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Abstract
Conventional Endoscopy (CE) and Wireless Capsule Endoscopy (WCE) are well known
tools for diagnosing gastrointestinal (GI) tract related disorders. Defining the anatomical
location within the GI tract helps clinicians determine appropriate treatment options,
which can reduce the need for repetitive endoscopy. Limited research addresses the
localization of the anatomical location of WCE and CE images using classification,
mainly due to the difficulty in collecting annotated data. In this study, we present a
few-shot learning method based on distance metric learning which combines transfer-
learning and manifold mixup schemes to localize and classify endoscopic images and
video frames. The proposed method allows us to develop a pipeline for endoscopy video
sequence localization that can be trained with only a few samples. The use of manifold
mixup improves learning by increasing the number of training epochs while reducing
overfitting and providing more accurate decision boundaries. A dataset is collected from
10 different anatomical positions of the human GI tract. Two models were trained using
only 78 CE and 27 WCE annotated frames to predict the location of 25,700 and 1825
video frames from CE and WCE respectively. We performed subjective evaluation using
nine gastroenterologists to validate the need of having such an automated system to
localize endoscopic images and video frames. Our method achieved higher accuracy and
a higher F1-score when compared with the scores from subjective evaluation. In addition,
the results show improved performance with less cross-entropy loss when compared with
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several existing methods trained on the same datasets. This indicates that the proposed
method has the potential to be used in endoscopy image classification.

Keywords Endoscopy . Few shot learning .Manifoldmix-up . Siamese neural network .

Classification . GI track anatomic locations

1 Introduction

Endoscopy is considered the gold standard for gastrointestinal (GI) examination [33], and is often a
key to early mucosal disease identification. All conventional endoscopy (CE) approaches, such as
colonoscopy and gastroscopy, are invasive and can cause discomfort and/or harm to the patient [8];
however, they allow real-time examination and visualization of many gastrointestinal abnormalities,
including esophagitis, polyposis syndromes, or ulcerative colitis [33]. Wireless Capsule Endoscopy
(WCE) offers a non-invasivemeans forGI inspection and the scanning of areas that are inaccessible,
such as the small bowel, using conventional endoscopy techniques. A large number of recorded
frames need to be examined by an expert for accurate diagnosis; however, the diagnostic perfor-
mance achieved from visual inspection is low [50]. For example, the diagnostic accuracy is about
69% for angioectasia, 46% for polyps, and 17% for bleeding lesions [50].

Aside from anomaly detection, localizing the anatomic position of an abnormality accu-
rately within the GI tract is another challenge that remains unsolved [3, 25, 39]. Accurately
determining the location of the endoscope’s tip in the gastrointestinal tract, and hence the
position of an abnormality, is important when further follow-ups, treatment, and/or surgery is
needed [37]. Localization also helps to reduce repetitive endoscopy procedures, allowing for
targeted drug delivery [30] and automatic endoscopy navigation [41]. Additionally, some
diseases characteristically happen at specific locations within the GI tract [14, 18]. For
example, dangerous bleeding usually originates from the stomach, small bowel or duodenum
[18]. Hence, providing location-based frames for reviewal may reduce examination times and
human error in high-risk regions.

Endoscopy frame localization using a single image presents challenges which can be better
navigated by using computer-aided intelligent systems. Figure 1 shows an illustration of this
challenge. It shows two similar looking frames, one from the proximal part of the stomach (the
cardia) and the other from the stomach’s distal end (the pylorus). Due to their close resem-
blance, visual inspection can sometimes be erroneous, leading to an inaccurate diagnosis.

We conducted a survey where nine gastroenterologists were asked to identify the anatomical
location of 50 images from the image-based CE dataset, a subset of the dataset used to train the
proposed method. Figure 2 shows a screenshot of the questionnaire used in the survey, which is
available on the website: https://human-endoscopy-localization.web.app

The CE dataset that we have used (shown in Table 1) contains frames from the esophagus,
cardia, stomach’s angularis, pylorus, duodenum, ileum, jejunum, colon, rectum, and anus. The
gastroenterologists’ responses were later analyzed, and performance metrics including F1-
score, accuracy, and area under the ROC curve (AUC) were calculated. The results show that
performance is poor when human visual inspection is used to identify the GI location from a
single image. It will be shown later in the paper that the use of the proposed automated
algorithm can improve performance significantly.

There is no publicly available dataset that covers all the significant gastrointestinal ana-
tomical landmarks for WCE and CE. Previous publications have been limited with regard to
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the number of locations used for prediction. Moreover, all previous works are specialized for
either WCE or CE. Deep learning methods have yielded great results in image classification
[7]. However, the performance of deep learning models is highly dependent on training which
typically requires a large number of labeled datasets with a balanced number of samples per
class. This is one of the reasons for the limited research available for location classification
using deep learning. Moreover, methods that utilized machine learning only focused on the
median frame error from a given location or motion estimation due to issues with complexity.
Some hardware-based approaches can localize the electronic capsule device but fail to provide
information about anatomical locations. Table 1 provides a brief review of existing endoscopic
localization techniques.

Fig. 1 Difficulty of detecting anatomical location form single image. The left image is of the cardia while the
right image is the pylorus

Fig. 2 Two examples from the survey questionnaire used in the subjective evaluation
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The lack of sufficient data is a key reason why anatomic localization has suffered. On the
other hand, visual inspection by humans can distinguish between new classes with limited
labelled instances [31]. Few-shot learning (FSL) has gained attention in computer vision,
especially in the medical field where there are limitations with respect to dataset collection.
Models should address this issue of how to train a model with little or no labeled data. This
technique attempts to distinguish between new visual categories given few labelled samples
[44] in an effort to mimic the way humans learn to predict.

There is a relatively small amount of work on few-shot learning in the medical imaging
domain. In [29], the authors utilized a few-shot learning-based method for the diagnosis of
diseases and conditions from chest x-rays. Li et al. [19] suggested a unique technique for
sub-tomogram classification based on few-shot learning. It allows for the categorization of
unseen structures in the training data, given limited labelled samples in the test data, by
using instance embedding. Because training data for rare diseases is scarce, [47] has
conducted a study on using the concept of few-shot learning for detecting rare diseases.
They developed an approach based on FSL using GAN-based data augmentation. These
previous studies demonstrate that few-shot learning techniques can achieve reliable per-
formance and outperform classical machine learning models when using small training
datasets.

Therefore, this category of learning can be used to improve the performance of anatomical
location classification when data samples are limited. FSL algorithms can be categorized into
three major categories: initialization based, hallucination-based, and distance metric learning-
based approaches. In initialization-based methods, the system focuses on learning to fine-tune or
by learning an optimizer. The LSTM-based meta-learner, which can replace the stochastic
gradient descent optimizer [31], is an example of this category. The hallucination-based ap-
proach tries to train a generator to augment data for a new class, and is usually used in
combination with other FSL approaches such as distance-based method [49]. By learning to
compare inputs, distance metric learning brings a solution to the FSL approach. The hypothesis
is that if a model can assess similarities between two images, it can then identify an unknown
input image. A distance-based classification model is simple and yet still achieves competitive
results with respect to other complex algorithms [7].

Recently, the introduction of manifold mix-up regularization is thought to help models to
have better decision boundaries between classes, while reducing the possibility of overfitting
due to increased training epochs [42]. In this paper, we used a distance-based classification
technique coupled with manifold mixup to train a deep learning model using fewer images
than current models for classifying 10 different anatomical locations of the human GI tract.
The combination of a manifold mix-up scheme with a few-shot learning model allowed us to
increase the number of training epochs, which in turn decreases the possibility of overfitting.
Furthermore, the existing temporal information between individual video frames provides
additional information useful for further improving the classification accuracy.

2 Materials and methods

2.1 Dataset

The collected dataset is a set of videos captured by endoscopy cameras from 10 different
anatomical locations within the GI region of various patients. A set of images is also provided
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as the supporting material to train the proposed model. The image dataset consists of both CE
and WCE frames extracted from the original video, including 78 CE and 27 WCE images,
which was taken from approximately 80–110 different patients. The relevant anatomic
locations included are depicted in Fig. 3. Images along with their labels were collected from
the Gastrolab gallery [38] and a set of Pillcam images. Furthermore, at least 3 images were
collected for each class. Since the collected CE andWCE images were initially 256 × 256 and
512 × 512 pixels respectively, all images were resized to 256 × 256 pixels to have the same
size. Regarding the anatomical locations, most of them are available in both the CE and WCE
image datasets, including the esophagus, cardia, pylorus, duodenum, ileum, jejunum, and
colon (transverse, ascending, descending, and sigmoid). However, the rectum, angularis, and
anus regions are only available in the CE dataset.

The WCE video and its labels are taken from the Capsule Endoscopy book by Faigal and
Cave [11]. The selected video has 1028 seconds and was recorded using a Pillcam with a
frame rate of 5 frames per second, thus resulting in a total of 1825 WCE frames. On the other
hand, the CE video was taken from a Gastrolab [38] consisting of 1028 seconds with 25
frames per second recording rate. Hence, the CE video contains 25,700 frames in total. Table 2
lists the details about the mentioned dataset used in this research study.

Diseases and abnormalities may affect the classification result by introducing new struc-
tures, which in turn results in different features being extracted. Therefore, the data is
supplemented with other data containing numerous diseases. Half of the images in the WCE
and CE image-based dataset contain some form of pathology, such as polyps, vascular
anomalies, cancer, and inflammation. This is done to determine the efficiency of the proposed
method in real world conditions. On the other hand, the video-based dataset has approximately
6500 and 600 frames containing abnormalities for CE and WCE categories respectively. While
the evaluation set has a significant number of frames, the image-based dataset for training
purposes is quite small, consisting of only 3–10 images per category. The motivation behind
having such a size discrepancy between the training and evaluation datasets is to demonstrate

Fig. 3 The anatomic positions of the images included in the dataset for the human GI tract
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the efficiency of the proposed few-shot learning model, and to demonstrate that a model
trained on only a few images is capable of producing promising results for multiclass disease
classification.

2.2 Proposed method

2.2.1 Problem formulation

In this section, we introduce the few-shot classification problem. Considering a dataset, D,

with K classes, we have ∑K
k¼1Nk samples as the supporting set (S), where Nk is the number of

images in the kth class. The few-shot image classification problem can be defined as
classifying a query set (Q) where the unseen data based on the model is trained on the
supporting set samples. The goal is to map the similarity between different images into a
metric space, allowing samples from the same category to be as near together as feasible and
examples from other categories to be as far apart as possible. This will be done using the
Siamese Neural Network (SNN) structure and will be discussed in more details in the
following sections.

2.2.2 Siamese network model

SNN is a successful example of distance metric-based methods and was first presented by
Bromley et al. [5] in order to detect forged signatures. In that study, by comparing two
signatures, the SNN was able to demonstrate whether two signatures were original or whether
one was fake. Recently, SNN has been successful with many FSL tasks, including clinical
endoscopy image classification [1], COVID-19 diagnosis from x-ray images [15], and medical
image classification [6].

The SNN used here employs the DenseNet121 architecture and is combined with a
manifold mix-up scheme in order to have more training samples and better decision bound-
aries. The block diagram of the SNN is shown in Fig. 4. Suppose that two of our supporting set
samples are Sn1 k1 and Sn2 k2. The result of the network is a feature vector (latent vector) for

Table 2 Description of the data set used for training and testing

Position Images (support set) Video frames

Index Name CE WCE CE WCE

1 Esophagus 6 3 3075 260
2 Cardia 6 3 2450 20
3 Angularis 8 0 500 0
4 Pylorus 5 3 2500 280
5 Duodenum 16 5 2700 130
6 Jejunum 5 3 1500 380
7 Ileum 11 5 475 280
8 Colon 11 5 5400 475
9 Rectum 5 0 5100 0
10 Anus 5 0 2000 0
Total (Frame) 78 27 25,700 1825
Total (Second) – – 1028 365
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each image, which is usually a dense layer, before applying the last activation function, and
can be defined as F(x). Various deep learning approaches can be used for feature extraction.
We tried different learning architectures that were all pre-trained using ImageNet [28],
including DenseNet121, GoogleNet, AlexNet, Resnet50 and VGG16. DenseNet121 was
selected for the baseline model since it displayed the highest accuracy. However, the other
architectures can replace DenseNet121 without incurring any major performance differences.
The next step involves calculating the Euclidean distance between the two extracted feature
vectors as shown below:

Ew ¼ Dw Sn1k1 ; Sn2k2ð Þ ¼ F Sn1k1ð Þ−F Sn2k2ð Þj j ð1Þ

If k1 = k2, which means that the input samples are from the same class, the model learns to
extract features that have less distance. On the other hand, if the two images come from
separate groups, then the algorithm aims to obtain features such that the distance is greater. The
sigmoid function is used to map the distance between 0 to 1. This helps when comparing
distances and helps manifold mix-up to have confined values [26].

Contrastive loss is used to train the network [13]. The map for converting an image to its
latent vector should preserve neighboring relationships and should be generalizable on unseen
data. The loss is defined by Eq. 2 below as:

Pylorus

Transverse 
colon

Input Image

Euclidian 
Distance

Linear Layer & 
Normaliza�on

Linear Layer & 
Normaliza�on

Sigmoid

Copy 
weights

Interpola�on 
Hidden State

Pylorus

Copy 
weights

Manifold Mixup

Feature Vector

Feature Vector

Feature Vector

Mixed Feature 
Vector

Euclidean
Distance

Fig. 4 The block diagram of the training SNN. Instead of using support set image directly, the mixing up of
latent features is used for training
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L Dw; Yð Þ ¼ 1−Yð ÞD2
w þ Y max 0; 1−Dwð Þf g2 ð2Þ

Where, Y is 0 when k1 = k2 are similar and is 1 when they are different; Dw is the Euclidean
distance. The loss function is optimized using an RMSprop optimizer [51].

2.2.3 Manifold mixup

Deep learning networks usually perform appropriately on the data distribution they were
trained on; however, they may provide incorrect (and sometimes very confident) answers
when evaluated on points from outside the training distribution. The adversarial examples
presented in [12] are an example of this issue. Manifold mix-up, introduced by Verma et al.
[42], uses a regularization that solves this problem by training the classifier with interpo-
lated latent features, which allows it to be less confident with points outside of the
distribution. It also enhances the latent representations and decision boundaries of neural
networks. We suppose that the extracted features from one location are unique to that
location. As a result, combining latent features from two locations generates a new feature
that is close to both locations. The degree of resemblance is then determined by mixing the
weights.

Suppose x̌ ¼ g xð Þ is the neural network function that maps one support image x
to its latent feature x̌. We assume two support images x1 and x2, and proceed to mix
two latent features xˇ1 and x̌2. The mixing function is defined by the following
equation:

Mixλ x̌1; x̌2Þ ¼ λx̌1 þ 1−λð Þx̌2ð ð3Þ

Where, λ is defined based on the Betta(α, α) distribution [48] . The value of α is set to 2
because the original paper achieved the best results with this value. A bigger λ means that the
latent feature is more like x1. Similarly, the labels of two support images x1 and x2, which are
defined as y1 and y2, are mixed:

Mixλ y̌1; y̌2Þ ¼ λy̌1 þ 1−λð Þy̌2ð ð4Þ

If two support images are from different locations than the SNN network’s input image, the
output does not change. Therefore, one of the images should be from same location as the
input SNN image. For each pair, 50 different mixed latent features and labels are generated.

2.2.4 Applying the model to a single frame and a sequence of frames

Figure 5 shows the method used to apply a single image to the trained model. When a new
image is fed to the trained model, a feature vector is calculated. The Euclidean distance
between the obtained feature vectors and other classes are calculated. It is observed that the
minimum median distance between each group indicates the group that the new image is
classified as. If the median distance from all group members is above the threshold of 0.5, a

36586 Multimedia Tools and Applications (2023) 82:36577–36598



new category is generated for the image, and subsequently labeled as “Other”. According to
the block diagram of the proposed method (Fig. 4), the sigmoid function is used as the last
layer to convert the distance of two classes to a value between 0 and 1. This approach is like a
calibration which is famous as the sigmoid method. The sigmoid method assumes the
calibration curve can be corrected by applying a sigmoid function to the raw predictions. This
assumption has been empirically justified on various benchmark datasets [4]. As a result, the
calibration curve also referred to as the reliability diagram [45] shows a characteristic sigmoid
shape, indicating that the classifier returns probabilities closer to 0 or 1 typically. Therefore,
0.5 is used as a discriminator for whether an image belongs to a specific class or not. We used
the median, instead of the average, as it makes the algorithm more robust against noise [10].

In the next stage, we develop our model using video sequences. Video is understood to be a
series of individual images (or frames) in sequence that can help further improve the predic-
tions using the temporal information.

In order to take advantage of the correlation between successive frames, extra steps
were implemented. Figure 6 represents a block diagram that shows the application of the
model to a video sequence. Each video is segmented into 1 sec windows with 0.5 sec
overlaps. Since the anatomic changes in adjacent video frames are not usually high, frames
inside a window can be assigned to a single location instead of assigning a location to each
frame. Therefore, the error incurred from applying the model to a single frame can be
reduced by taking advantage of the temporal information. In this regard, each frame is
applied to the single frame model. Then, the statistical mode from 1 second worth of frame
locations is used as the predicted label for that second. It is worth noting that WCE and CE
videos contain 5 and 25 frames per second respectively.

It is assumed that the frame positions are in anatomical order, and that the anatomic order is
preserved throughout the processing of a video sequence. For example, it is not possible for
“colon” to precede “cardia”. Hence, if the predicted label for a sliding window was not ordered
according to their anatomical positions, the label with a higher average distance from its group
is set to “Other”. The algorithm is presented below.

Frame 
Sequences

Frame 1

Frame 2

:

Frame n

Single 
frame 
model

Predicted Loca�on For Frame 1

Predicted Loca�on For Frame 2

:

Predicted Loca�on For Frame n

Features 

Agreement
(statistical mode)

Loca�on 
Predic�on

Fig. 6 The pipeline of applying a video sequence to SNN for detecting location

One Frame Trained 
model

Gastric 
Antrum

Median of distance 
for each group Thresholding

Label as other 

Minimum 
distance as 

nearest group

Pass the
threshold

Does not pass
the threshold

Distance of 
frame from 
all support 

images

Support set

Fig. 5 The pipeline of applying a single frame to SNN for detecting location
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Algorithm 1 Applying a video sequence to the model.

2.3 Performance evaluation

Two stages of validation were applied to the proposed method. Firstly, we applied SNN for
evaluating single frame model performance, which was tested on all frames from the video-
based dataset. For validating the entirety of the proposed system, including SNN and
postprocessing, the test dataset was 50% of the video-based dataset, which included 13,762
endoscopy video frames.

For the multiclass problem, the macro-average of Accuracy, AUC and F1-score are
reported. AUC is a performance measurement to check and visualize the multi-class classifi-
cation, and additionally specifies the degree of separability. The higher the AUC, the better the
model is at distinguishing between classes. It is worth mentioning that the micro-average is not
sensitive to individual group predictive results and can be misleading when data is imbalanced
[22]. For the multiclass problem, the overall accuracy is reported, which is the average
accuracy for all of classes.

All algorithms ran in Python 3.6 on a system with a Core-i9 CPU, 16 GB of RAM, and
6 GB NVIDIA GeForce GTX 1060 Graphic Cards. The training and inference time of
classifying the locations are about 8.07 s and 0.06 s, respectively.

3 Results

3.1 Subjective evaluation using a survey questionnaire

The results of the subjective evaluation by the gastroenterologists are shown in Fig. 7. It shows
the macro-average F1-score, AUC and overall accuracy to be 55%, 78% and 60% respectively.
The numbers are lower which indicates that GI tract localization through visual inspection is
difficult. This is partly to do with the fact that there are many similarities between different
locations which can lead to erroneous classification by humans.
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3.2 Proposed method performance

The proposed SNN, which is trained on an image-based dataset, was applied to the video-
based dataset for CE and WCE images without considering frame sequence. The results are
provided in Fig. 8. Put concisely, the proposed SNN method, using DenseNet121 while
being trained on 78 CE images, achieved a macro-average F1-score, AUC, and overall
accuracy of 78%, 90%, and 83% respectively for CE. Similarly, the model trained on 27
WCE images achieved 78%, 90%, and 84% for the F1-score, AUC and overall accuracy,
respectively.

Figure 9 shows the effect of applying agreement (statistical mode) to a sequence of frames.
In order to use the information from neighboring frames, an agreement of 25 and 5 frames

Fig. 8 Results of the proposed method on single frames from the CE (top) and WCE (bottom) video-based
datasets

Fig. 7 Performance of predicted location by nine gastroenterologists using the CE dataset. The ROC curve for
each location along with the macro-average (right) and the F1-score and accuracy (left) are provided
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respectively was selected for CE andWCE location labels. The proposed method, based on the
agreement of frame sequence predictions, achieved a macro-average F1-score, AUC, and
overall accuracy of 90%, 96%, and 93% for CE and 80%, 92%, and 86% for WCE
respectively.

To illustrate the performance of the proposed method better, we have provided an example
in Fig. 10 for processing a 34-second conventional endoscopy video. While the endoscope is
in the esophagus, there are times at which the proposed method (without agreement) cannot
detect the correct location. The presence of different artifacts such as bubbles, instrument
noise, blurring, contrast issues, color saturation, or simply the frame belonging to a location
that was not in the training set (such as the antrum) are examples of false predictions. The
agreement of locations in a time frame can reduce error. For instance, after detecting the

A video sequence of 35 seconds
as an input to the model

Time
00:00:00 00:00:05 00:00:10 00:00:15 00:00:20 00:00:25 00:00:30 00:00:35

True labels

Predicted labels before 
post processing

Predicted labels a�er 
post processing

Esophagus
Cardia

Other

Fixed posi�on by 
postprocessing step

Cannot be fixed by postprocessing 
step and remained other

Fig. 10 An overview of the outputs of the system and the error correction mechanism applied by our
postprocessing step. The “Other” label is mainly because of the inability of SNN to detect correct location
because of artifacts and noise, or it is a location that was not in the training set such as the Antrum. Blue boxes
show erroneous predictions corrected using the proposed postprocessing step

Fig. 9 Results of the proposed method on a sequence of frames from the CE (top) and WCE (bottom) video-
based datasets
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esophagus’ position, the next position, in this case the cardia, is expected to be predicted.
Therefore, if irrelevant positions are detected, the agreement process fixes the incorrectly
predicted frames, and thereby improves the performance.

3.3 Effect of distance metric-based and manifold mix-up

Figure 11 shows the comparison results among SNN with manifold mix-up (proposed
method), SNN without manifold mix-up, simple CNN, SVM with Scale Invariant Feature
Transform (SIFT) features, SVM with color and texture features, GoogleNet, AlexNet,
Resnet50 and VGG16. The advantage of this experiment is to apply the same dataset to the
base methods of the mentioned state-of-the-arts architectures in Table 3 and compare the
results with the proposed method. According to this table [32, 36] have employed CNN,
[23] classified the locations using SVM, and [35] used unsupervised data clustering with
SIFT. It is worth mentioning that the proposed method with manifold mix-up is trained on
limited data, while the others (even SNN without manifold mix-up) are trained on 50% of
the frames from the video-based dataset. The proposed method outperforms other models,
although it is trained on only 78 CE and 27 WCE images whereas the other models are
trained on 12,850 CE and 912 WCE images. For CE, the VGG16 achieved the best score
after the proposed method with a macro-average F1-score of 77.1%. On the other hand,
Resnet50 achieved the best score for WCE after the proposed method with a macro average
F1-score of 73.7%. Additional information about VGG16 and Resnet50 is provided in the
supplementary material.

Figure 12 shows the latent vector visualization for CE and WCE images based on
DenseNet121 on two dimensions using t-SNE. t-Distributed Stochastic Neighbor Embedding
(t-SNE) is a dimensionality reduction technique that is ideally suited for the visualization of
high-dimensional data [40]. The extracted latent feature from the model is visualized here
using t-SNE for better interpretation of the trained model. All test samples are fed into the base
model and the t-SNE of the latent features are calculated and depicted with and without
manifold mix-up. It is worth noting that since t-SNE holds probabilities rather than distances,
calculating any error between Euclidean distances in high-D and low-D is pointless. Contin-
uous lines in the 2D plot also shows that there is a time series behavior in features, which is

Fig. 11 Comparing the F1-score of the proposed method using manifold mix-up with other methods including
SNN without manifold mix-up, other architectures, and hand-crafted features with machine learning
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because of video frames. Moreover, the 2D plot shows that the complexity of manifold without
the manifold mix-up scheme is higher (clusters are more correlated), and that the manifold
mix-up can help to better find similarities between frame sequences (more rigid lines).

4 Discussion

In this paper the problem of classifying the anatomic origin of endoscopic images from the GI
track has been investigated. Our subjective evaluation shows that, due to the resemblance in
locations, achieving a high accuracy is not possible by gastroenterologists. Therefore, this
paper aimed to investigate the use of deep learning-based technique to classify the GI tract
locations.

Two approaches to overcome this challenge are to either collect more samples to train the
model or to take advantage of neural network architectures that are able to learn from few
samples and predict based on them. Since we cannot always rely on getting more data, the
proposed method is based on two SNN models that are trained using manifold mix-up for
classifying anatomical locations of the GI track given 78 CE and 27 WCE images, separately.

In Table 1, different endoscopic localization techniques are presented that vary based on
various features including their type of output. For example, the output of [17, 32, 36] are
predicted locations while [9, 20, 43] have estimated the median error. Table 3 compares our

Fig. 12 The visualization of latent features extracted from CE and WCE video-based datasets using t-SNE with a
perplexity of 50 based on the proposed method with and without manifold mix-up. The latent features with
manifold mix-up have better discrimination and decision boundaries, whereas the latent features extracted
without manifold mix-up have more overlaps
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results with the existing studies that perform the same task as the proposed method, namely the
classification of the anatomic locations of the GI track and label prediction.

To summarize, Lee et al. [17] designed a system to detect the esophagus, stomach,
duodenal, ileum and colon (5 locations), based on color changes observed in consecutive
video frames, and achieved a 61% F1-score; however, they did not utilize any machine
learning or deep learning approaches. The proposed approach outperforms their result by
25% with respect to F1-score. Marques et al. [23] used color features and SVM for the
stomach, small intestine, and large intestine (3 locations) for classification onWCE frames and
achieved an overall accuracy of 85.2%. Shen et al. [35] used SIFT local feature extraction on
WCE images and unsupervised learning-based on clustering for localization of the stomach,
small intestine, and large intestine (3 locations), and achieved an overall accuracy of 97.6%.
For the first time, Takiyama et al. [36] used standard endoscopy images for training a CNN to
classify input images as either the larynx, esophagus, stomach (upper, medium, and lower part)
or duodenum (6 locations). They achieved 97% accuracy with an AUC > 99%.

While the last two methods have higher accuracy, their classification task is less complex
than what we have presented. Having more classes makes the problem more complicated.
Increasing the number of classes is also investigated in other fields such as anomaly detection.
For instance, Mohammed et al. [24] showed that increasing the number of classes makes the
problem more complicated and causes a drop in performance. On the other hand, having more
locations for prediction makes the classification more precise. Saito et al. [32]. Applied a CNN
to standard colonoscopy images, such as the terminal ileum, cecum, ascending colon, trans-
verse colon, descending colon, sigmoid colon, rectum, and the anus (8 locations), and achieved
an overall accuracy of 66%.

All methods are applied to a limited number of locations, on either WCE or CE datasets.
However, in this research both WCE and CE localization are investigated with a wide range of
locations from the esophagus to the anus. Furthermore, the number of images that we used for
training is significantly lower than that used in the other methods. In this study, the number of
samples have been reduced by over 99% and 98% for WCE and CE datasets respectively.

Trained models could be used for the location prediction of a single frame or a sequence of
frames. Using the proposed postprocessing step, which is an agreement of predicted neighbor
labels, the method took advantage of the temporal dependencies that exist in the frame
sequences. Consequently, the error rate decreased.

This study has suggested that few-shot learning methods have great potential in medicine.
To this end, a SNN with manifold mix-up has been presented. In order to generalize this
notion, two other well-known approaches for few-shot learning, namely matching [27] and
prototypical networks [16], have been chosen. In addition, the same dataset is used to train
them with and without manifold mix-up. The results are presented in Fig. 13. Comparing the
methods without manifold mix-up with those that utilize it shows that this technique improves
few-shot learning. [21] has also investigated the role of Manifold mix-up on few-shot tasks and
achieved increased performance; however, they used self-supervised learning and the efficien-
cy was not shown for supervised approaches.

Matching and prototypical networks have high performance, close to that achieved by the
SNN. Although, there are a few studies [35, 36] in Table 3 that have achieved slightly higher
accuracy. Few-shot learning-based methods have acceptable results when trained on much
fewer samples while covering more classes. This proves the effectiveness of few-shot learning-
based methods in CE and WCE areas and motivates further exploration of these techniques
and their application in the field.
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5 Conclusion

To classify WCE and CE images based on their anatomical locations, a few-shot learning
strategy based on the Siamese Neural Network and Manifold Mix-up is used in this research.
Only 78 CE and 27 WCE images were used to train the proposed method. The number of
training pairings is significantly enhanced when employing the distance metric-based tech-
nique and manifold mix-up (regularization and augmentation), which reduces the potential of
overfitting. On an external dataset of 25,700 CE and 1825 WCE video frames, the suggested
technique obtains a macro-average F1-score, AUC, and overall accuracy of 90%, 96%, and
93% for CE and 80%, 92%, and 86% for WCE respectively. The need for this research and
investigating methods for automatic classification of gastrointestinal anatomical locations has
also been validated using a subjective evaluation using nine gastroenterologists. According to
this evaluation, the proposed method had higher performance.

Various studies have been carried out to demonstrate the significance of each part of the
proposed method. The results showed that in the proposed method, other architectures can also
be used instead of DenseNet121 without major changes in performance. Furthermore, it was
demonstrated that distance metric-based approaches with manifold mix-up, which are trained
on poorly sampled data, have the ability to outperform models trained using categorical cross-
entropy loss. For instance, the proposed method outperformed other techniques, including a
support vector machine with hand-crafted features, a convolutional neural network, and
transfer learning-based methods, which are trained on categorical cross-entropy loss. The
proposed classification technique has been used for classifying the GI track location in video
frame sequences. The defined agreement stage improved the prediction result compared to not
using this postprocessing step by taking advantage of the temporal information. The visual
inspection performed by nine experts on images also showed that an AI system can outperform
visual inspections and it can help to improve diagnosis performance.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s11042-023-14982-1.

Fig. 13 Comparing three few-shot learning-based methods with and without manifold mix-up. Siamese network
with manifold mix-up is the proposed method in this study. The implemented backbone network is Denenet121
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