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Abstract
The goal of medical visual question answering (Med-VQA) is to correctly answer a
clinical question posed by a medical image. Medical images are fundamentally different
from images in the general domain. As a result, using general domain Visual Question
Answering (VQA) models to the medical domain is impossible. Furthermore, the large-
scale data required by VQA models is rarely available in the medical arena. Existing
approaches of medical visual question answering often rely on transfer learning with
external data to generate good image feature representation and use cross-modal fusion of
visual and language features to acclimate to the lack of labelled data. This research
provides a new parallel multi-head attention framework (MaMVQA) for dealing with
Med-VQA without the use of external data. The proposed framework addresses image
feature extraction using the unsupervised Denoising Auto-Encoder (DAE) and language
feature extraction using term-weighted question embedding. In addition, we present qf-
MI, a unique supervised term-weighting (STW) scheme based on the concept of mutual
information (MI) between the word and the corresponding class label. Extensive exper-
imental findings on the VQA-RAD public medical VQA benchmark show that the
proposed methodology outperforms previous state-of-the-art methods in terms of accu-
racy while requiring no external data to train the model. Remarkably, the presented
MaMVQA model achieved significantly increased accuracy in predicting answers to
both close-ended (78.68%) and open-ended (55.31%) questions. Also, an extensive set
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of ablations are studied to demonstrate the significance of individual components of the
system.

Keywords Multi-head attention . Denoising autoencoder . Radiology images . Supervised term
weighting . Visual question answering . VQA-RAD

1 Introduction

Images from radiology are crucial in clinical decision-making, such as the utilization of chest
X-rays to diagnose Covid-19. By answering questions regarding the image contents, automat-
ed systems could assist clinicians in dealing with massive amounts of imagery during a
pandemic. Patients gain from such a sophisticated question-answering system as well. Rather
than sifting through non-specific and overwhelming search engine results, they can get
answers to simple queries about their medical imaging. Visual Question Answering (VQA),
a new branch of artificial intelligence, throws insight into this type of clinical decision support.

VQA seeks to offer an accurate answer to a question regarding an image in general. It’s an
AI-complete [1] task that combines Natural Language Processing (NLP) with Computer
Vision (CV), two significant computer science research domains. The goal of medical VQA
(MVQA) is to deal with medical images and the queries that come with them. Because
structured and unstructured medical data is increasingly accessible to patients through patient
portals, MVQA helps to promote patient engagement in clinical decision making. MVQA
serves as a personal assistant for doctors, providing a second opinion while interpreting
difficult medical images.

When compared to other vision-language tasks like image captioning, general VQA is a
challenging multi-modal-knowledge based task. The researchers devised a three-phase
workflow to address the VQA problem, as shown in Fig. 1. The two sub-tasks of phase 1;
image featurization and question featurization; indebted to the success of deep learning models
Convolutional Neural Networks (CNN) and Recurrent Neural Network (RNN) respectively.
The VQA research community extensively focused on phase 2, which involves the joint
comprehension of extracted multi-modal aspects. The majority of VQA systems were designed
to predict the correct answer from a pool of candidates in the final phase. VQA can be viewed
as a classification task in this context. Open-ended VQA is a variant in which the final answers
are generated as free-form phrases. Table 1 shows the most common approaches for imple-
menting phases 1 and 2 in the VQA literature.

Fig. 1 Three phases of the general VQA pipeline
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Because of the huge difference between the general and medical domains, knowledge
transfer from the general domain based on inadequate medical data can be of limited use
[39]. Table 1 also highlights specific challenges that MVQA has paused at various stages of
the general VQA pipeline. In summary, the challenging facts of MVQA are: 1) semantic
parsing of clinical language while interpreting medical questions, 2) poor contrast and
different modalities (MRI, CT, X-Ray) of medical images, and 3) need of a complex fusion
method.

In response to the above concerns, a unique MVQA system is developed that can
produce valid results with limited data. The model seeks to provide equal emphasis to
multi-modal feature extraction and fusion. The power of unsupervised learning with
denoising auto-encoders is used to handle image featurization. With the use of domain-
specific bioBERT embeddings [26] and a newly proposed term-weighting scheme, the
system was able to interpret complex clinical terminologies in questions. Finally, two
parallel branches of multi-head attention modules accomplish multi-modal fusion to cor-
rectly comprehend visual and language data and predict the correct answer. The proposed
model is named Multi-head attention for Medical VQA (MaMVQA).

Inspired by the success of VQA in the general domain and the potential applications of
VQA in medical domain, in [24] the authors released the first manually constructed dataset
VQA-RAD for MVQA where questions and answers about images are naturally created and
validated by clinicians. There are two major types of questions in the VQA-RAD dataset,
closed-ended questions where answers are limited to a set of predetermined options and open-
ended questions where the answers are free-form text which is harder. The proposed
MaMVQA model achieves superior accuracy in VQA_RAD, especially for open-ended
questions.

In summary, the main contributions of this paper included:

& The paper proposes a parallel Multi-head Attention network for Medical domain VQA
(MaMVQA).

Table 1 Challenges of VQA sub-tasks when applied to medical domain (MVQA)

VQA phases Methodologies from general VQA literature Challenge in MVQA

Image
Featurization

Transfer learning using pre-trained
ImageNet [21] CNN models – ZFNet
[54], VGGNet [44], GoogLeNet [46],
ResNet [15]

• Paucity of well-annotated datasets for
training MVQA systems.

• Finetuning with few medical images is
insufficient due to the differences in
visual ideas between ImageNet images
and medical images [35].

Question
Featurization

One-hot vectors, pre-trained dense word
embedding models like word2vec [34],
GloVe [37], Sequence models like LSTM
[16], GRU [3] initialized with dense em-
beddings

• Due to the high accuracy demand, MVQA
question representation using one-hot
vector is not recommended.

• Pre-trained dense embeddings result in
many Out-of-Vocabulary (OOV) cases
while dealing with clinical questions.

Joint
Comprehension

Concatenation, Element-wise addition,
Element-wise multiplication, Canonical
Correlation Analysis [11], Multimodal
Compact Bilinear Pooling (MCB) [8],
Attention [13, 50]

• Med-VQA research is still in its early
stages, and thus difficult to conclude the
best way of comprehension.
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& The paper introduces a novel semantic supervised term-weighting scheme named ‘qf.MI’
that utilizes bioBERT word embeddings and mutual information scores to assign word
weights.

& Presentation of results obtained from the extensive experiments and comparative studies
carried out with VQA-RAD dataset.

& Discussion and analysis of qualitative and qualitative results of ablation studies conducted
to validate the significance of individual components of MaMVQA.

The remainder of this paper is arranged as follows: We briefly discuss several recognized
related works in Section 2. Section 3 presents the details of MaMVQA framework and the
proposed term-weighting scheme. Section 4 conduct experiments to evaluate novel methods
and discusses the results. Finally, we conclude in Section 5.

2 Related works

This section summarizes the progress happened in general VQA. The second part focuses on
studies that employed the VQA-RAD dataset in their experiments. A dedicated subsection also
includes a quick rundown of the most common term-weighting strategies.

2.1 Visual question answering

After Antol et al. [1] introduced the VQA system, numerous researchers [12, 17, 32, 55] built
on the baseline VQA pipeline, which included CNN/R-CNN [40] for image featurization,
RNN for question featurization, and any elementary feature fusion. The focus of VQA research
in the following phase was on feature fusion techniques, which led to certain milestones in the
field [8, 19, 47]. Later, with the enormous influence of attention mechanisms on VQA, various
types of attention networks were introduced to the stack of VQA systems [2, 13, 18, 23, 30, 36,
43, 50, 52, 53].

2.2 Medical visual question answering with VQA-RAD

While proposing the first manually constructed high-quality dataset for VQA in the medical
domain (VQA-RAD), Lau et al. [24] discussed and tested two baseline solutions. The two
models stem from the two well-known general VQA models Multimodal Compact Bilinear
Pooling (MCB) [8] and Stacked Attention Network (SAN) [51] respectively. To forecast
attention and for the joint embedding of attended visual representation with question repre-
sentation, MCB incorporates three components in line with VQA phases: a CNN image model
with ResNet-152, an LSTM question model, and MCB pooling. The SAN model, as the name
implies, attends to the image several times to enhance visual attention over time. In experi-
ments, these baseline models were given the names MCB-RAD and SAN-RAD, respectively.

Nguyen et al. [35] reported a powerful baseline for VQA-RAD called BAN-RAD, which is
based on Bilinear Attention Network (BAN) [20] instead of SAN in the joint comprehension
phase of VQA. However, due to the significant differences between medical and general VQA
data, such direct adaptations suffer from a serious lack of data and multi-modal reasoning
abilities. To tackle the challenges caused by transfer learning in image feature extraction, the
authors devised model-agnostic meta-learning (MAML) [7] to train meta-weights that swiftly
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adapt to visual concepts. Later, the MEVF [35] network used a Convolutional Denoising
Auto-encoder (CDAE) trained on an external dataset to extend the image feature extraction
using MAML. This combination conquered MVQA’s data constraint.

Do et al. (2021) [5] presented a multiple meta-model quantifying (MMQ) method to
increase meta-data through auto-annotations and noisy label processing. This method allows
more meaningful feature extraction from medical images without external data.

Table 2 critically compares various state-of-the-art medical VQA systems from the litera-
ture. The table dissects each work to discuss the strategies used for image understanding,
question understanding and multi-modal feature fusion and the datasets used in experiments
along with special remarks on the methodology.

2.3 Term-weighting schemes

Initially, STW schemes were created by combining classic unsupervised component ‘term
frequency (tf)’ with feature selection metrics including chi-square (χ2), information gain (ig)
and Odds Ratio (OR) to have tf.χ2, tf.ig, and tf.OR STW schemes (Debole and Sebastiani.
2004) [4]. Lan et al. (2008) [22] presented tf.rf, a new approach based on the concept of
‘relevance frequency,’ which marked a significant milestone in STW research. It was built on
the principle that “the more concentrated a high-frequency term is in one class c than in others,
the greater contributions it makes in identifying class c samples.”

Quan et al. (2010) [38] improved this by emphasizing the importance of terms with a high
frequency in the positive category, particularly in the context of question classification. For
this, they proposed four new concepts.

& question frequency (qf): qf(t) is the number of samples in positive category that contain t.
& category frequency (cf): cf.(t) is the number of classes in which term t occurs.
& inverse category frequency (icf): used to measure discriminative power of a term t.
& inverse question frequency (iqf): similar to inverse document frequency (idf).

They proposed three new STW schemes named qf.icf, iqf.qf.icf and vrf and obtained the best
results for the second one.

The frequency of the weighting term in the form of tf or qf is a fixed component in all of
these ideas. Statistical information about terms is also contained in the various factors
multiplied with them. Text semantics should be used in STW to get closer to how humans
determine term weights. The semantic distance between terms and category core terms
(CCTs), the representative terms of a class, is substituted with the global statistical component
of STW in Wei et al. (2011) [49]. The technique presumes that the problem is a binary
classification task, with positive and negative CCT well defined. The procedure becomes
infeasible as the number of classes grows.

Luo et al. (2011) [31] looked at the semantics of categories as well as WordNet’s
interpretation of terms occurring in the category label. The similarity between a word and
category semantics is used to compute the multiplicative factor of STW. When the words in
category labels are not generic and/or domain-specific, such as in clinical text, the usage of
WordNet senses becomes ineffective because the majority of these words will not be found in
WordNet. Determining the meaning of medical terminology for term-weighting while focus-
ing on clinical content is a challenging task. Matsuo and Ho (2018) [33] suggested a two-phase
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approach that uses the medical ontology to generate a two-part hierarchy for determining
semantic weights of terms in clinical texts.

3 Method

The proposed parallel Multi-head Attention network for Medical domain VQA (MaMVQA) is
portrayed in Fig. 2, which includes a denoising auto-encoder for medical image representation
learning, two question encoding branches and two parallel multi-head attention blocks for
feature fusion as its core components.

3.1 Problem modeling

Given a medical image I and an associated natural language question Q, the correct answer is
finally predicted. This can be mathematically formulated as:

by ¼ argmax
a∈A

P að j Q; I ; θ
�

ð1Þ

where by represents the final classification result. ‘A’ and ‘a’ respectively indicates a set of
candidate answers and one of the answers. P denotes the MaMVQA framework and θ
represents all parameters of MaMVQA. The framework is divided into three modules; features
extraction, feature fusion and answer prediction. The three modules are elaborated in the
following subsections.

3.2 Feature extraction

VQA is an AI-Complete task that requires multi-modal knowledge that extends beyond a
single sub-domain. As a result, the quality of features extracted is crucial for subsequent
operations. The image and the corresponding natural language question are two modalities that
must be investigated as part of the VQA task.

3.2.1 Image Featurization

The majority of image features in conventional VQA systems are now extracted based on
CNN models that have been pre-trained on the ImageNet database. Fine-tuning those models

Fig. 2 MaMVQA architecture
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to make them adequate for predicting medical image features necessitates a massive amount of
labelled data, which is unavailable in medical VQA. Thus, for VQA-RAD images, we
designed and trained an unsupervised denoising autoencoder based on a convolutional neural
network.

An autoencoder is a form of neural network structure that generates targets from input data
via self-supervision. At each step, the encoder part of the autoencoder extracts input image
features and compresses the learning to a hidden or bottleneck representation h.

e : h ¼ ReLu Wxþ bð Þ ð2Þ
The latent compressed representation h is then mapped back to input zwith the same shape as x
using the decoder.

d : z ¼ ReLu W
0
hþ b

0
� �

ð3Þ

By minimizing a loss measure that measures how similar the reconstructed image is to the
input image, the parameters W, W′, b, and b’ are optimized.

By introducing a stochastic noise component to the input image, the overfitting character-
istic of traditional autoencoders can be controlled. The model is then trained to rebuild the
uncorrupted original image as an output. Denoising autoencoders (DAE) are a type of
autoencoder that works based on this strategy. Convolutional DAEs (CDAE) are a variant
of DAE that adds convolutional encoding and decoding layers to the normal DAE architecture.
Previous research [10, 25] has demonstrated that CDAEs perform better in image processing
than ordinary DAEs because to comprehend visual structure, CDAE makes use of all of
CNN’s capabilities.

To avoid degradation [15] caused by several convolutional and deconvolutional layers,
residual connections from the CDAE encoder to the decoder are added, bypassing the
bottleneck layer [6, 25]. These extra connections allow feature maps to be sent straight from
an earlier encoder layer to a later decoder layer. This aids the decoder in producing better
specified decompressions of the input image.

The SkipCDAE architecture utilized in this study to learn the features of VQA-RAD
medical images is shown in Fig. 3. The input images comprise 512*512*1 (gray-scale)
matrices, and Gaussian noise with a standard deviation of 0.2 has been introduced. Then,

Fig. 3 SkipCDAE architecture used for image feature extraction
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using a convolution kernel of size 3*3, 32 filters of size 3*3*1 were employed to construct 32
feature maps from the input layer. A LeakyReLu activation function follows this layer. Each of
the 2 to 14 layers has 64, 128, 256, 512, 1024, 1024, 512, 256, 256, 128, 64, and 32 filers
respectively, with LeakyReLu as the activation function for all of them. Sum aggregation is
used to add two skip connections from the fourth and sixth encoder layers to the corresponding
layers at the decoder. Simple actions such as image rotation, image scaling, and normalizations
are applied to the VQA-RAD images before being utilized to train SkipCDAE to augment the
available image set.

3.2.2 Question Featurization

Tokenizing the natural language inquiries into words and turning the words to lowercase are
the first steps in the pre-processing process. Next, the punctuations associated with the words
are removed including the question mark (?). Each question is then reassembled into a series of
‘n’ tokens, where ‘n’ is the number of words in the training dataset’s longest question. Zero
padding will be applied to any queries with fewer than ‘n’ words. The value of ‘n’ in VQA-
RAD is 22. The preprocessed question data is now input into two distinct question
featurization modules of MaMVQA framework.

Domain-specific question embedding In this strategy, question word sequences are rep-

resented by BioBERT [26] word embedding matrix,D ¼ e1f ; e2;………; eng∈Rn*de , where
de represents the embedding dimension of each word in the sequence which is 768 for
BioBERT embedding. BioBERT (Bidirectional Encoder Representations from Trans-
formers for Biomedical Text Mining) is the first domain specific language representation
pre-trained on large-scale biomedical corpora. The creators proved the effectiveness of
BioBERT embedding for the task of question answering over the state-of-the-art language
models.

The embedded word vectors are then fed into a bidirectional LSTM (biLSTM) network to

generate the final question encoding, Q1 ¼ q1f ; q2;…; qNg∈RN*dq , where N is the total
number of questions in the training set and dq is the dimension of last hidden state output from
the biLSTM network which is set to 2048 in experiments. biLSTM can capture both contextual
and historical information because it sums up information from both the forward and backward
directions of a sentence.

Supervised term-weighted (STW) question embedding The primary goal of the STW
scheme is to limit the impact of irrelevant words on subsequent tasks. The auxiliary task is
to look up the weight assigned to each word that appears in the question of interest in the term-
weight vector created using the newly proposed STW method qf.MI. Multiply the scalar
weights by the distributed embedding vector for that word to get a weighted embedding matrix
E ∈ R|V| × d, where |V| is the corpus vocabulary size and d is the dimension of distributed
embedding vector. The embedding layer of the proposed question featurization network is
initialized with this E. The final weighted question encoding Q2 is obtained by feeding the
embedding layer output to the biLSTM network.

Proposed STW scheme: Qf.MI In the case of STW, two ways for assigning term weighted
feature vectors are available: local and global. Each class in the local policy has its weight

34945Multimedia Tools and Applications (2023) 82:34937–34958



vector, resulting in a set of feature vectors for each training sample corresponding to distinct
classes. For each class, a common weight vector is inferred from local vectors in the global
policy. This can be accomplished by performing ‘max’, ‘avg’, or ‘sum’ operations on local
vectors, with the ‘max’ strategy performing best in earlier studies [4, 38]. The global weight
vector can be determined using the ‘max’ policy as shown in Eq. 4.

w tð Þ ¼ max
1≤ i≤ Cj j

w t; cið Þ ð4Þ

wherew(t) is the final weight of the term t, w(t, ci) is the weight of t in class i and C is the set of
classes.

Two ideas were used in the suggested scheme: question frequency (qf) and mutual
information (MI). The initial idea, qf, is borrowed from [38] and used to replace the word
frequency (tf) as the first multiplicative factor in STW schemes. Their research found that this
approach is particularly useful for short texts with a large number of tf values equal to one. The
VQA task’s questions are brief texts. The frequency of occurrence of a term t in the class of
interest (positive category) is represented by its qf.1

qf tð Þ ¼ log tp þ 1
� � ð5Þ

The second factor MI stems from information theory that denotes statistical relatedness
between two datasets/random variables [41]. It is a non-negative value and the higher the
value means higher the dependency. MI can be mathematically computed using Eq. 6.

I X ; Yð Þ ¼ ∬p x; yð Þlog p x; yð Þ
p xð Þ:p yð Þ

� �
dx:dy ð6Þ

Each (image, question) pair in the VQA dataset has an associated answer. The answer offers a
wealth of information that helps to weigh the question words. This idea was put into action by
computing the MI between each word vector and its corresponding answer vector to allocate
weights to each term. The motivational fact behind the development of this scheme can be
summarized as follows: ‘the more closely a word is related to the label text of the class of
interest, the better it will be able to assist the question representation to forecast the proper
answer.’

The complete procedure of term weight calculation using qf.MI is depicted in Fig. 4 for
better understanding. The process creates an STWweight matrix W of size ∣C ∣ × |V| from a
corpus consisting of |C| classes and a vocab of size |V|. Each class’s local weight vectors are
represented by each row of W. Each class vector is built so that terms that appear at least once
in the class of interest are given weights calculated according to Eq. 7. For those terms that do
not occur in the class of interest ci but do appear in V, the weight will be presented as the
lowest of all computed weights for that class.

W ið Þ ¼
qf :MI t; cið Þ if t∈class vocab V

min
1≤ j≤ class vocabj j

qf :MI t j; ci
� �

if t∈V−class vocab

(
ð7Þ

1 tp=The number of training samples that contain t in the positive category
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3.3 Feature fusion via multi-head attention (MHA)

Two parallel branches of the multi-head attention (MHA) network are used to interpret the
retrieved visual and linguistic cues. MHA is an attention module that uses n-heads to run
through an attention process numerous times in parallel. Following that, the individual
attention outputs are concatenated and linearly translated into the desired dimensions. Multiple
attention heads, appear to enable different kinds of attention to be paid to different areas of the
inputs. The general process is portrayed in Fig. 5 and formulated as follows:

MHA Q;K;Vð Þ ¼ head1;…; headn½ �W0 Where headi ¼ Attention QWQ
i ;KW

k
i ;VW

V
i

� �
ð8Þ

Fig. 5 Graphical representation of Multi-head Attention (MHA) [48]

Fig. 4 Pictorial representation of qf.MI term weight calculation for a single class of interest
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W are all learnable parameter matrices and three inputs (Q, K, V) to MHA module are
named as (Query, Key, Value). Mathematically, the layer first projects Q, K, and V. Then the
query and key tensors are dot-producted and scaled. To achieve attention scores, these are
softmaxed. These scores are then used to interpolate the value tensors, which are subsequently
concatenated back into a single tensor. Finally, the result can be projected linearly and
returned.

The terms query and key are used in this paper to refer to extracted visual features and
question features, respectively. Because no special value (V) is specified, it is assumed to be
same as the key. These input tensors are split into several segments and sent to a number of
distinct heads. Medical image features are compared to corresponding question features within
each head, and attention weights are assigned. The interaction between Q (image) and K and V
(question) is represented by each cell in the resulting attention weight matrix.

Two parallel branches of multi-head attention are implemented with two types of question
embeddings in the proposed MaMVQA framework, as detailed in section 3.2.2. By executing
question guided visual attention on distinct areas of the input, the MHA module generates
refined visual features with the help of many heads.

3.4 Answer prediction

The MaMVQA model is handled as a classification model in its entirety. The outputs of two
branches of multi-head attention are combined to generate a refined visual representation that
is attended by the question inputs. The final fused vector, say z, for answer prediction is
formed by concatenating this with the domain-specific question embedding. The projection of
the fused feature vector z to a vector a ∈ RN is then performed, followed by a softmax
activation, where N is the number of potential answers in the training dataset. The ‘categorical
crossentropy’ loss function was used to train an N-way classifier on top of feature vector z.

4 Experiment

This section describes the extensive tests that were carried out to assess MaMVQA’s effec-
tiveness. It begins with a description of the dataset before moving on to the implementation
and evaluation details. On the VQA-RAD dataset, MaMVQA is then compared to other state-
of-the-art models. The ablation research is then provided to demonstrate the necessity of the
suggested framework’s components. Finally, MaMVQA qualitative analysis employing VQA-
RAD data has been demonstrated.

4.1 Dataset description

The aim is to generate or predict the proper answer to natural language questions regarding the
content of medical images in medical VQA datasets. In the field of medical VQA, the VQA-
RAD dataset is the first manually generated dataset. It contains 315 medical radiological
images divided evenly throughout the head, chest, and abdomen. The statistics of the dataset
are as follows:

& 3064 question-answer pairs form the training set.
& 451 question-answer pairs form the test set.
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Throughout the tests, the same train-test split was applied. Abnormality (ABN), attribute
(ATTRIB), colour, count, modality, organ, other, plane, positional reasoning (POS), object
condition presence (PRES), and size are the 11 question-categories. The question-answer pairs
are classified as open-ended or closed-ended based on the answer types. Closed-ended
responses are yes/no or limited to a set of predetermined options, but open-ended responses
represent a significant challenge for the VQA system.

4.2 Implementation setup and evaluation metric

All of the experiments were run on an NVIDIA P100 GPU with the Keras Python library. The
embedded question tokens were input through biLSTM, which produced a 2048-dimensional
output combining forward and backward pass with a hidden layer dimension of 1024. The
‘Adam’ optimizer was used to train the models, with a learning rate of 1e-5 and a batch size of
32. In the VQA-RAD dataset, there are a total of 458 classes. A total of 16 heads were used in
each multi-head attention module. By monitoring validation accuracy and validation loss,
Keras Checkpoint and EarlyStopping callbacks are leveraged to save the best model during
training. The maximum epochs have been set to 200.

The accuracy is used as an evaluation metric of the models in all experiments, that is, the
proportion of the correctly answered questions over the total number of questions. It can be
represented as:

acc ¼ t
N

� 100% ð9Þ

where t represents the number of correctly answered questions and N refers to the total number
of questions. As followed in current VQA_RAD literature, open-ended and close-ended
accuracies are reported separately.

4.3 VQA-RAD benchmarking

The proposed MaMVQA model is compared with 9 existing models listed below:

& SAN-RAD, MCB-RAD [24]: Two baselines directly adopted from general VQA literature
using stacked attention and multi-modal compact bilinear pooling respectively.

Table 3 MaMVQA vs. MEVF and MMQ: a critical comparison

Work MEVF MMQ

Similarities with
MaMVQA

Uses denoising autoencoder to
extract image features.

Not using any external data.

Differences • MEVF used huge amount of
external data to train
convolutional DAE.

• Whereas MaMVQA trained
CDAE with skip connections.

• The non-use of external data in MMQ is compensated
by training ‘n’ quantified meta models and inte-
grating with VQA model.

• MaMVQA compensates the nonuse of external data
with the following:

a) Image augmentation
b) skipCDAE for image featurization.
c) Parallel multi-head attention for deep visual under-

standing.
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& BAN-RAD [35]: It is an advanced baseline again stemmed from the general VQA
methodology of bilinear attention for multi-modal feature fusion.

& MAML-SAN, MAML-BAN [7]: Introduced model-agnostic meta-learning to learn meta-
weights to overcome problems caused by transfer learning for image featurization.

& MEVF-SAN, MEVF-BAN [35]: Leveraged meta-learning and denoising autoencoder to
extract image features.

& MMQ-SAN, MMQ-BAN [5]: Aimed to increase metadata through automatic annotations
and process noisy labels.

MEVF and MMQ resemble the proposed system and are critically analyzed in Table 3.
The result of the proposed model and other existing methods using the VQA-RAD dataset

are compared in Table 4. It can be noted from the quantitative analysis that the proposed
system outperforms the other models in open-ended, close-ended and overall accuracies.
MaMVQA achieved a maximum improvement of 21% from SAN-RAD and a minimum
improvement of 3% from MMQ-BAN in close-ended category. Similarly, 31% (max) and 2%

Table 4 Comparison of accuracies of different existing MVQA methods for VQA-RAD

Work Close-ended Accuracy Open-ended Accuracy Overall Accuracy

SAN-RAD 57.2 24.2 –
MCB–RAD 60.6 25.4 –
BAN–RAD 66.5 27.2 –
MAML-SAN 69.7 38.2 57.1
MAML-BAN 72.4 40.1 59.6
MEVF-SAN 74.1 40.7 60.7
MEVF-BAN 75.1 43.9 62.7
MMQ-SAN 75.7 46.3 64
MMQ-BAN 75.8 53.7 67
Proposed System (MaMVQA) 78.68 55.31 69.62

Bold entries indicate results of the proposed system.

Fig. 6 VQA_RAD question distribution over question types
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(min) hike in open-ended accuracies. The overall accuracy rate is also improved by above 8%
on average.

VQA-RAD dataset queries are now grouped into 11 types, as mentioned in section 4.1. In
both the training and test sets, these types are not evenly distributed (refer Fig. 6). Experiments
with the training and test sets separately are used to estimate MaMVQA’s accuracy for these
question kinds. The results are presented in Table 5, where two separate columns provide the
MaMVQA model’s percentage accuracies for training and test data over various question
categories. The overall accuracy is then shown in Fig. 7 as an average of training and testing
accuracies for each question type. The disparity in performance shown across a few question
categories is due to the data imbalance. In any case, it demonstrates the proposed system’s
generic performance potential, with an average accuracy of 82%.

As mentioned in the dataset description, VQA-RAD evenly distributes the available
radiology images and associated questions into three areas of the human body – CHEST,
HEAD and ABDOMEN. Figure 8a and b show the statistics of the VQA-RAD train-test split
across the three organ categories. Also, Table 6 shows the results of the MaMVQA model

Fig. 7 VQA_RAD overall accuracy % over 11 question types

Fig. 8 (a) VQA-RAD train set distribution (b) test set distribution over the organ types CHEST, HEAD and
ABDOMEN
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when evaluated separately on visual questions from these three categories. The proposed
model shows a generalizable performance over different categories.

4.4 Ablation study

Complete ablation studies on the VQA RAD dataset were discussed in this section to verify the
significance of various components integrated to develop the MaMVQA framework. Super-
vised term-weighting, concurrent multi-head attention, and the usage of two different question
representations are the primary factors to address here. When these ablations are carried out,
the following models emerge:

& MaMVQA: This is the full proposed model with parallel multi-head attention and two
branches of question embedding, domain-specific and supervised term-weighted. Refer
Fig. 2

Table 6 Accuracy of the proposed systems’ answers sub-grouped into three organ types

Organ Type Test Accuracy

Chest 69.29%
Head 67.72%
Abdomen 71.07%

Fig. 9 Architecture of MaMVQA_Ab2

Table 5 Accuracy of the proposed systems’ answers sub-grouped into question types

Q_TYPE Test Accuracy Train Accuracy

ABN 76.78 97.83
ATTRIB 89.99 99.37
COLOR 100 100
COUNT 66.67 100
MODALITY 33.33 100
POS 65.57 97.48
PRES 77.78 99.76
SIZE 86.96 99.63
OTHER 15.38 100
ORGAN 30 100
PLANE 69.23 100
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& MaMVQA_Ab1 [MaMVQA-Term Weighting]: By omitting the usage of term-weighting
(qf.MI) in the second branch of question representation, this becomes the least ablated
form of MaMVQA. Questions are fed to the embedding layer, which subsequently feeds
them to biLSTM.

& MaMVQA_Ab2 [MaMVQA – Parallel MHA]: The remaining components include two
types of question embeddings and a term-weighting mechanism. The architecture used for
ablation 2 is depicted in Fig. 9.

& MaMVQA_Ab3(a) [MaMVQA - Parallel MHA – STW question embedding]: Another
branch of question representation that this model avoids is supervised term weighted
question embedding. Both the attention process and the ultimate fusion rely on domain-
specific embedding. The architectural view of this ablation can be seen in Fig. 10.

& MaMVQA_Ab3(b) [MaMVQA – Parallel MHA – Domain-specific question embed-
ding]: This is same as the Ab3(a) except in the avoided branch of question represen-
tation. For clear distinction, the conceptual view of ablation 3(b) has been shown in
Fig. 11.

Table 7 shows the quantitative findings of the ablation studies. The results show that
cooperation among all components is preferable than any one of them, yet they are still better
than the three baseline systems discussed in section 4.3. (SAN-RAD, MCB-RAD and BAN-
RAD). Although several ablations provided equal accuracies in the close-ended category, the
difference and usefulness of each MaMVQA component is clear in the more challenging open-
ended category of VQA-RAD.

In Fig. 12, the time efficiency of the proposed parallel multi-head attention model with two
kinds of question embeddings is evaluated and compared with its ablations. The results are

Fig. 10 Architecture of MaMVQA_Ab3(a)

Fig. 11 Architecture of MaMVQA_Ab3(b)
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obtained by averaging the training time of 5 epochs and test time using the fully trained
models. MaMVQA had a considerable increase in training time when compared to ablation
models, whereas the testing overhead was insignificant. These results show that the model can
be efficiently applied without incurring much time complexity.

4.5 Qualitative evaluation

The qualitative findings of MaMVQA and its ablations on the VQA-RAD dataset are shown in
Table 5. The VQA-RAD dataset has a well-balanced distribution of images from the chest,
head, and belly. The three examples in Table 5‘s top row clearly demonstrate MaMVQA’s
superior performance in answering questions regarding images in all three categories. When
the concurrent multi-head attention and the second branch of question embeddings were
eliminated, the model became unable to correctly answer some questions. The fourth and fifth
instances (d) and (e), respectively, emphasize the importance of the basic components. In all of
these cases, the last two ablations, 3a and 3b, are inferior. There are also some challenges with
the suggested system. The last instance (f) of Table 8 shows the case where the MaMVQA
model and all the other models fail. Upon close examination of that instances, the following
facts can be inferred.

Table 7 VQA-RAD ablation results, in percentage

Model Close_ended (%) Open_ended (%) Overall (%)

MaMVQA 78.68 55.31 69.62
MaMVQA_Ab1 78.3 51.95 69.62
MaMVQA_Ab2 77.57 51.95 68.95
MaMVQA_Ab3(a) 78.67 50.83 68.73
MaMVQA_Ab3(b) 67.64 27.93 52.77

Fig. 12 Time efficiency of the proposed model
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& The background area (black) is very much dominant so that it is difficult to focus at region-
of-interest.

& The ground truth answer and predicted answer other than ‘nothing’ is difficult to distin-
guish without a focused examination of the image content.

5 Conclusions

Today, we have access to our electronic health records (EHRs) online including radiology
reports and images. Online access to medical images makes the patients more curious about
them. Medical VQA opens an intelligent platform to interact with and understand medical
images by asking questions.

In this research, MaMVQA is proposed as a solution to medical VQA tasks. There are three
modules in all. To acquire image representation and two different kinds of question represen-
tations, the feature extraction module employs three feature extraction methodologies. To

Table 8 Comparison of Ground Truth answer with the predicted answer of VQA-RAD samples

4.1 Image

(a) (b) (c)
Question What is the biological sex of 

the patient?

What is the mass most likely? What structures are involved?

MaMVQA female kidney cyst caudate

MaMVQA _Ab1 upper lobes x exophytic cyst x axial x

MaMVQA _Ab2 pacemaker x exophytic cyst x axial x

MaMVQA _Ab3a the extremities x well-circumscribed x the lungs x

MaMVQA _Ab3b the liver x calcification x the lungs x

Image

(d) (e) (f)

Question The image probably had what 

incidental finding?

What lobe is the lesion located in? What is abnormal about the 

spleen?
GT: hypodense lesion

MaMVQA cavum vergae right temporal lobe nothing x

MaMVQA _Ab1 cavum vergae right temporal lobe metastasis x

MaMVQA _Ab2 hyperintensity of 

the left basal 
ganglia

x right temporal lobe metastasis x

MaMVQA _Ab3a acute stroke x right x nothing x

MaMVQA _Ab3b multiple sclerosis x right mca x nothing x
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prevent the usage of a huge amount of external data, an unsupervised denoising autoencoder
with skip connections is used to handle image featurization. The two branches of question
featurization are domain-specific and supervised term-weighted embeddings. Second, the
research suggests parallel multi-head attention driven by question to maximize the interpreta-
tion of visual semantic information. Third, a module for predicting answers that implements
MaMVQA as an n-way classifier. In addition, a new supervised term-weighting strategy
(qf.MI) based on the concept of mutual information is proposed based on the concept of
mutual information. The VQA-RAD dataset was used in the experiments. Several ablation
experiments are shown to prove that the proposed MaMVQA components are effective for
medical VQA tasks. Furthermore, the new method outperformed existing methods in terms of
accuracy.

The proposed architecture can be applied to solve VQA in other domains with trivial
changes to the pre-trained language embedding used. Quantitative and qualitative analysis of
the obtained results reveals that the model fails on some questions. Thus, we wish to do a
human-adversarial benchmarking of the medical VQA model in future to correctly identify the
type of instances where the model fails and then refine the model.
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