invasive screening of patients with the disease [53], which has been
available since 1975. This exam offers a sharper image with a more significant distinction
between the body tissues [44].

The analysis of CT images is a challenging task, as the density of the nodules can be sim-
ilar to other pulmonary structures, and specialists tend to analyze large numbers of exams,
making the process repetitive and prone to errors. A pulmonary nodule is characterized as
a rounded opacity, well or poorly defined, with a diameter equal to or less than 3cm [19].
Lesions greater than 3 cm are often classified as malignant [16].

Early diagnosis and treatment of lung cancer at an early stage increases the chance of
patient survival [18]. In this scenario, automated computational tools such as Computer-
Aided Diagnosis (CAD) are widely explored to increase the accuracy in diagnosing lesions,
as they can provide the specialist with a second opinion [33].

In recent years, several techniques have been applied to detect abnormalities in chest
CT images to help specialists search for an early diagnosis. Approaches such as texture
descriptors, shape attributes, and Convolutional Neural Networks (CNN) explored different
image properties. The most recent literature has focused on techniques based on 3D CNNs.
However, they still have some limitations, mainly related to the need for large amounts of
samples available for training. Thus, 2D CNNs are also commonly investigated, as they
require fewer samples than 3D CNNs to obtain good performance.

Many studies to classify pulmonary nodules applied CNNs [1, 21, 22, 46, 52], which
require a single input format for images, although pulmonary nodules have different sizes.
In addition, some works used 3D CNNs [55], which require more images in the training
stage than 2D CNNs, leading to increased computational cost. BoF is a technique widely
used in different medical applications [6, 8, 35, 47]. However, to the best of our knowledge,
this technique has not been used to classify pulmonary nodules on computed tomography
images.

This paper proposes an automatic method to classify pulmonary nodules from CT images
as benign or malignant. The proposed method is based on Pre-trained Networks, Princi-
pal Component Analysis (PCA) [25], and BoF [37]. To create this algorithm, we used
different pre-trained 2D architectures to extract features from different slices of each 3D
nodule. We applied PCA to reduce and standardize the dimensionality of the features, which
were combined using BoF to create a single signature representing a nodule. Then, we
evaluated the Random Forest (RF) classifier parameters to obtain a better combination of
hyper-parameters that improved the prediction in the classification step.

The main contributions of this work are:

– A BoF-based classification method combines features extracted from 3D nodes from
different pre-trained 2D network architectures;

– A combination of techniques capable of classifying three-dimensional images from
two-dimensional architectures does not depend on a single depth size for all nodule
samples;

– The proposed method performed better than that presented by 2D and 3D CNNs trained
using the nodules.

The rest of the paper is divided into four main sections: Section 2 comprises a synthesis
of the related works. Section 3 details the BoF-based classification method proposed in this
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work. In Section 4, the results obtained in the experiments are presented and discussed.
Finally, Section 5 presents the conclusions and limitations of this study and proposes future
works.

2 Related works

In recent years, several computational techniques have been applied to detect abnormalities
in CT images in the thoracic region to assist the work of specialists in the search for an
early diagnosis. In this scenario, works that used texture descriptors, shape descriptors, 2D
CNNs, 3D CNNs, and BoF will be presented.

In [14] the methodology presented the Mean Phylogenetic Distance and the Taxonomic
Diversity Index for feature extraction. In the classification step, a genetic algorithm was
used together with the Support Machine (SVM). In the work of [39], Multiple Instance
Learning was used to classify nodules as malignant or benign. In [40], the authors proposed
a method that uses Gray Level Co-occurrence Matriz for feature extraction and SVM to
perform nodule classification. In [36], the method consists of four steps: 1 - extraction of
the lung region; 2 - method of detecting candidate nodes based on geometric adjustment in
parametric form; 3 - hybrid geometric texture highlighting; 4 - classification of nodes using
a deep learning approach based on autoencoder and softmax.

In terms of shape descriptors, examples are the works of [42], and [16]. In [42] they
present a method that combines appearance and shape descriptors, the 3D Ambiguity
Local Binary Pattern, and the seventh order Markov Gibbs Random Field. The character-
istics of the images extracted by the descriptors are classified separately using Denoising
Autoencoder and SVM. In [16], functional Minkowski measures, distance measures, vector
representation of point measures, triangulation measures, and Feret diameters were used to
differentiate the patterns of malignant and benign forms. They used a genetic algorithm to
select the best individuals to generate the model in the classification with SVM.

In [52], the authors proposed a semi-supervised adversarial classification model that can
be trained using labeled and unlabeled data. In [21], was explored a new diagnostic method
based on Deep Transfer Convolutional Neural Network and Extreme Learning Machine
(ELM). In [1], transferable texture convolutional neural networks were proposed to improve
classification performance. The study [46] proposed an efficient approach based on a deep
neural network for automatic classification. Finally, in [55], an end-to-end classification of
CT spots of raw 3D nodules was performed using CNNs.

In [17], four CNN architectures were proposed, including a basic 3D CNN, a new multi-
output network, a DenseNet 3D, and an augmented DenseNet 3D with multiple outputs.
In [56], a Regions with Convolutional Neural Net was used for nodule detection with
dual-path 3D blocks and a U-net-like structure to learn the nodule characteristics effec-
tively. In [22], the authors develop a self-supervised transfer learning based on the 3D CNN
Domain Adaptation Framework to classify pulmonary nodules.

In addition, studies that used BoF showed promising results for other medical appli-
cations. In [6], the authors developed an ensemble-based BoF classification system for
detecting COVID-19. In [35], an approach consisting of a BoF and a neural network was
proposed to classify chest radiography images into non-COVID-19 and COVID-19. In [8],
a model is presented for the classification of Dementia brain disease using magnetic reso-
nance imaging. The BoF was used to extract features and SVM to distinguish exams into
three categories such as demented, mild cognitive impairment, and normal controls. The
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work proposed in [47] presents a proficient content-based image retrieval framework based
on Spark Map Reduce and BoF for different medical applications.

Table 1, presents the main related works divided by the techniques used. We also high-
light the metrics, which are Accuracy (ACC), Sensitivity (SEN), Specificity (SPE), and
Area under the ROC Curve (AUC).

By analyzing Table 1, it is possible to observe that texture and shape descriptors perform
well in detecting pulmonary nodules. However, they need a good segmentation of the nod-
ules region, which is challenging. In this way, CNNs have gained greater notoriety recently,
mainly because of their promising results in many applications. However, some limitations
are mainly related to the need for large amounts of samples available for training. Especially
in deep architectures with many layers, 2D and 3D CNNs are sensitive to overfitting due to
the reduced size of the available databases. Another disadvantage of 2D and 3D CNNs is
that they require all nodules to have the same number of slices. Therefore, it is necessary to
use techniques to replicate or remove nodule slices.

In this work, we investigated the combination by BoF of features extracted by different
pre-trained 2D CNNs to represent a 3D nodule. Using pre-trained 2D CNNs was motivated
because they required fewer samples for training [4, 50]. On the other hand, the motivation
for using BoF was to make the method independent of the number of 2D slices of the
nodules.

Some works apply resizing techniques to standardize the size of the images since CNNs
require that all images have the same input size. This process can lead to distortion of essen-
tial features for the classification of nodules [21, 46]. Other works classify 3D images using
2D CNNs; this method considers the depth as the channels of the images. In this scenario, all

Table 1 Summary of related works

Work Year Dataset ACC SEN SPE AUC

Texture Descriptor

[14] 2018 LIDC–IDRI 0.9198 0.9342 0.9121 0.9400

[39] 2018 LIDC–IDRI 0.9111 0.6979 0.9855 0.9696

[40] 2019 LIDC–IDRI 0.9310 0.9111 0.9524 0.9767

[36] 2020 LIDC–IDRI 0.9690 0.9560 0.9700 –

Shape Descriptor

[16] 2017 LIDC–IDRI 0.9319 0.9275 0.9333 –

[42] 2019 LIDC 0.9495 0.9462 0.9520 0.9874

2D CNN

[52] 2019 LIDC–IDRI 0.9253 0.8494 0.9628 0.9581

[55] 2019 LIDC–IDRI 0.8777 0.8093 0.9238 0.9379

[21] 2020 LIDC–IDRI e FAH–GMU 0.9457 0.9369 0.9515 0.9494

[1] 2020 LIDC–IDRI e LUNGx 0.9669 – 0.9737 0.9911

[46] 2020 LIDC–IDRI 0.8780 0.8100 0.9190 0.9440

3D CNN

[17] 2018 LIDC–IDRI e private 0.9040 0.9047 0.9033 0.9548

[56] 2018 LIDC–IDRI 0.9044 – – –

[22] 2022 LIDC–IDRI 0.9107 – – 0.9584
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3D images need to have equal depth [55]. Other works perform the classification known as
slice by slice without considering the 3D nodule [1]. Furthermore, some limitations in using
3D CNN architectures may be related to unbalanced sets that contain few samples [17].
With BoF, we guarantee the preservation of essential characteristics of the nodules, even in
images with different depths. Another advantage is the fusion of features extracted by dif-
ferent architectures, which makes the method more robust and efficient. Furthermore, our
method uses zero padding to avoid distortions, preserving the original size of the nodule in
the image.

3 Proposedmethod

The proposed methodology is divided into five main steps: image acquisition, feature extrac-
tion, feature fusion, signature acquisition, and classification. A summary of the steps that
are part of this methodology is presented in Fig. 1.

3.1 Image acquisition

The LIDC-IDRI image collection is used for diagnosing and screening lung cancer on CT
scans with marked lesions. The data set contains 1018 exams, each including images from a
clinical chest CT and an associated XML file, which records four experts’ results of a two-
phase image annotation process. All images are in Digital Imaging and Communications in
Medicine (DICOM) format and up to 16 bits per voxel. Its dimension is 512×512 with a
variable number of cuts per exam. The CT images were acquired by different CT scanners,
making detecting pulmonary nodules difficult [5]. In addition to the tags in the XML file,

Fig. 1 Flowchart of the steps developed in this work
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Table 2 Description of the architectures used, the name of the layer from which the features were extracted,
and the amount extracted

Architecture Layer Depth Parameters Number of features

VGG16 Block 5 (MaxPooling2D) 32 138.357,544 2048

VGG19 Block 5 (MaxPooling2D) 26 143.667,240 2048

InceptionV3 Mixed 10 (Concatenate) 159 23.851,784 2048

ResNet50 Block 3 Convolution 5 (Activation) 50 25.636,712 18432

Xception Block 14 sepconv2 (Activation) 126 22.910,480 18432

some characteristics are highlighted, such as sphericity, texture, and malignancy (all indi-
cated by a value from 1 to 5). If the indicated value is closer to 1, the nodule is characterized
as benign, and closer to 5, it is marked as malignant [16]. Classification as to malignancy
or benignity is first obtained with calculations that summarize in a single value the nodular
characteristics made by up to four experts, calculating the mode or median [24].

The method used to acquire the Volumes of Interest (VOI) was proposed by [16], 833
tomographic exams of the 1018 present in the LIDC-IDRI database were used in this step.
A total of 185 exams were discarded, where some did not present nodules equal to or greater
than 3 mm or had a divergence of information found in the notes file of an exam versus the
information present in the DICOM header of the same exam. In the nodule segmentation
step, the contour information provided in the XML file containing the nodule coordinates
was used, together with expert analysis.

After segmenting the CT images, 1011 benign and 394 malignant nodules were obtained,
which are available at1. It was found that the VOIs extracted have different depths for each
nodule. In addition, the cuts performed were not standardized in a fixed size, in this sense,
the dimensions of the nodule slices are also different.

3.2 Extraction andmerging of features

In this step we use the VGG16 [43], VGG19 [43], InceptionV3 [48], ResNet50 [20]
and Xception [13] architectures, pre-trained in the base ImageNet [38] for extracting the
characteristics of each of the nodule slices. The reason for the choice of these models
is based on the good performance in ImageNet classification, in addition to promising
results presented by these architectures in the medical literature included in several imaging
works [12, 31, 41].

Although the networks are pre-trained on color images, they still produce good results
for grayscale images. As they were trained on a general purpose database (Imagenet), their
first layers formed by convolutional filters learn to extract generic features from images.
This technique is commonly applied to medical imaging problems, as we can see in the
literature [32, 50, 51]. Table 2 presents the pre-trained networks, layers used to extract the
characteristics and quantity of characteristics of each network.

As noted in Table 2, the extracted features have different dimensions. Therefore, we
use PCA to leave all feature vectors of the same size vectors to be combined, generating
only one signature through BoF. PCA is widely used in large data sets, as it reduces the
dimensionality of such sets, increases the interpretability of results, and at the same time

1https://github.com/pavic-ufpi/Bases/tree/master/Lung/Diagnosis
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minimizes the loss of information. It does this by creating new uncorrelated variables that
successively maximize the variance [25] .

With PCA, we test different sizes of dimensionality, as few features may not represent
the images; on the other hand, many features increase the computational cost and are more
sensitive to overfitting. The tested dimensions were: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024 and 2048. After applying the PCA, the characteristics extracted by the different archi-
tectures were combined by Bof to generate a single signature per nodule. This signature
contains information from all 2D slices extracted by different network architectures.

3.3 Bag of features

BoF is a method based on text classification known as Bag of Word (BoW). In its classic
form, this method uses the SIFT [30] descriptor to represent key points of an image [26].
After detecting the points in the image, the detected points are grouped, generating a visual
word vocabulary. Finally, the Bag of Visual Words is obtained, which is represented by a
Visual-Word vector [54].

In the BOF, images are represented by the frequency of their pixel intensities that are
obtained with the histogram. The image is described as a visual word frequency histogram
based on a vocabulary that quantifies the spatial characteristics of all image samples. Such
a method facilitates the visualization of patterns dependent on the image collection in the
content of each sample. Furthermore, the method is adaptable and allows, for example, the
use of different feature extractors and clustering algorithms [9].

Our method replaces the point detection step that uses SIFT descriptor. Instead, we use
pre-trained networks to extract features of each slice of a nodule. Compared with the classic
BoF model, in our method, each 2D slice of a 3D nodule represents a detected point, while
the description step uses pre-trained networks. With BoF, it is possible to represent the 3D
nodule, generating signatures from the features extracted from the 2D slices of the nodule.
The BoF technique is composed of two stages: the construction of a visual dictionary of
words and the generation of signatures. The database is divided into training and testing sets.
Visual dictionary words are created with training images. After generating the dictionary,
each image is represented by a vector, which is the image signature [45].

Once the feature vector of the images is extracted and standardized with the same size
as the features, the most representative patches need to be identified, which will constitute
the visual words of the system [2]. To create the dictionary, it is necessary to define the
size k, which is the number of representative words. The dictionary must be large enough
to distinguish relevant differences between images, but it cannot include irrelevant varia-
tions [49]. To this end, we use k-means [29], which is a clustering algorithm that places data
into separate groups based on their similarity, where the value of k represents the number of
clusters.

The tests performed with the individual networks were necessary to evaluate the influ-
ence of the number of clusters in the proposed method. The number of clusters is the size of
the signature, that is, the feature vector. The k parameter values tested of K-means were: 2,
4, 8, 16, 32, 64, 128, 256, 512 and 1024. We emphasize that the PCA was not applied in the
tests carried out with the individual networks, whose objective was to find the best k value.
After defining a default value for the cluster number obtained in the individual tests, we
applied the PCA to standardize the dimensionality of the CNNs and combine the features.
Thus, we estimated the dimensionality of the features with the PCA, we used a default value
for k, we applied the BoF, and we carried out the classification.
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3.4 Classification

In this step, we use the RF classifier [11]. RF is a combination of tree predictors, so each
tree depends on the values of an independently sampled random vector with the same dis-
tribution for all trees in the forest. A point to be highlighted is that all experiments were
performed with fixed RF parameter values. Thus, after defining all the steps of our method
for the description of the nodules, we estimated the parameters: number of trees in the forest
and the maximum depth of the RF tree.

3.5 Metrics evaluation

To evaluate the results, we used the following metrics: Accuracy (1), Sensitivity (2), Speci-
ficity (3), Kappa coefficient (4), F1-Score (7) and Area Under ROC Curve (AUC) [3, 4].
These metrics are based on the four values: True Positive (TP), correct classification of the
malignant class; True Negative (TN), correct classification of the benign class; False Posi-
tive (FP), prediction errors of the benign class; False Negative (FN), prediction errors of the
malignant class. Being, the positive class malignant and the negative class benign.

The ACC (1), considered by several researchers, one of the simplest metrics to assess
the quality of a classification, was used in this work to measure the number of correct
predictions without taking into account positives and negatives [34].

ACC = T P + T N

T P + T N + FP + FN
. (1)

The SEN (2), or rate of true positives, is the metric computed by the ratio between true
positives and all positive cases [34].

SEN = T P

T P + FN
. (2)

The SPE (3), or false positive rate, corresponds to the proportion of false positives in
relation to all other negative data [34].

SPE = T N

T N + FP
. (3)

The KAP (4), is a challenging metric when working with multi-class problems or when
problem classes are unbalanced. Although there is no standard for interpreting its data, [27]
presents a way to achieve understanding, which makes it possible to verify the degree of
agreement between evaluators, where: a value less than 0 indicates non-agreement, between
0 and 0 .20 mild agreement, between 0.21 and 0.40 as fair agreement, between 0.41 and
0.60 as moderate agreement, between 0.61 and 0.80 as substantial agreement and between
0.81 and 1 as almost agreement perfect.

KAP = Po − Pe

1 − Pe

, (4)

where,

Po = T P + T N

T P + T N + FP + FN
(5)

and

Pe = [(T P + FN)(T P + FP)] + [(T N + FN)(T N + FP)]
(T P + T N + FP + FN)2

. (6)
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The F1-Score (7) metric measures a binary classifier’s success, and it is calculated by the
harmonic mean of precision and recall [28].

F1-Score = 2 · P · R

P + R
, (7)

where,

P = T P

T P + FP
(8)

and

R = T P

T P + FN
(9)

Finally, the AUC is used when the classification in problem of binary solution, as is
the case of this work. In practice, it corresponds to the probability that a positive example
chosen at random is higher than that of a negative example being chosen also at random,
and demonstrates the contrast in the prediction [7, 34].

4 Results

To evaluate the results, we divided the set of 1,011 benign and 394 malignant nodules into
training (70%), validation (10%), and testing (20%). The nodule slices were resized to the
fixed size of 80×80, which was the value of the largest slice of the nodules. The resizing
was done using the zero-padding technique; that is, we added borders with a value of 0 until
all the slices had the same dimension. The training process was carried out with the RF
classifier. The values used in the first experiments were: 100 for the number of trees in the
forest, the Gini function to measure the quality of a division, and unlimited depth of the tree.

The tests were carried out in three stages, which are:

1. Individually pre-trained networks: In this stage, experiments were carried out by
varying the number of clusters, keeping the same values for each tested architecture;

2. Combining the characteristics: in this step, we use different dimensions of dimension-
ality through the PCA technique, to find the best dimensionality value. In addition, we
used the value of k found in experiment 1.

3. Search for best RF parameters: Here, we performed a search to find the best RF param-
eters. In this step, the search was carried out to find the ideal depth of the tree and the
number of trees in the forest.

We considered kappa as the main metric for the analysis of the results, as it is more suit-
able for unbalanced sets. Thus, the choice of parameters was made based on this metric.
We performed each experiment five times, and for each result, the mean and standard devi-
ation are presented. Figure 2 presents the graphs of the kappa metric, containing the results
obtained from the individual networks and the general average of the networks, for each
value of k. Tables 3, 4, 5, 6 and 7 show the values for all metrics. The results were obtained
by varying the number of clusters, and each table represents an architecture.

By analyzing the results of the Tables and Fig. 2, it is possible to observe that the k vari-
ation had no great influence on the results. The kappa results had a lower performance for
k values less than 16 and greater than 512. For values less than 16, it is probably not pos-
sible to represent all the characteristics of the nodules with this smaller number of clusters.
However, for k values greater than 512, the classifiers are more sensitive to overfitting due
to the greater number of features, mainly due to the unbalance of the classes. Thus, values
between 32 and 256 produced more consistent results, and the value 128 was the one with
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Fig. 2 Kappa results by network architecture and number of clusters. The dashed line represents an average
of kappa of all models

the highest average of results and the smallest deviation, so we chose this value to be used
in next steps. The architectures present similar results and, according to Fig. 2, the one that
stood out the most individually was Inception, with Acc of 87.07, F1-Score of 77.60 Kap
of 0.69, Sen of 78.42, Spe of 90.74, and AUC of 0.89. The Dashed line confirms that the
highest average of the architectures was obtained with 128, so this value was selected for
the next step.

In Table 8 and Fig. 3 the results are presented after combining features of the VGG16,
VGG19, Inception, Resnet50 and Xception architectures. In this step, we used the PCA
to reduce the dimensionality of the feature vectors, the value of k=128, and the BoF to
generate signatures for each nodule. In this experiment, different sizes of dimensionality
were tested, and the best results were obtained with the dimensionality of 1,024. Another
highlight is that the best result was maintained in almost all metrics (Acc, Kap, Spe, and
AUC), performing less only in Sen metric for dimensionality 16. However, if we analyze
the Kap metric referring to the PCA equal to 1,024, it was greater than the PCA equal to
16. The combined features of different architectures provide a better representation of each

Table 3 Comparative evaluation of different numbers of clusters using characteristics extracted from VGG16

K Acc% F1-Score% Kap Sen% Spe% AUC

2 84.43 ± 2.1865 69.28 ± 4.5397 0.59 ± 0.0587 61.58 ± 5.0911 93.58 ± 1.8651 0.83 ± 0.0257

4 83.53 ± 1.1758 68.98 ± 2.3765 0.58 ± 0.0297 64.21 ± 4.1940 91.26 ± 1.9855 0.89 ± 0.0070

8 84.89 ± 1.2436 72.49 ± 2.2694 0.62 ± 0.0306 69.74 ± 3.4306 90.95 ± 1.6118 0.88 ± 0.0202

16 85.19 ± 1.3997 72.74 ± 2.5417 0.63 ± 0.0340 69.21 ± 3.9572 91.58 ± 2.1060 0.88 ± 0.0117

32 84.96 ± 1.3450 72.37 ± 2.4993 0.62 ± 0.0339 68.95 ± 2.8350 91.37 ± 1.2276 0.88 ± 0.0108

64 84.21 ± 1.6301 70.41 ± 3.6834 0.60 ± 0.0457 66.05 ± 5.4821 91.48 ± 1.7107 0.89 ± 0.0128

128 85.94 ± 1.6924 73.08 ± 3.3157 0.64 ± 0.0443 66.84 ± 3.4706 93.58 ± 1.1218 0.90 ± 0.0103

256 85.11 ± 1.8822 71.98 ± 3.8775 0.62 ± 0.0505 67.11 ± 4.9932 92.32 ± 1.5097 0.89 ± 0.0107

512 85.11 ± 1.1081 70.31 ± 2.6098 0.61 ± 0.0315 61.84 ± 3.9926 94.42 ± 1.3561 0.89 ± 0.0234

1024 82.78 ± 1.6526 64.17 ± 3.0790 0.53 ± 0.0412 53.95 ± 3.3275 94.32 ± 2.1410 0.87 ± 0.0130

The results in bold represent the best performance obtained in this test
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Table 4 Comparative evaluation of different numbers of clusters using characteristics extracted from VGG19

K Acc% F1-Score% Kap Sen% Spe% AUC

2 85.26 ± 1.9097 70.90 ± 4.7077 0.61 ± 0.0573 63.42 ± 7.0339 94.00 ± 0.9184 0.85 ± 0.0198

4 85.86 ± 2.3964 74.24 ± 4.8284 0.65 ± 0.0638 71.58 ± 5.8008 91.58 ± 1.3736 0.87 ± 0.0257

8 84.66 ± 1.9399 73.05 ± 4.0313 0.62 ± 0.0521 73.16 ± 6.4775 89.26 ± 1.8990 0.87 ± 0.0269

16 85.79 ± 0.8389 75.08 ± 2.3067 0.65 ± 0.0274 75.26 ± 5.2870 90.00 ± 1.1998 0.89 ± 0.0221

32 85.34 ± 2.5606 74.02 ± 5.0167 0.64 ± 0.0670 73.42 ± 6.5212 90.10 ± 1.8077 0.89 ± 0.0341

64 84.96 ± 1.3873 73.75 ± 2.4370 0.63 ± 0.0337 73.95 ± 3.2662 89.37 ± 1.5407 0.90 ±0.0238

128 86.84 ± 1.8592 76.45 ± 2.7358 0.67 ± 0.0411 74.47 ± 1.7846 91.79 ± 2.3697 0.90 ± 0.0288

256 83.83 ± 1.6315 71.16 ± 2.6934 0.60 ± 0.0383 69.74 ± 2.7612 89.47 ± 1.8244 0.88 ± 0.0249

512 84.96 ± 1.8719 71.87 ± 4.8303 0.62 ± 0.0577 67.90 ± 7.3301 91.79 ± 1.3578 0.88 ± 0.0223

1024 84.28 ± 2.0645 68.73 ± 4.2355 0.59 ± 0.0551 60.53 ± 4.4828 93.79 ± 1.8056 0.88 ± 0.0292

The results in bold represent the best performance obtained in this test

Table 5 Comparative evaluation of different numbers of clusters using characteristics extracted from
Inception

K Acc% F1-Score% Kap Sen% Spe% AUC

2 85.64 ± 1.3334 73.20 ± 3.1716 0.63 ± 0.0391 68.95 ± 5.3031 92.32 ± 1.2243 0.87 ± 0.0162

4 83.53 ± 2.0776 71.33 ± 3.9210 0.60 ± 0.0533 71.84 ± 4.7528 88.21 ± 1.1346 0.88 ± 0.0209

8 83.23 ± 1.7243 71.43 ± 2.9658 0.60 ± 0.0414 73.42 ± 4.1927 87.16 ± 1.8702 0.88 ± 0.0287

16 84.96 ± 1.8404 74.21 ± 3.2678 0.64 ± 0.0453 75.79 ± 4.3698 88.63 ± 1.7174 0.88 ± 0.0365

32 86.69 ± 1.0251 76.63 ± 2.0555 0.67 ± 0.0267 76.58 ± 4.8816 90.74 ± 1.9007 0.89 ± 0.0260

64 87.07 ±2.0382 77.60 ± 3.5021 0.69 ± 0.0491 78.42 ± 4.5281 90.53 ± 2.2073 0.89 ± 0.0326

128 85.64 ± 0.9634 74.69 ± 1.7656 0.65 ± 0.0239 74.21 ± 2.9556 90.21 ± 1.2712 0.89 ± 0.0230

256 85.56 ± 1.4964 74.14 ± 3.0607 0.64 ± 0.0402 72.63 ± 4.3556 90.74 ± 0.9197 0.89 ± 0.0345

512 85.79 ± 1.4535 74.88 ± 2.5579 0.65 ± 0.0352 74.21 ± 4.1277 90.42 ± 1.9825 0.89 ± 0.0267

1024 85.79 ± 2.2101 73.92 ± 4.5020 0.64 ± 0.0590 70.79 ± 5.8484 91.79 ± 1.6517 0.88 ± 0.0301

The results in bold represent the best performance obtained in this test

Table 6 Comparative evaluation of different numbers of clusters using characteristics extracted from
Resnet50

K Acc% F1-Score% Kap Sen% Spe% AUC

2 85.19 ± 1.5885 73.09 ± 3.1810 0.63 ± 0.0420 70.53 ± 3.9540 91.05 ± 1.1041 0.87 ± 0.0231

4 83.91 ± 1.5329 70.27 ± 4.1168 0.59 ± 0.0484 67.37 ± 8.6627 90.53 ± 2.3555 0.86 ± 0.0305

8 85.56 ± 2.1076 74.59 ± 4.0174 0.65 ± 0.0538 74.47 ± 6.2589 90.00 ± 2.2111 0.89 ± 0.0288

16 84.89 ± 1.7534 73.59 ± 3.8195 0.63 ± 0.0485 74.21 ± 7.1391 89.16 ± 2.1729 0.88 ± 0.0232

32 84.66 ± 1.4952 72.99 ± 3.2721 0.62 ± 0.0414 72.90 ± 5.9777 89.37 ± 1.8074 0.89 ± 0.0208

64 84.81 ± 1.5903 73.09 ± 3.4930 0.63 ± 0.0444 72.63 ± 6.6252 89.69 ± 1.7827 0.89 ± 0.0284

128 83.98 ± 2.6949 71.74 ± 4.9964 0.61 ± 0.0680 71.32 ± 6.3594 89.05 ± 2.4528 0.88 ± 0.0322

256 85.64 ± 2.4395 73.72 ± 4.8316 0.64 ± 0.0642 70.79 ± 6.3026 91.58 ± 1.9686 0.90 ± 0.0246

512 85.04 ± 1.9381 72.13 ± 4.2047 0.62 ± 0.0537 68.16 ± 6.1956 91.79 ± 1.3548 0.89 ± 0.0300

1024 83.91 ± 1.5115 69.06 ± 3.6417 0.58 ± 0.0439 63.16 ± 5.4551 92.21 ±1.5767 0.89 ± 0.0196

The results in bold represent the best performance obtained in this test
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Table 7 Comparative evaluation of different numbers of clusters using characteristics extracted from
Xception

K Acc% F1-Score%% Kap Sen% Spe% AUC

2 80.45 ± 1.7138 60.65 ± 5.0316 0.48 ± 0.0570 53.16 ± 6.4762 91.37 ± 0.9759 0.82 ± 0.0364

4 82.03 ± 1.7695 66.48 ± 4.9952 0.54 ± 0.0581 63.16 ± 8.3225 89.58 ± 1.3079 0.85 ± 0.0244

8 83.23 ± 1.8199 70.73 ± 3.4202 0.59 ± 0.0463 71.05 ± 4.7826 88.10 ± 1.6845 0.88 ± 0.0339

16 85.11 ± 1.3378 73.21 ± 3.2100 0.63 ± 0.0394 71.58 ± 5.8053 90.53 ± 1.4495 0.87 ± 0.0260

32 83.98 ± 1.3593 72.51 ± 2.8867 0.61 ± 0.0368 74.21 ± 5.5564 87.89 ± 1.7951 0.88 ± 0.0319

64 84.81 ± 1.5356 73.16 ± 2.9470 0.63 ± 0.0394 72.63 ± 4.6635 89.68 ± 1.5820 0.88 ± 0.0320

128 85.64 ± 2.3487 74.19 ± 4.6375 0.64 ± 0.0617 72.63 ± 6.5708 90.84 ± 1.6166 0.89 ± 0.0269

256 85.04 ± 1.7717 74.36 ± 3.1600 0.64 ± 0.0438 76.05 ± 4.3564 88.63 ± 1.3957 0.90 ± 0.0262

512 85.49 ± 1.7216 73.60 ± 2.9725 0.64 ± 0.0417 70.79 ± 3.2662 91.37 ± 1.7174 0.90 ± 0.0251

1024 83.68 ± 1.5341 69.55 ± 3.0020 0.58 ± 0.0398 65.26 ± 3.4929 91.05 ± 1.3313 0.87 ± 0.0209

The results in bold represent the best performance obtained in this test

nodule, especially for unbalanced sets. Also, due to the use of BoF, the signature calculation
is independent of the number of slices of the nodule.

Step 3 was performed to estimate the parameters of the RF classifier. We adopted as
default k=128 and PCA=1024 for this experiment. We used the validation set to perform this
experiment to use it in the test set later. We evaluated values from 10 to 200 for maximum
tree depth and 100 to 500 for the number of trees in the forest. The jump in the variation of
parameters was 10 out of 10. At the end of the search, we obtained 250 for the number of
trees in the forest and 100 for the maximum depth of the tree.

The result obtained in the test set is presented in Table 9. Comparing the Tables 8 (Step
2) and 9 (Step 3), we observed that the method with the new parameters found for the RF
improved the values of Acc, F1-Score, Sen, Spe and AUC. As for the Kap metrics, the
values were maintained about the best experiment in Step 2. The correct prediction of benign
nodules caused the increase in values for the Acc, F1-Score, Sen, Spe and AUC metrics.

Table 8 Comparative evaluation of different dimensionality using PCA to reduce features extracted from
networks VGG16, VGG19, Inception, Resnet50, and Xception

PCA Acc% F1-Score% Kap Sen% Spe% AUC

1 91.58 ± 1.0783 85.12 ± 2.0764 0.79 ± 0.0279 84.47 ± 3.2657 94.42 ± 0.7857 0.97 ± 0.0068

2 92.63 ± 1.7397 86.97 ± 3.2248 0.82 ± 0.0441 86.32 ± 4.4512 95.16 ± 1.2170 0.98 ± 0.0054

4 92.78 ± 1.6024 86.86 ± 3.0213 0.82 ± 0.0410 83.68 ± 3.7766 96.42 ± 0.9042 0.98 ± 0.0076

8 93.46 ± 0.6568 88.32 ± 1.1898 0.84 ± 0.0164 86.58 ± 1.7439 96.21 ± 0.6140 0.98 ± 0.0046

16 94.51 ± 0.9076 90.35 ± 1.6262 0.87 ± 0.0225 90.00 ± 2.7109 96.31 ± 0.9982 0.99 ± 0.0055

32 93.53 ± 0.9317 88.63 ± 1.5147 0.84 ± 0.0217 88.16 ± 2.7612 95.68 ± 1.5383 0.98 ± 0.0048

64 93.68 ± 1.6880 88.80 ± 3.0309 0.84 ± 0.0420 87.89 ± 4.1960 96.00 ± 1.2737 0.98 ± 0.0050

128 94.06 ± 1.7027 89.27 ± 3.3000 0.85 ± 0.0443 87.11 ± 5.1589 96.84 ± 0.6657 0.98 ± 0.0060

256 94.36 ± 0.7540 89.86 ± 1.4873 0.86 ± 0.0198 87.63 ± 3.0690 97.05 ± 0.5346 0.98 ± 0.0040

512 93.61 ± 1.4047 88.49 ± 2.7340 0.84 ± 0.0367 86.32 ± 4.2923 96.53 ± 0.9757 0.98 ± 0.0070

1024 95.04 ± 1.3116 91.16 ± 2.5098 0.88 ± 0.0339 90.00 ± 4.3730 97.05 ± 0.7860 0.98 ± 0.0050

2048 93.91 ± 1.3134 89.21 ± 2.3477 0.85 ± 0.0325 88.16 ± 3.1161 96.21 ± 1.2600 0.98 ± 0.0060

The results in bold represent the best performance obtained in this test
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Fig. 3 Accuracy and kappa results were obtained with the dimensionality variation using the PCA. The
accuracy values were divided by 100 to be on the same scale of kappa

Based on the analysis of the results obtained in each phase of the work, we can conclude:
1. The use of individually pre-trained networks did not perform well compared with works

presented in the literature. However, the combination of features extracted by different
architectures presented promising results.

2. The cluster number variation had no great influence on the results, but it is clear that for
the dataset used, the ideal value was between 32 and 512, and that 128 performed better.

3. The PCA used for dimensionality reduction and the BoF to the combination of features
present promising results in the representation of 3D nodules.

4.1 Discussions

The comparison of our results with other works in the literature is presented in Table 10.
Analyzing the results presented in Table 10, it is possible to observe that the works [36]

and [1] have a slightly higher accuracy than our method. However, our method performed
better than other works presented in Table 10. It is important to mention that the results
presented in this table for each method were obtained from the original articles. Therefore,
they were evaluated with different evaluation criteria and for a different number of images,
using public and/or private databases.

5 Conclusion

This paper presented an approach for classifying pulmonary nodules as benign or malig-
nant. The most recent literature focuses on using CNNs (2D and 3D) techniques in image

Table 9 Results obtained by estimating RF parameters

RF opti-
mization

Acc% F1-
Score%

Kap Sen% Spe% AUC

No 95.04 ± 1.3116 91.16 ± 2.5098 0.88 ± 0.0339 90.00 ± 4.3730 97.05 ± 0.7860 0.98 ± 0.0050

Yes 95.34 ± 0.6962 91.73 ± 1.2550 0.88 ± 0.0173 90.53 ± 2.2652 97.26 ± 0.8393 0.99 ± 0.0039
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Table 10 Comparison with other studies related to the classification of pulmonary nodules as benign or
malignant

Work Samples ACC F1-Score KAP SEN SPE AUC

Texture Descriptor

[14] 1.405 0.9198 – – 0.9342 0.9121 0.9400

[39] 371 0.9111 – – 0.6979 0.9855 0.9696

[40] 435 0.9310 – – 0.9111 0.9524 0.9767

[36] 777 0.9690 – – 0.9560 0.9700 –

Shape Descriptor

[16] 1.045 0.9319 – – 0.9275 0.9333 –

[42] 727 0.9495 – – 0.9462 0.9520 0.9874

2D CNN

[53] 1.882 0,8740 – – 0,8940 0,8520 0,9470

[15] 1.536 0.8841 – – 0.8538 – 0.9319

[52] 3.784 0.9253 – – 0.8494 0.9628 0.9581

[55] 746 0.8777 – – 0.8093 0.9238 0.9379

[21] 1.757 0.9457 – – 0.9369 0.9515 0.9494

[1] 925.632 0.9669 – – – 0.9737 0.9911

[46] 6.000 0.8780 – – 0.8100 0.9190 0.9440

3D CNN

[17] 686 0.9040 – – 0.9047 0.9033 0.9548

[56] 1.004 0.9044 – – – – –

[22] 832 0.9107 – – – – 0.9584

2D CNN and bag of features

Our method 1405 0.9534 0.9173 0.8800 0.9053 0.9726 0.9900

classification problems. However, in this work we investigated the combination by BoF of
features extracted by different pre-trained 2D CNNs to represent a 3D nodule. The use of
pre-trained 2D CNNs was motivated by the fact that they required fewer samples for train-
ing. On the other hand, the motivation for using BoF was to make the method independent
of the number of 2D slices of the nodules.

The proposed methodology presents promising results when compared to other related
works. Another advantage of our method is that it works for nodules with different numbers
of slices. On the other hand, methods based on training 2D and 3D CNNs require that all
nodes have the same number of slices. Therefore, they use techniques to replicate or remove
slices, which can decrease their performance due to the addition of noise or removal of
important features.

In our work, we do not investigate the influence of pre-processing and data augmentation
techniques. Thus, in future works, we will investigate the influence of these techniques,
which may increase the results obtained by the proposed method.

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.
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