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Abstract
Today breast cancer is the leading type of cancer among women undergoing cancer screening. A slight delay in
detecting and diagnosing this disease may result in irreversible convolutions. Histopathological images from the
biopsy examination present a large amount of structural information that can signi�cantly improve the prognosis for
breast cancer. The pathological analysis, which involves the microscopic examination of the histopathological slides,
is a challenging task. An automated computer-aided detection (CAD) procedure is inevitable, as it may decrease the
pathologist examination time and help detect the disease at an early stage. Lately, deep learning methods using
arti�cial neural networks are consistently in use to improve the performance of CAD methods. A common practice
among recent studies is to use the transfer learning approach of training deep neural network architectures. Transfer
Learning is an established learning approach that facilitates a deep neural network to train quickly on a speci�c
dataset and resolve an interdisciplinary problem. Deep Learning methods employing the transfer learning approach
have provided highly competitive results on the datasets consisting of the whole slide images, which are captured
generally at high resolutions. However, the performance is not remarkably appreciable on the small and low-resolution
image datasets, in particular the datasets that include patch samples. In this direction, the present study proposes a
novel domain-speci�c learning strategy, Breast Histo-Fusion, which aims to detect breast cancer even from images of
low resolution and small size. Further, four state-of-the-art deep CNNs (AlexNet, VGG19, ResNet, and DenseNet) are
trained using both learning approaches: Transfer Learning and Histo-Fusion on the IDC dataset. The proposed Histo-
Fusion learning approach has improved the discriminating abilities and performance of each deep CNN by providing
better results of (AlexNet – 95.75%, VGG19–95.96%, ResNet34–96.17%, ResNet50–96.67%, and DenseNet121–
97.49%) compared to (AlexNet – 90.41, VGG19–90.51%, ResNet34–90.83%, ResNet50–92.27%, and DenseNet121–
93.05%) using the transfer learning strategy. As a result, the procedure can help expert pathologists to perform
accurate diagnoses and reduce false-positive rates.

Introduction
Breast cancer is the leading diagnostic cancer amongst various cancers that affect women today. With 2.3 million new
cases and 685,000 deaths worldwide, breast cancer is the fourth leading cause of mortality (Sung, 2021). The Indian
Council for Medical Research (ICMR) predicted a �gure of 2,00,000 new breast cancer cases among Indian women
(Mathur, 2020). The effective prognosis of this morbidity is possible with timely diagnosis through an e�cient
detection system. The assessment method to help detect breast cancer follows a 3-step process: mammograms (for
visualization of early breast structure changes), clinical assessment, and needle biopsy: H&E-stained histology (Azam
Hamidinekoo, 2018). Mammogram images and histopathological images are the most commonly used modalities for
breast cancer screening and diagnosis. However, around 10% patients are generally advised to go for a more thorough
assessment after mammography (Neal, 2010), but despite it being an effective method, the procedure exhibits a trade-
off between speci�city (91%) and sensitivity (84%), resulting in needless biopsies (Elmore, 2009). As a result, patients
are subjected to signi�cant stress and trauma besides being forced to bear increased healthcare costs.

Today histopathological analysis is the only appropriate method for diagnosing malignancy on breast tissues (Elmore,
2009), which involves a keen microscopic examination by an expert pathologist. But in the present-day healthcare
scenario, India is facing a severe dearth of pathologists against a looming number of patients. As per statistics, the
population-pathologist ratio in India stands around 65000 (Robboy SJ, 2013) far lower than the USA where it is around
17500. The complex nature of the histopathological examination and the massive number of investigations per
pathologist may lead to false diagnoses. (SA., 2014; Welch HG, 2014). To address this problem computer-aided
detection (CAD) methods using image processing and analysis have been developed to help the domain experts to
arrive at a correct diagnosis (Azam Hamidinekoo, 2018). Such techniques aim to provide additional insight in tumour
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region identi�cation, mitotic activity, and in the identi�cation of breast cancer subtypes such as IDC (Invasive Ductal
Carcinoma), ILC (Invasive Lobular Carcinoma) (Veta, 2014). Although CAD methods are effective, accurate detection of
abnormal breast tissue still remains a challenging task, because the texture patterns present in histopathological
images are highly complex. For precise diagnosis, an appropriate feature extraction method with the capability to
extract signi�cant features from these complicated patterns is highly desirable (Xie J, 2019). This cannot be achieved
through CAD, because these systems primarily rely on prior knowledge of the input data (O., 2019), while the focus
remains to �nd a fair balance between detection accuracy and computational complexity (Nanni L, 2017). CAD
systems tend to result in high rates of false positives, and recent studies have con�rmed that the diagnostic capacity
of these models cannot improve further (Lehman CD, 2015), it is urgent to look up for some advanced and accurate
detection procedures.

The expeditious advancement in computational technologies makes it possible to use deep learning methods
(especially the deep convolutional neural networks) for object detection and object classi�cation tasks (Litjens G,
2017) (Zhao R, 2016). Such methods can also be used in the early detection of breast cancer (Zhao R, 2016) (Lee JG,
2017). Recently several studies employing deep learning methods have achieved better results than the traditional CAD
systems by providing diverse analyses of suspicious scans (Li Y, 2016) (Hedjazi MA, 2017). Unlike conventional
machine learning and CAD methods, deep learning models can automatically extract the signi�cant features from the
input data (Zhang X, 2019). Deep CNNs carry out this feature learning by following a hierarchical framework, making it
possible to combine the features extracted from the low-level and high-level abstracts through a non-linear approach
(Azam Hamidinekoo, 2018). Deep learning methods adjust themselves according to the inputs provided, improving the
correlation between input and output using an iterative training process (Bengio, 2009). Indeed, deep learning
techniques using transfer learning have provided competitive results in diagnosing breast cancer from
histopathological samples, but the performance of these methods is not promising in case of datasets with image
samples of low resolution and small size.

The present study proposes a novel Histo-Fusion learning method that aims to identify breast cancer from
histopathological images more accurately than the conventional methods presently in vogue. The study uses various
state-of-the-art deep CNNs which include smaller network architectures (AlexNet and VGG19) and also the deep
architectures (ResNet and DenseNet), to investigate the performance of the Histo-Fusion training approach against the
established Transfer learning strategy. The proposed Histo-Fusion learning strategy improved the ability of each deep
CNN to accurately diagnose breast cancer from small sized low-resolution image samples, compared to the transfer
learning training approach.

Related Literature
Data Acquisition, data pre-processing, feature mining, and decision mining are the main integral modules for an
automatic classi�cation system (Sharma S, 2020). Among these, feature mining holds prominence because its
performance is directly correlated to the quality of features extracted from input images. Conventional methods like
Local Binary Pattern (LBP) (T. Ojala, 2002), Parameter Free Threshold Adjacency Statistics (PFTAS) (L. P. Coelho,
2010), Oriented Fast and Rotated BRIEF (Rublee, 2011), and Local Phase Quantization (LPQ)(V. Ojansivu, 2008) use
‘texture’ as a signi�cant attribute for feature extraction.(Spanhol FA, 2015) evaluated the feature extraction ability of
the conventional methods in conjugation with various classi�ers like ‘1 nearest neighbor (1-NN) (K. Q. Weinberger,
2006), Quadratic Linear Analysis (QDA) (Tharwat, 2016), Support Vector Machines (SVM) (B. E. Boser, 1992), and
Random Forests (RF) (V. Lepetit, 2006). The study concluded that SVM, using fractal dimension as a feature descriptor,
performed well among various classi�ers on low-resolution images (A. Chan, 2016).(Roy, Das, Kar, Schwenker, &
Sarkar, 2021) used ensemble learning by stacking and extracted the textural features from the histopathological
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images for classifying them into IDC + and IDC - categories. The study also conducted an in-depth comparative
analysis of different machine learning classi�ers in classifying breast cancer histopathological image patches
inferring that the CatBoost (CB)(Prokhorenkova, Gusev, Vorobev, Dorogush, & Gulin, 2018) classi�er proved more
e�cient with an AUC score of 92.2%, followed by the extra-Tree model − 89.7%, and multi-level perceptron (MLP) − 
90.4% while RF(Breiman, 2001) yielded the lowest AUC score of 87.1%. The conventional methods of classi�cation
using machine learning are comparatively more complex in nature and the results they yield are highly inconsistent,
which is due to the fact that these methods depend on the standard of features retrieved by various feature
descriptors. To address the issue, recourse is taken to utilize deep learning methods which are discussed below.

Recently, deep neural network architectures with inherent abilities to retrieve the most signi�cant features from
histopathological images were used to perform automatic classi�cation tasks. The �rst attempt to use deep neural
networks to detect IDC from whole-slide histopathological images used a smaller CNN consisting of just three layers
(Cruz-Roa, 2014). Besides, the study used some classical handcrafted methods such as Fuzzy-color-histogram, RGB-
histogram, LBP, Harlick features, graph-based features, and gray histogram for feature extraction and classi�cation
tasks. With an F1-score of 0.7180 and a balanced accuracy score of 0.8423, the CNN-based approach provided better
results when compared to handcrafted methods. On the other hand, Fuzzy-color histogram (F1: 0.6753 and balanced
accuracy: 0.7874) and RGB histogram (F1: 0.666 and balanced accuracy: 0.7724) yielded better results among the
classical methods used. (B. N. Narayanan, 2019) used color consistency and histogram equalization for pre-
processing the histopathological patch images. The deep CNN used in the study obtained an AUC value of 93.5% on
color consistency pre-processed patches compared to 87.6% obtained on the patches pre-processed with histogram
equalization. We may attribute this increment to the color consistency technique that can maintain the contrast levels
across all the images of the dataset used, which provides a better discriminating ability to a deep CNN to perform the
classi�cation task.

(J. L. Wang, 2018) applied a good number of CNNs for automatic feature extraction and classi�cation tasks to
optimize the F1 and AUC scores, four of which were already implemented by (Cruz-Roa, 2014). Each CNN architecture
is trained on the IDC dataset till it achieves maximum accuracy with minimal gradient. The deeper network of the four
deep CNNs yielded higher AUC and F1 scores compared to the less deep networks. Precisely the deepest of the four
CNNs with a single dropout layer yielded F1: 0.923, BAC: 0.866, and Accuracy: 89% compared to a network comprising
two dropout layers which yielded F1: 0.911, BAC: 0.814, and Accuracy: 87%. An interesting inference drawn from this
study is that the performance increase through data augmentation is directly proportional to the depth of the CNN
used. Strangely, the study is silent about the speci�c procedures used to accomplish the data augmentation process.
(M. J. Rahman, 2018) applied data augmentation through random rotation, horizontal and vertical �ipping/shifting on
a training set comprising breast cancer histopathological images. A six-layer CNN with ReLU non-linearity and
Adadelta optimizer using data augmentation classi�ed the test samples into IDC + and IDC - obtaining F1: 0.8934 and
Accuracy: 89%. Moreover, the architecture displayed less model over�tting, certainly by virtue of data augmentation.

(H. Alghodhai�, 2019) investigated the performance of depth-wise separable convolution model against the standard
convolution model of CNN on the IDC dataset. The depth-wise separable convolution characterizes itself by performing
a single convolution on a single channel at a given time, whereas the standard convolution performs the convolution
operation on all channels simultaneously. To rectify the non-linearity towards the end of convolution operations,
numerous activation functions like ReLU, Tanh, Sigmoid are independently used in both models to test their respective
response to the classi�cation task. The standard convolution neural network model provided better performance
results (Precision: 0.81, Speci�city: 0.73, Sensitivity: 0.71, F1: 0.3, and Accuracy 87%) in contrast to the depth-wise
convolutional neural network. Among various activation functions used in this model, ReLU with Accuracy: 87.1%
outperformed others, followed by Sigmoid with a marginally less Accuracy: 86.4%. (Hernandez, 2019) used an under-
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sampling approach to reduce the bias of a classi�er towards the majority class in the training dataset. Under-sampling
tends to remove some of the sample patches from the majority class of the training set making it a balanced training
package. The balanced dataset is further used for training a CNN architecture as implemented by (M. J. Rahman,
2018) with a slight variation i.e., use of variable dropout rates. The optimized CNN-based approach yielded Accuracy:
0.854 on the IDC dataset. (F. P. Romero, 2019) implemented a multi-level batch normalization using the inception CNN
as base architecture. These modules, indeed, help mitigate the internal co-variance shift enabling better training of the
CNN model. The implementation of this method �nally resulted in obtaining BAC: 89% on an imbalanced IDC test set.

(Sujatha, 2020) used residual networks ResNet34 and ResNet50 on different training sets containing varying sample
instances of IDC patch images. ResNet50 showed slightly better performance over ResNet34 in identifying IDC + and
IDC - samples. The study concluded that the discriminating ability of the CNN models decreases directly in proportion
to the decrease in sample instances of the training sets.(Saad Awadh Alanazi, 2021) investigated the performance of
machine learning methods like Logistic Regression, KNN, and SVM along with deep learning methods involving three
different CNN architectures. In the classi�cation involving the identi�cation of IDC + and IDC- using conventional
machine learning methods, SVM outperformed its other two counterparts yielding Accuracy: 78.5%. On the other hand,
out of the three CNNs, the two shallower networks comprising two and three Convolutional layers yielded respectively
59% and 76% accuracy scores on the same set of test samples, while the third deeper network with �ve Convolutional
layers achieved an accuracy score of 87%.

Implementation of ensemble learning that seeks a better performance by combining the outputs of two deep CNNs
(DenseNet121 and DenseNet169) obtained BAC: 92.07% and F1: 0.9570 (Nusrat Ameen Barsha, 2021). This ensemble
model in conjugation with Test-time-augmentation achieved better performance in classifying IDC patch samples than
the individual pre-trained models. The study further highlights the performance improvements achieved in the
classi�cation task of the ensemble model by upscaling the image patch samples from 50x50 pixels to 250x250 pixels.
(Alzubaidi & Al-Amidie M, 2021) used a domain-speci�c learning approach, similar to the one used in this study, by
initially training the deep CNN on a large dataset comprising images of skin cancer. Afterwards, the deep CNN is
trained and �ne-tuned on histopathological images of the BreakHis dataset. The deep CNN model using domain-
speci�c learning achieved accuracy: 97.5% against 85.29% using training from scratch. (Attallah O, 2021) proposed a
novel automatic detection method, Histo-CADx, for identifying breast cancer from histopathological images. In its
initial phase, the Histo-CADx investigates the impact of combining features extracted using deep learning methods
with those obtained from traditional methods. Later the Histo-CADx implements a multi-classi�er system by fusing the
outputs of three individual classi�ers. Such an arrangement achieved better performance in classifying breast cancer
from histopathological images of BreakHis and ICIAR datasets.

Materials And Methods

Dataset Description
In order to classify the histopathological images of breast cancer into sub-categories of IDC+ and IDC –, and to further
validate the proposed Histo-fusion approach, two different datasets BreakHis and IDC have been used. PNG image
format has been utilized for storing histopathological image samples of breast tissue in both datasets.

1) BreakHis Dataset
Currently BreakHis dataset (F. A. Spanhol, 2016) is the largest available repository of breast cancer histopathological
whole slide images accessible to the research community on the Internet. As a general observation, the distribution of
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image samples of benign and malignant categories is highly imbalanced across all multi-class datasets. The same
holds true for the datasets used in this study as well. Further, in the BreakHis dataset, benign and malignant samples
are sub-divided into eight sub-classes (four in each category). Each sample image has a size of 700x460 pixels,
captured at four resolution levels: 40X, 100X, 200X, and 400X.

Table 1 

BreakHis Histopathological Sample Image arrangement across various magni�cations.

Resolution Level Benign Malignant Total

40X 625 1370 1995

100X 644 1437 2081

200X 623 1390 2013

400X 588 1232 1820

Total 2480 5429 7909

2) IDC Dataset
The IDC dataset (Janowczyk A, 2016) used in this study pertains to the class of breast cancer histopathological
datasets comprising 162 whole slide images captured at 40X magni�cation with huge spatial dimensions of the order
of 1010 pixels. A group of expert pathologists subdivided each of the full-slide sample images into many non-
overlapping patches.  After annotating each sub-sample with an appropriate label, the pathologists extracted 78786
patch subsamples belonging to the IDC + category and 277524 belonging to IDC - category. However, while examining
these samples, it is observed that a good number of patch samples contain a large portion of white or black segments.
Such samples are removed from the total count to ensure a confusion free training of deep CNN model. Finally, the
patch sub-samples are reduced to a count of 190972 for IDC - and 34977 for IDC + samples.

Table 2

 Distribution of IDC (+) and IDC (-) patch samples across the original dataset and the one used in this study.

Patch/WSI  IDC - IDC + Total

IDC Patch Original Dataset 198738 78786 277524

IDC Patch Dataset used 190972 34977 225949

Convolutional Neural Networks
In recent times, deep learning models have been widely used for computer vision and object recognition tasks. These
models have performed remarkably well on medical images for diagnosing the morbidity to a precision level. In
classifying breast cancer from the IDC samples, the study takes recourse to four state-of-the-art architectures: AlexNet,
VGG19, ResNet and DenseNet. 

i. AlexNet
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AlexNet (Krizhevsky, 2012) is among the premier pre-trained architectures proposed in 2012 that has won the ImageNet
large-scale visual challenge (ILSVRC) in the same year of its launch. The AlexNet architecture is a deep network (5
Convolution layers and 3 Fully Connected layers) in which, except for the output layer, each layer uses the ReLU
activation function. With ReLU activation in place, the training process is almost six times faster than any other
activation function. AlexNet takes care of model over�tting by using two dropout layers inherently.

ii. VGG19

VGG19 (Karen Simonyan, 2015) (Visual Geometry Group) CNN is a successor to AlexNet, comprising 16 Convolutional
layers and 3 Fully Connected layers. The VGGNet generally performs well on object recognition tasks, particularly those
involving facial recognition. However, the network architectures belonging to VGG groups are complex since these
include a broad set of trainable parameters.

iii. ResNet

Currently, ResNet (He, 2016) is one of the most powerful network architectures in tasks involving computer vision,
image recognition, and natural language processing. In comparison to VGG19, ResNet is a deeper architecture that
utilizes skip connections to solve the vanishing gradient problem. This network architecture allows its layers to learn
the residual mapping instead of the underlying mapping being generally used by other network architectures.
Meanwhile, the ResNet architecture has implemented a network of 34 layers, 50 layers, 101 layers, and 152 layers over
time. However, the ResNet50 is the most commonly used variant, in which the usage of residual connections propels
its success over other established deep CNNs like AlexNet, VGGNet, and Inception networks.

iv. DenseNet

Recently a new paradigm of implementing a deep CNN - DenseNet (G. Huang, 2017) interconnects the layers of a
network in a cascade fashion. Each layer accepts the feature maps from all the preceding layers which enables
seamless propagation of rich features across a network, ensuring that the network is least affected by the vanishing
gradient problem. The DenseNet architecture comprises a convolution layer, a dense block, a transition layer, and a
classi�er. The architecture is considered to be one of the computationally most e�cient deep CNNs.  

Proposed Method
For classifying histopathological images into IDC + and IDC - categories, �ve different deep CNNs: AlexNet, VGG19,
ResNet34, ResNet50, and Denset121 have been used. Initially, these architectures are trained on the histopathological
images using an established learning mechanism i.e., Transfer learning. Later, the proposed Histo-Fusion approach is
employed to train the deep CNN models. Performance of each deep CNN, using the two distinct training approaches, is
evaluated through standard assessment measures like accuracy, precision, sensitivity, speci�city, and F1 score. For the
identi�cation of IDC+ and IDC – samples, 70% of the dataset is reserved for model training, 10% for model validation,
and 20% for testing purposes. This dataset breakdown is carried out in such a way that there is no overlap of image
samples across the three splits.

Generally, the deep CNN models exhibit the problem of over�tting while being trained for longer durations. The study
employs post-augmentation procedure to mitigate the issue, further ensuing that augmented image are present in the
training set only. It enables deep CNN architectures to utilize the extra training data, enhancing the scope to improve
their discriminating abilities.
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Transfer Learning
Training of deep CNN models using limited data is a highly challenging task. To meet the challenge, numerous
research works employed Transfer Learning approach that has yielded encouraging results (Huynh BQ, 2016) (Suzuki
S, 2016) (Alghodhai�, Alghodhai�, & Alghodhai�, 2019) (Cruz-Roa, 2014). Currently data augmentation and transfer
learning are the only two apt tools available for rapid and effective model training.  Data augmentation techniques
provide different craniocaudal and Medio-oblique views of the breast tissue that help improve the detection accuracy
and reduce false-positive rates (Abdelha�z D, 2019; Wang J, 2017). Transfer Learning facilitates the utilization of pre-
trained deep CNN architectures to solve an allied interdisciplinary problem. These pre-trained deep CNNs train on a
large ImageNet dataset (Russakovsky O, 2015) consisting of 1.2M images of diverse nature. Afterwards, the deep
CNNs are optimized to perform the 1K classi�cation task. Finally, Transfer Learning allows these pre-trained networks
to receive training on the speci�c dataset to perform the required classi�cation task.

Histo-Fusion Approach
There is no denial to the fact that deep CNNs using Transfer Learning play a vital role in accomplishing the image
classi�cation tasks by improving the precision results and minimizing the training time. However, it suffers from the
problems of negative transfer and over�tting. The deep CNNs pre-trained on a different dataset fail to provide
satisfactory performance mainly because of the negative transfer problem. This usually happens when the learning
acquired in previous training affects the performance of a new task deteriorating the performance of a deep CNN.
Deep CNNs also encounter the issue of model over�tting which leads to learning unnecessary details using Transfer
Learning approach. Consequently, Transfer Learning does not yield satisfactory results, especially in the datasets
exhibiting a high degree of inter-class similarity. 

Keeping in view the above disadvantages, a novel domain-speci�c training framework - Histo-Fusion is attempted to
combat the problems stemming up in Transfer Learning. The proposed Histo-Fusion method (�g.-3) enables the deep
CNN models to initially undergo extensive training on whole slide histopathological images of comparatively higher
resolution (BreakHis Histopathological Images). Later, all the related learning capabilities acquired by the deep CNNs
are applied to the IDC dataset, and �nally the proposed framework classi�es the samples into IDC+ and IDC -
categories. The domain-speci�c learning pursued in this manner has imparted a positive learning experience in deep
CNNs yielding comparatively encouraging results. Considering the clinical signi�cance of identifying correct IDC+ and
IDC- from the histopathological images, a framework with even a marginally better discrimination ability is an
immense gain. The novel domain-speci�c training framework: Histo-Fusion comprises the following two main stages
with image pre-processing, feature extraction, model training and validation as their respective sub-stages. 

Histo-Fusion Stage 1:
This stage involves training each deep CNNs on whole slide images of the BreakHis dataset from scratch. Weights are
assigned randomly to each deep CNN. The image pre-processing of the BreakHis samples is performed by resizing
them to 224x224 pixels, ensuring compatibility of the input samples with the input layers of each deep CNN.
Over�tting problem, generally encountered during the CNN training process, is taken care of through data
augmentation additionally helping to eliminate the classi�er bias towards the majority class.  In this study the data
augmentation procedure is carried out by using rotation, zooming, shifting, and �ipping techniques. In this stage
training of deep CNNs on the BreakHis samples is performed using a constant learning rate. The training process
continues till the validation loss of each deep CNN is minimized. As BreakHis consists of whole slide images with
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comparatively better resolution, the deep CNNs learn desirable discriminating features between positive and negative
samples which is evident from the accuracy scores obtained in this stage. Finally, after achieving the optimum
accuracy scores, the weights of each deep CNN are recorded which are used in Histo-Fusion stage 2.

Histo-Fusion Stage 2:
This stage involves further training of the weight optimized deep CNNs on breast cancer histopathological images of
the IDC dataset. Image pre-processing of the IDC dataset is performed by resizing image patches to 48x48 pixel size. In
this stage also data augmentation is achieved using rotation, zooming, shifting, and �ipping techniques. The training
of deep CNNs is initially carried out by re-training terminal layers using a constant learning rate followed by re-training
all the layers on the IDC patch samples using discriminating learning rates. Discriminating learning is an effective
method of training a deep CNN where the layers of a network are split into three groups – initial layers, middle layers
and terminal layers. Each group of layers is assigned different learning rates using an incremental approach where
smaller learning rates are applied to initial layers followed by a relatively larger learning rates to the middle layers and
a largest optimal learning rates to the terminal ones. Since initial layers of a network contain very �ne details (edges or
lines) about the data and such information is not likely to change compared to the information learnt by the terminal
layers. This approach of discriminating learning helps in optimal network training. The training process is continued till
the training and validation loss gets minimized. Finally, the performance of each deep CNN is evaluated on a test set
comprising patch images of the IDC dataset. 

Performance Assessment
To test and validate the performance of the proposed Histo-Fusion learning approach, each deep CNN uses standard
measures of assessment like accuracy, F1 Score, speci�city, sensitivity, and precision. All these measures are
calculated at the image level methodically in the following manner:

True Negatives signify the total number of benign/IDC- samples classi�ed correctly, whereas True Positives are the
sum of malignant/IDC + samples that get classi�ed correctly. False Positives are the summation of benign samples
which are incorrectly classi�ed. False negatives are the total malignant samples but are incorrectly classi�ed.
Furthermore, to establish the correspondence between the true-positive rates and false-positive rates, AUROC (AUC -
Area under the curve and ROC - Receiver operating characteristics) is used to assess the relationship.

Accuracy =
TruePositive (TP) + TrueNegative (TN)

TruePositive (TP) + FalsePostive (FP) + TrueNegative (TN) + FalseNegative (FP)

F1Score =
2 ∗ TruePositive (TP)

{2 ∗ TruePositive (TP)} + FalsePositive (FP) + FalseNegative (FN)

Specificity =
TrueNegative (TN)

TrueNegative (TN) + FalsePositive (FP)

Sensitivity =
TruePositive (TP)

TruePositive (TP) + FalseNegative (FN)

Precision =
TruePositive (TP)

TruePositive (TP) + FalsePositive (FP)
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Results And Discussion
The proposed Histo-Fusion learning approach initially extracts the most signi�cant features from the higher resolution
histopathological images that helps to improve the discriminating ability of deep CNN models. Subsequently, the CNN
models are �ne-tuned by additionally training them on IDC patch samples of lesser resolution for classifying them into
IDC+ and IDC- categories. For evaluating the performance ability of different to classify breast cancer
histopathological images, we carry out experiments by training them independently using two different learning
approaches: Transfer Learning and Histo-Fusion Learning.  

Transfer Learning Results
Since the weights of pre-trained deep CNN models are optimized to perform a 1K classi�cation task on the ImageNet
dataset, the transfer learning approach has the advantage of achieving better accuracy results taking less training time
than training deep CNNs from scratch. During the implementation of transfer learning, the pre-trained deep CNN
architectures classify the IDC patch samples into IDC + and IDC - categories. Figure 4 presents the accuracy scores for
different deep CNN architectures on the IDC test samples. A comparison of these scores reveals that the DesneNet121
yielded the highest accuracy score of 93.05% followed by ResNet50 with an accuracy score of 92.27%, while AlexNet
attained an accuracy of 90.41%, which is the lowest among all deep CNNs used. Different studies using various deep
CNNs, after applying transfer learning, in the classi�cation of IDC patch samples have reported similar results.

Histo-Fusion Learning Results
This learning approach follows a two-stage training process as mentioned earlier. Initially, deep CNN architectures are
trained from scratch on the BreakHis whole-slide histopathological samples, using a constant learning rate of 0.001.
Since the training is performed from scratch, the deep CNNs take a longer training time to converge compared to the
transfer learning approach. Results obtained by different deep CNNs in stage-1 of Histo-Fusion Learning on BreakHis
histopathological images are presented in �gure 5.

The stage-2 of proposed learning approach starts with additional training on IDC patch samples by re-training the
terminal layers of each deep CNN using a constant learning rate.  Later, all the layers of are allowed to participate in
the training process on the sample patches of the IDC training set using a discriminative learning rate for optimal
network training. The application of discriminative learning rates enabled deep CNN architectures to use varying
learning rates for different layers bene�ting each deep CNN to increase their respective accuracy scores.  The
increment may be smaller in magnitude, yet it has signi�cant clinical implications. A comparison of accuracy scores
obtained by different deep CNNs after the use of discriminative learning rates is brought out in table 3, which points to
a critical observation that deeper networks get bene�tted more by applying this technique.

Table 3

A Comparison of % accuracy scores obtained using constant learning rates and discriminative learning rates.
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Deep CNN
Model

Accuracy – Constant Learning
Rate

Accuracy – Discriminative Learning
Rates

Percent
Increase

AlexNet 94.9% 95.57% 0.67%

VGG19 95.16% 95.96% 0.80%

ResNet 34 95.3% 96.17% 0.87%

ResNet 50 95.61% 96.67% 1.06%

DenseNet121 96.2% 97.49% 1.29%

Table 4 presents the performance and evaluation metrics of various deep CNNs after completing training using the
Histo-Fusion approach. AlexNet, the primitive most among all deep CNNs used, achieved accuracy of 95.57% F1:
0.9762, Speci�city: 0.8117, Sensitivity: 0.9740, and precision: 0.9785. VGG19 displayed better discrimination abilities
in classifying the IDC sample patches into IDC+ and IDC - categories compared to AlexNet. The model yielded an
accuracy: 95.96%, F1: 0.9775, Speci�city: 0.836, Sensitivity: 0.9729, and precision: 0.9821. ResNet34, although being
an elementary deep CNN in the league of residual networks, classi�ed the IDC patch samples with a peak accuracy of
96.17%. This 34-layer deep neural network attained F1: 0.9786, Speci�city: 0.830, Sensitivity: 0.9767, and precision:
0.9805. On the other hand, a comparatively deeper residual network ResNet50 using Histo-Fusion Learning yielded
higher metric scores i.e., accuracy: 96.67%, F1: 0.9813, speci�city: 0.851, sensitivity: 0.9804, and precision: 0.9823.
Finally, DenseNet121 provided the best performance among all the deep CNNs used with an accuracy of 97.49% F1:
0.9859, speci�city: 0.9012 sensitivity: 0.9834, and precision: 0.9885 on a test set comprising IDC samples.

Table 4 

The various performance measures of deep CNNs on the IDC dataset after the Histo-Fusion stage 2.

Model Sensitivity Speci�city F1-Score Precision Accuracy (%)

AlexNet 0.97401 0.81170 0.97628 0.97856 95.75

VGG19 0.97293 0.83625 0.97751 0.98214 95.96

ResNet34 0.97679 0.83004 0.97864 0.98050 96.17

ResNet50 0.98040 0.85166 0.98138 0.98235 96.67

DenseNet121 0.98344 0.90120 0.98599 0.98855 97.49

In the light of above �gures, it is profoundly evident that the proposed domain-speci�c learning i.e., Histo-Fusion has
improved the discriminating abilities of all the deep CNN architectures used. Furthermore, the results obtained
demonstrate that the proposed Histo-Fusion learning method considerably enhanced the performance of each deep
CNN used by reporting superior metric scores as compared Transfer Learning, which is illustrated in �gure 6. Another
critical inference drawn from �gure 6 is that the proposed Histo-Fusion learning approach has paid dividends by
improving the overall performance of even the shallower networks as these also yielded highly competitive results in
comparison to Transfer Learning approach.

To measure the diagnostic ability of various deep CNNs used, true-positive rates are plotted against the false-positive
rates for each model in the form of a ROC curve (�gure 7). Theoretically, AUC values obtained from the ROC curve
operate within the range of 0 and 1.tic ability of a deep CNN model. The value of 1 signi�es that the model is 100%
accurate, while 0 indicates that the model is completely inaccurate. Since the AUC values obtained from ROC curves
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for each deep CNN are optimal (nearly equal to 1) it con�rms the high sensitivity of each deep CNN to each sub-class
of IDC patch samples using Histo-Fusion learning approach.

Comparison with related studies
This section presents a brief review of the methods used and the accuracy scores achieved by other research studies
having used the same dataset, in order to assess the effectiveness of the proposed Histo-Fusion method. For the sake
of brevity, salient features of these similar studies have been reproduced in tabular form in table 5 to compare them
with the results achieved by the present study.     The studies conducted so far have mostly used either conventional
machine learning techniques or deep CNN methods for identifying invasive ductal carcinoma from histopathological
images. The Conventional CAD methods have limited abilities to perform the required task yielding lesser accuracy
and increased false-positive rates. (Roy, Das, Kar, Schwenker, & Sarkar, 2021) implemented a wide range of machine
learning methods, the most e�cient among which is the CatBoost method, but that too yielded less accurate results,
even lesser than those obtained by simple CNN methods.

Table 5

Comparison of the performance of proposed Histo-Fusion learning with related studies. In the table header Sen., F1,
Prec., and Acc. Indicate the Sensitivity, F1-Score, Precision and Accuracy respectively, while '-' indicates that the speci�c

value is not available and '*' represents the balanced accuracy. The value of image size is speci�ed in pixels.

Method Method used Image
Size

Sen. F1. Pre. Acc.
 (%)

(Cruz-Roa, 2014) CNN with training from scratch. 100 x
100 

0.796* 0.718* 0.766* 0.842*

(M. J. Rahman,
2018)

CNN with augmented data and
training from scratch.

50 x 50 - 0.893 - 0.890

(J. L. Wang, 2018) CNN with training from scratch. 50 x 50 0.930 0.923 0.923 0.890

(H. Alghodhai�,
2019)

IDCNet with augmented data and
training from scratch.  

50 x 50 0.935 0.76 0.810 0.8713

(Hernandez, 2019) CNN using Transfer Learning. 50 x 50 0.854* 0.852 0.851 0.854*

(F. P. Romero, 2019) InceptionNet using Transfer
Learning

50 x 50 - 0.897* - 0.890*

(Sujatha, 2020) ResNet50 using Transfer Learning 48 x 48 - - - 0.910

(Roy, Das, Kar,
Schwenker, &
Sarkar, 2021)

CatBoost classi�er & traditional
feature extraction methods like SIFT,
SURF etc.

48 x 48
pixels.

0.888 0.907 0.934 0.925

(TANGUDU, 2021) ResNet50 and Transfer Learning. 48 x 48 0.9482 0.9284 0.9576 0.9236

(Nusrat Ameen
Barsha, 2021)

DenseNet121 and DenseNet169 with
Transfer Learning

250 x
250

- 0.9570* - 0.9207*

Present study using
Transfer Learning

DenseNet121  48 x 48 - - -  0.930

Present study using
Histo-Fusion

DenseNet121  48 x 48 0.983 0.985 0.988 0.974
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Most of the studies dealing with deep CNNs to classify the IDC image samples have employed Transfer Learning
approach (Hernandez, 2019) (Sujatha, 2020) (J. L. Wang, 2018). As compared to traditional methods, a substantial
decrease in false-positive rates has been observed using deep CNNs. However, it has been observed that the diagnostic
ability of these deep CNNs using Transfer Learning cannot be improved beyond a certain level (93.05% - �g. 4)
irrespective of the network depth. The results obtained the present study also corroborate this fact (Figure 4 and Figure
6). However, the proposed Histo-Fusion Learning approach enhanced the overall discriminating abilities of each deep
CNN used and cumulatively increased the accuracy scores with increase in depth of the deep CNN (Table 4).

Conclusion
The present study proposes a domain-speci�c learning technique i.e., Histo-Fusion which is an e�cient method to train
deep CNN architectures for automatic breast cancer classi�cation from IDC small patches of histopathological
images. In this approach, deep CNNs are exhaustively trained on two different datasets (BreakHis and IDC) comprising
histopathological images of breast cancer. The proposed Histo-Fusion approach enables the deep CNNs to improve
their ability to discriminate between positive and negative samples thereby reducing false-positive rates. To enhance
the performance of deep CNNs for automatic classi�cation, differential learning rates have been used that proved to
be very useful.

Transfer Learning provides excellent results in identi�cation and classi�cation tasks on datasets comprising whole
slide images of good resolution. However, the same does not hold for datasets comprising smaller sized images of
comparatively lower resolution. The poor performance of Transfer Learning on small sized and low-resolution images
may simply be attributed to negative-transfer problem. To mitigate this problem, the study proposes a domain-speci�c
learning i.e., Histo-Fusion. Histo-Fusion imparts a positive transfer while training the deep CNNs on two related
datasets, BreakHis and IDC. Among various deep CNNs used in this study, the highest performance is achieved by
using Histo-Fusion learning (DenseNet121–97.49%, ResNet50–96.67%, ResNet34–96.17%, VGG19–95.9% and
AlexNet – 95.7%) compared to Transfer Learning (DenseNet121–93.05%, ResNet50–92.27%, ResNet34–90.83%,
VGG19–90.3% and AlexNet – 90.8%). The proposed Histo-Fusion learning approach also resulted in a considerable
decrease in false-positive rates of each deep CNN, yielding scores surpassing the results obtained in similar studies
using Transfer Learning (Table 5).
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Figure 1

BreakHis (F. A. Spanhol, 2016) Image samples at four different magni�cations.

Figure 2

Histopathological Patch Samples from IDC Dataset (Janowczyk  A, 2016)at 40X magni�cation: (a) IDC - (b) IDC +
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Figure 3

The �gure displays the work�ow execution of each deep CNN for training using the Histo-Fusion approach. (a)
BreakHis WSI input sample, (b) Pre-processing and augmentations applied on the input sample, (c) deep CNN model
(AlexNet, VGG19, ResNet, DenseNet) performs the automatic feature extraction & classi�cation tasks, (d) the input IDC
patch sample that initiates the second Histo-Fusion stage, (e) Image pre-processing & augmented versions of IDC input
patch used to train the deep CNN model, (f) The �nal output (IDC+/IDC-) using the Histo-Fusion. * represents the model
validation in Histo-Fusion Stage 1 and ** is the model validation in Histo-Fusion Stage 2.

Figure 4

% Accuracy scores of deep CNNs on IDC dataset using Transfer Learning.
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Figure 5

Results (% Accuracy) of deep CNNs after Histo-Fusion Stage 1.

Figure 6

Performance comparison of Deep CNNs using two distinct (Transfer Learning and Histo Fusion) learning approaches.
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Figure 7

ROC curves of deep CNNs using Histo-Fusion Learning.


