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Abstract
Chronic suppurative otitis media (CSOM) and middle ear cholesteatoma (MEC) were two 
most common chronic middle ear disease(MED) clinically. Accurate differential diagno-
sis between these two diseases is of high clinical importance given the difference in eti-
ologies, lesion manifestations and treatments. The high-resolution computed tomography 
(CT) scanning of the temporal bone presents a better view of auditory structures, which 
is currently regarded as the first-line diagnostic imaging modality in the case of MED. In 
this paper, we first used a region-of-interest (ROI) network to find the area of the middle 
ear in the entire temporal bone CT image and segment it to a size of 100*100 pixels. Then, 
we used a structure-constrained deep feature fusion algorithm to convert different char-
acteristic features of the middle ear in three groups as suppurative otitis media (CSOM), 
middle ear cholesteatoma (MEC) and normal patches. To fuse structure information, we 
introduced a graph isomorphism network that implements a feature vector from neigh-
bourhoods and the coordinate distance between vertices. Finally, we construct a classifier 
named the “otitis media, cholesteatoma and normal identification classifier” (OMCNIC). 
The experimental results achieved by the graph isomorphism network revealed a 96.36% 
accuracy in all CSOM and MEC classifications. The experimental results indicate that our 
structure-constrained deep feature fusion algorithm can quickly and effectively classify 
CSOM and MEC. It will help otologist in the selection of the most appropriate treatment, 
and the complications can also be reduced.
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1 Introduction

The ear is a susceptible organ of the human body. One of its primary functions is to use 
hearing by detecting, transmitting, and converting sounds. Another significant function of 
the ear is to maintain a sense of balance in our bodies. Like vision, hearing is one of our 
most important sources of biological information [25, 49].

Anatomically, the ear can be divided into three discriminable parts: the inner, middle, 
and outer ear. It includes a chain by the malleus, incus, and stapes, collectively called the 
auditory ossicles. It is a complex system of fluid-filled channels and cavities located deep 
in the hard, rocky part of the temporal bone [3, 28].

Middle ear diseases (MEDs), with the high incidence, described as lesions in the middle 
ear, which play a vital role in otorhinolaryngology clinical practice [10, 42]. It is the pri-
mary reason for hearing loss in many developing countries around the world [18, 34], and 
chronic suppurative otitis media (CSOM) and middle ear cholesteatoma (MEC) are two 
common types seen in clinical practice. Both of them seriously affect the patients’ quality 
of life and increase the burden of life [9, 29, 47]. Early diagnosis and effective treatment 
are the clinical goals of Otolaryngologists at present.

Otitis media (OM) is an inflammatory disease that affects all or part of the middle ear. 
That can also occur in the middle ear but does not usually damage the surrounding bony 
structures, presenting a filling phenomenon in CT scans [41]. In this paper, we mainly 
focus on chronic suppurative otitis media (CSOM), the most common type of otitis media, 
characterized by persistent repeated inflammation and complications of the tympanum 
or mastoid cavity [2, 8, 27]. In the CT images, the middle ear structure of patients with 
CSOM is relatively complete, but there are still some fillers can be found in the tympanic 
and mastoid cavity [30, 45].

Middle ear cholesteatoma (MEC), an uncontrolled expanding growth of the epithelium 
tissues surrounded by an inflammatory reaction, is another common type of middle ear dis-
ease. Although these lesions are benign, they can erode the normal bone structure of tem-
poral bone and cause various complications. For example, damage to the auditory ossicle 
chain can lead to conducted hearing loss (HL). In addition, the erosion of semicircular fis-
tulas and facial neural tubes may lead to disorders of the balance function and facial paraly-
sis, respectively [13, 14, 19, 38]. High-resolution CT provides excellent detail in detecting 
cholesteatoma in the middle ear [23, 26]. From CT images, the middle ear bone structure 
of patients with cholesteatoma is usually partially eroded, and the surface of eroded bone is 
relatively smooth [40].

In recent studies, some researchers have conducted retrospective studies of patients at 
the BC Children’s Hospital Microtia Clinic from Jan.1, 1990 to Apr.17, 2017 to examine 
existing imaging and clinical records to determine the presence or nonexistence of middle 
ear cholesteatoma [31]. Recently, there has developed a new consensus statement on the 
definition and classification of middle ear cholesteatoma [5].

In clinical practice, the symptoms and results of the objective examination characteris-
tics of MEC and CSOM are similar. MEC is often not detected or even misdiagnosed at the 
early stage, especially when combined with inflammation. Due to differences in pathologi-
cal changes, lesion manifestations, and complications between these two diseases, achiev-
ing accurate diagnostic discrimination is crucial in clinical practice. Therapy for MEC is 
usually surgical intervention as early as possible. In contrast, CSOM can be treated con-
servatively in most cases [32], which may avoid unnecessary injuries and improve recovery 
efficiency to a great extent.



45871Multimedia Tools and Applications (2023) 82:45869–45889 

1 3

Previous studies have used deep learning to classify and diagnose MEDs, or other 
otolaryngology diseases. The most recent research indicates that using CNNs in endo-
scopic examinations to automate the diagnosis of ear disease and detect of tympanic 
membrane perforations and middle ear infection can achieve excellent precision [6, 15, 
20, 52, 53, 57]. Yan-Mei Wang et al. proposed a deep learning framework for the diag-
nosing of CSOM based on CT scans, and the model’s performance was shown to be 
superior to that of clinical experts in some cases [51]. Wang et  al. presented a deep-
learning method for the diagnosis of CSOM and MEC, which chose Visual Geometry 
Group 16 (VGG-16) as the model’s backbone [55]. Moreover, Wang et al. fused individ-
ual features from both CNN and GCN to assist radiologists in rapidly detecting COVID-
19 from chest CT images [54]. Parvaze et al. extracting crafted features to analyze and 
identification the pathologies features of peritumoral vasogenic edema [35, 36].

Comparatively, graph neural networks (GNNs) [7, 16, 22, 48] is a promising tech-
nology and emerging network architecture, which can efficiently deal with graph struc-
ture data by modeling relations between sample nodes (or vertices). In these variants 
of the GNN model, the graph isomorphism network (GIN) [58] has the greatest ability 
to represent from different graph structures and has quantifiable generalization ability, 
which quickly attracted wide attention from the GNN community. This special graph 
structural information shows some meaningful structural patterns. Because the symp-
toms and results of objective features of MEC and CSOM are very similar, and MEC 
is often not found or even misdiagnosed at an early stage, therefore, accurate diagnosis 
and differential diagnosis of these two diseases in clinical practice are of great signifi-
cance. However, most of the previous studies used deep learning to classify and diag-
nose meds, but the structural features of the middle ear were not analyzed. In this work, 
our goal is to enhance the GIN toward better structural modeling and middle ear disease 
property identification via using special structural information. Moreover, our OMCNIC 
achieved a better classification result than [51, 55], and we analyze the effects with dif-
ferent parts of the middle ear structure on CSOM and MEC. We provide several middle 
ear examples of CSOM, MEC and normal structure in Fig. 1.

To reduce the workload of radiologists and improve their work efficiency, in this 
paper, we proposed the first work that uses a graph isomorphism network method to 
evaluate the impact of structure-constrained deep feature fusion with the middle ear on 
chronic suppurative otitis media and cholesteatoma with CT images. The experimental 
results indicate the validity of our algorithm. The major contributions of this work are 
summarized as follows:

• We first automatically crop the region of interest (ROI) from CT images, i.e., ME 
patches.

• Based on the image patches, we use structure-constrained deep feature fusion to rep-
resent the middle ear structure and convert the middle ear structure image into a 
graph.

• We use the graph isomorphism network to identify ME disease and evaluate the impact 
of different structures with the middle ear diseases efficiently.

• By analyzing the effects of different structures in the middle ear on cholesteatoma and 
chronic suppurative otitis media, this approach can provide a new direction for preop-
erative and postoperative care for cholesteatoma surgery.

The rest of the contents of this paper are as follows: Part II gives the data description and 
preprocessing details. Part III will present our GIN model to classify chronic suppurative 
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otitis media, cholesteatoma and normal (CSOMCN) diseases. Part IV gives our experimen-
tal results. Part V is the discussion, and Part VI is the conclusion.

2  Data description and preprocessing

The medical research and ethics committee of Xiangya Hospital, Central South University 
approved this study. The researchers collected these data from 573 patients who underwent 
middle ear surgeries in the Department of Otorhinolaryngology, Xiangya Hospital, from 
Jan. 2018 to Oct. 2020, the age range of patients was 5–72  years, with a mean ± SD of 
38.75 ± 14.38 years. They then reviewed medical records to exclude any patient diagnosed 
with a congenital malformation or any postoperative situation.

Each enrolled patient at least had received one temporal bone CT scans, resulting in 
a total of more than 573 scans available for this study. These scans were obtained by a 

Fig. 1  Illustration of 3 classes of ME patch examples
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256-channel multidetector Revolution CT scanner (GE Healthcare). The parameters of CT 
scanning were: tube voltage of 100 kV, tube current of 325mAs, pitch coefficient of 0.6875, 
matrix size of 512 × 512, field of view of 220 × 220 mm, thickness of layer of 0.625 mm. 
Body position was the standard cranial-anteriorly, scanning mode was spiral scanning, 
window width was 3000 ~ 4000 HU and window position was 300 ~ 500 HU.

Based on cooperation with Xiangya Hospital, the dataset that we finally adopted con-
sists of 499 patients. Our final dataset consists of 998 unilateral ears, including 108 cases 
of middle ear cholesteatoma (MEC) (46 in the left ear and 62 in the right ear), 622 cases 
of CSOM (314 in the left and 308 in the right) and 268 cases of normal ME (139 in the 
left and 129 in the right), and each of cases was classified and labeled by professionals. All 
data were obtained with informed consent signed by the subjects. The training labels of the 
ROI network were annotated by an otolaryngologist. Inspired by the main ideas of Neural 
Style Transfer proposed by the researchers Garg [11, 46], by combining with the specificity 
and scarcity of our middle ear MEC data, we reused MEC data, and adding inverted left 
ear MEC case data to the training of the right ear pathology classifier.

Our dataset is divided into a training set, a verification set and a test set in proportions 
of 80%, 10% and 10%. By working together with the hospital on artificial intelligence and 
medical data, we obtained the hospital’s medical data and needed to preprocess the CT 
scans. To achieve better training results, we systematically labeled the original data under 
the guidance of a specialist in otolaryngology. We chose to cover the middle ear structure 
and crop the middle ear structure and then used it to create the ROI label to better train our 
classification network and to analyze the correlation between different middle ear struc-
tures. Figure 2 is an example of data preprocessing of CSOMCN on the left and right ears.

2.1  Region of interest search net

In our experiment, we wanted our GIN algorithm to focus on the ME region in the CT image 
by ignoring as much other noise as possible, so we tried to build a network of regions of inter-
est (ROIs) to extract important parts of the ME. Only in this way can we verify the accuracy 
and effectiveness of our OMCNIC. In addition, in order to improve accuracy and increase 

Fig. 2  Preprocessing examples of the OMCN image
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credibility, a professional otolaryngologist defined the “window of interest” that we need to 
select. Therefore, we used U-net [39] to help automatically choose bounding boxes. The U-Net 
network adopts a U-shaped structure with an encoder-decoder structure, which transmits low-
layer feature information to the higher layer through cross-layer connection, avoiding informa-
tion loss and improving segmentation accuracy. In addition, the U-Net network can maintain 
feature richness by increasing the number of convolution kernels and reducing the step size of 
pooling. These features are ideal for the region of interest extraction of medical images such as 
CT images. At the same time, due to the similarity of CT image density and noise interference 
of MEC and CSOM, it is very challenging to segment and extract ROI from ME images, and 
it is necessary to select a verified deep learning network to ensure accuracy and robustness. 
U-Net is widely used in the field of medical imaging and has achieved excellent performance in 
a number of medical image segmentation tasks, which can handle the challenges encountered 
in medical image segmentation and ROI extraction tasks very well [43]. Therefore, by analyz-
ing the specificity of the MED image and verifying the analysis experimentally, the selection of 
U-Net to extract the region of interest of the ME image can ensure the accuracy and robustness 
of ME patches. So, we first approximately determine the ME structure through U-net’s search 
network. Then, we analyzed the advantages and disadvantages of various interpolation methods 
and the characteristics of the lesion area of our ME patches, and found that bilinear interpola-
tion is more suitable for stabilizing the image clarity and border accuracy of the ME patches, 
so we use bilinear interpolation of ROI-Align to deal with the misalignment problem in U-net. 
Finally, we obtained a fixed-size feature map and the correct bounding box. Based on this, we 
were able to extract the corresponding ME patch for each patient’s CT image.

In Fig. 2, we choose the special ME patches to represent all structures of the ME. In the 
first stage, we use U-net to obtain the ROI image, and our goal in this phase refers to image 
segmentation tasks [39]; we give the loss function of our ROI search net in the following for-
mula (Eq. 1):

The energy function is calculated by the following Eq. 1, where τ : Ω → {1, …, K} is the 
true label of each pixel and � ∶ Ω→ℜ is a weight map. The separation boundary is calculated 
by using morphological operations, where �c ∶ Ω→ℜ is the weight map to balance the class 
frequencies, d1 ∶ Ω→ℜdenotes the distance to the border of the nearest pixel and d2 ∶ Ω→ℜ 
the distance to the border of the second nearest pixel. The ROI search net could divided into 
these steps: firstly, according to the input CT training data and proportionally divide them into 
training and validation sets, then do the sample mini-batch of data pairs to iterative, and then 
using Adam as the optimizer and using Eq. 1 as the loss function and via gradient descent to 
update parameters, finally we obtain the best trained model that we need.

3  Methodology

In the overall framework design of this work, we can divide it into three parts. Firstly, we 
collect and collate MED datasets from Department of Otorhinolaryngology of Xiangya 
Hospital, and do a certain preprocessing, reused MEC data and conduct data augmentation 
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operations, and complete the fine data labeling work with the assistance of Xiangya Otorhi-
nolaryngology experts. Then, we use the U-net algorithm to search ME patches to obtain 
the ROI, and then we use structure-constrained deep feature fusion to represent the middle 
ear structure and convert the middle ear structure image into a graph. At last, in order to 
make better use of the structure-constrained ME patches feature, the framework uses Graph 
Isomorphism Network (GIN) network to identify ME disease and evaluate the impact of dif-
ferent structures with the middle ear diseases efficiently.

3.1  Structure‑constrained deep feature fusion

Image fusion technology has great application value in remote sensing detection, medi-
cal image analysis and clear image reconstruction, especially in computer vision [1]. In 
general, image fusion is divided into pixel-level image fusion, feature-level image fusion 
and decision-level image fusion [44]. Inspired by the idea of image feature level fusion, 
we extract the MEC and CSOM feature information from the source ME image, then, 
the fused image features are obtained by analyzing, processing and integrating the fea-
ture information. Therefore, we define an undirected graph G:= (V, E) to represent the 
structure of the ME, where V denotes as a set of vertices and E = {((u, v)  |  u, v ∈ V)} 
denotes as a set of edges. In this approach, we aim to cluster information from patches. 
For this purpose, we construct an ME graph for each patch image Pi in the dataset. In 
order to reduce the complexity of construction, we first resize the ME patch into a size 
of 100*100 and then construct an undirected graph across the smaller patches. Then, we 
construct different nodes by extracting the homogeneous intensity in the ME patch as 
the vertices of the undirected graph G and prune vertices outside the mask. And then, 
we calculate the correlation distance between the two vertices as the weight of the cor-
responding edge by Eq. 2:

We take the pixel value of the corresponding vertex on the patch as the attribute value of 
the vertex on the undirected graph G. The coordinates and intensity are formed as the attribute 
value by using a k-nearest neighbor adjacency matrix with Eq. 3:

where vectors xi and xj are the spectral signatures associated with the vertices vi and vj, 
and σx is the scale parameter defined as the average coordinate distance xk of the k-nearest 
neighbors (e.g., k = 8) for each vertex. Let Ej as a set of edges in vj, then we let rj as the fea-
ture vector of Ej and we define rj as Eq. 4:

(2)� = 1 −
(u−u)⋅(v−v)
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where ϕ is a linear transform function. fi, j is the feature vector of its neighborhoods ei, j 
with the vertices vi and vj. Once A is given, we can construct the graph Laplacian matrix L′ 
as following Eq. 5:

where Ι is the identity matrix. The resultant graphs are of sizes 30–100 nodes for an ME 
patch, we found that our GIN with 75 nodes has achieved the best entire average classifica-
tion results. The construction detail of the ME graph is given in Alg. 1. Using the proposed 
structure-constrained deep feature fusion, each ME graph is obtained and is represented in 
its structure-aware representation.

Figure 3 presents visualization of the structure-constrained deep feature fusion graphs, 
which indicate the graph representation (i.e., node, coordinate and feature of the node) of 
MEC. From the ‘node’ column of Fig. 3, the middle ear bone structure of patients with 
cholesteatoma is incomplete, the sinus opening in the tympanic membrane is enlarged, and 
the surrounding bone layer is thinner. From the ‘with coord’ column of Fig. 3, we can find 
that the corresponding location of tympanic node is very sparse, that is, the mastoid pro-
cess of the middle ear is destroyed. According to the ‘feat and coord’ column of Fig. 3, we 
can observe that the relation between these nodes is that the more edges there are between 
two nodes, the closer their relationship.

3.2  OMCNIC algorithm

The graph Isomorphic Network (GIN) [58] is a classic variant of GNN with great potential, 
and it has a discriminative power that is equal to that of Weisfeiler-Lehman (WL) graph 
isomorphism test power [4, 56]. The GIN could iterate the node information by the follow-
ing Eq. 6:
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Algorithm 1  Strategy of Structure-Constrained Deep Feature Fusion
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we set h0
i
= Ai , ξk is a parameter that can be improved by learning and MLP is a multilayer 

perceptron. Moreover, GIN concatenates the information represented by the nodes on all 
layers of the model according to the Eq. 7 to obtain the final representation:

we set v and G represent as the node and the corresponding graph, respectively. we set 
COCATN(∙) as the concatenate function. It has been proved from experimentally that the 
GIN has a more powerful representational power of graph structures than other GNN vari-
ant models.

(7)hG = CONCAT

�

K
∑

v∈G,k=0

hk
v

�

Fig. 3  Illustration of structure-constrained deep feature fusion of the graph
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Chronic otitis media and cholesteatoma classification can be regarded as a multi-
class identification problem of ME structural graphs in artificial intelligence, which 
can be denoted as follows: we first given a set of structural graphs G = {G1, G2, ⋯, Gn} 
and their label set Y = {y1, y2, ⋯, ym}, each structural graph Gi has an attribute vector of 
vertices (r ∈ A) and a feature vector of edges (r ∈ R) . Furthermore, we set σ(∙) to rep-
resent the learning function which could learns the corresponding vector hG = �(A,R) 
to aid to predict the labels. At last, we let the labeling function ζ(∙) to allocates the 
label of the entire structural graph y = ζ(hG).

We have improved the ability of GIN to represent the structure graph by two solu-
tions: vertex feature cascading and neighborhood weight changes with using a gate 
unit. We concatenate rj (from Eq. 4) to the neighbor’s feature vector of the central ver-
tex hj on every layer of the GIN clustering. Therefore, the Eq. 6 could be replaced by 
the following formulation Eq. 8.

Where ⊕ set as the concatenation. Moreover, Eq. 7 can be replaced by the following 
Eq. 9:

Therefore, the enhance GIN algorithm that we presented can cluster the informa-
tion of the vertex neighbors and made these patterns change into hidden vectors. In the 
GIN, all neighbors make the same contribution to vertices updates, which results in 
ignoring the difference in intensity of impact between the central node and its different 
neighbors. To solve this problem, we introduced a control gate unit to regulating the 
role of neighbors in updating the characteristics of the central node [12, 37]. Hence, 
Eq. 8 can be redefined as the following Eq. 10:

Where ⊗ is elementwise multiplication, we set W k (Eq. 2) and bk represent as the 
weight matrix and bias of the k-th layer, respectively. By this way, acts as an adjust-
able, changeable controller for neighborhood weights, which learns the weight matrix 
to adjust the different intensity of impact between the central node and its neighbors 
during the training phase. Figure 4 and Alg. 2 outline the main steps of our proposed 
OMCNIC.
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4  Experimental results

The proposed OMCNIC framework is used to perform the training on a ASUS 8460-
PLUS server (hexa-core 2.90 GHz processor, 64 GB RAM and one NVIDIA GeForce 
RTX 2070 SUPER video card). The presented methods were implemented in Python 
using the Pytorch framework.

4.1  Performance evaluation method

In this paper, we use accuracy (ACC), sensitivity (Sens) and specificity (Spec) as our evalu-
ation metrics. According to the classification of all test samples, the classification results of 

Algorithm 2  Our proposed Graph Isomorphism Network (OMCNIC)

Fig. 4  Illustration of structure-constrained deep feature fusion of the graph
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the experiment can be divided into true positive 
(

Mtp

)

 , false positive 
(

Mfp

)

 , true negative 
(

Mtn

)

 and false negative 
(

Mfn

)

 . The three evaluation indicators are defined as follows:

Obviously, the sensitivity refers to the proportion of positive values we predict among 
all the original label is positive, while the specificity refers to the proportion of negative 
values we predict among all the original label is negative. The accuracy (ACC) reflects the 
accuracy of the overall judgment of the classification model.

4.2  Hyperparameter setting

The presented and mentioned networks are trained by the Adam optimizer [21]. The 
primary idea of Adam’s algorithm is to computing the update step size of the param-
eters. The main idea of the Adam algorithm is used to calculate the updated step of 
the parameters. The method can automatic adjustment of the parameters of the learn-
ing rate, has little memory requirements so greatly improved the speed of training, 
improved stability, and thus it is suitable as the optimizer of the multi-classification 
problem. The Adam method is also applicable to non-stationary targets and problems 
with very noisy or sparse gradients, and the algorithm has stable convergence in theory 
[21]. Therefore, by analyzing the specificity and sparsity of our ME data and perform-
ing experimental validation, we found that the algorithm of stable and efficient Adam 
is suitable for our MED identification and classification problems. The form of Adam 
(Eq. 12) is derived as follows:

where α is the learning rate with the default set as 0.001, mt and vt are the mean and 
variance of the gradient after deviation correction, respectively, and the parameter β1, 
β2 ∈ [0, 1), 𝜖 default is set as  10−8 to prevent a divisor of 0. More details about the setting of 
each parameter value in Adam hyperparameters, the underlying mathematical mechanism 
and the proof of convergence can be studied in detail in [21].

Rectified linear unit (ReLU) is constant at partial gradients greater than 0, there is no 
gradient dispersion, and the derivative of ReLU is calculated faster. The derivative of 
ReLU in the negative half region is 0, so when the activation value of neurons is negative, 
the gradient is 0, this neuron does not participate in training and has sparsity. Therefore, by 
analyzing the specificity of ME data and validating it experimentally, in the intermediate 
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process of convolution, we choose the rectified linear unit (ReLU) as our activation func-
tion [50]. The form of the ReLU (Eq. 13) is derived as follows:

The most obvious feature of the Softmax function is that it takes the ratio of the input 
of each neuron to the sum of all the inputs of the current layer as the output of that neuron; 
that is, the greater the output of the neuron, the higher the corresponding category of the 
neuron is more likely to be a true category. At the same time, Softmax has the advantages 
of monotonicity and non-locality, which can solve the problem of slow learning and so on 
[17, 24]. Moreover, the training effect of Softmax with a log-likelihood cost function is 
better than that with a quadratic cost function, and more details of the mathematical form 
to prove the effectiveness of Softmax can be seen in [33]. Therefore, in the final fine-tuning 
of the fully connected layer, we use the Softmax function as an activation function. Then, 
it outputs a probability distribution for the six classes: “MEC left”, “MEC right”, “CSOM 
Left”, “CSOM right”, “normal left” and “normal right”. The form of the Softmax (Eq. 14) 
is derived as follows:

In the actual test model, when the sample image passes through the Softmax layer, it 
will take the maximum index in the vector as the prediction label of this sample. Using the 
cross-entropy loss function, when the error is large, the gradient is also large, the decline is 
faster; if the error is small, the update is slower; at the same time, the activation function in 
some cases into the saturation region, the gradient disappeared problem, and more details 
of the mathematical form to prove the effectiveness of cross-entropy loss function can be 
seen in [33]. So, by analyzing the characteristics of our classification problems and com-
bining the previous Softmax [17, 24], we choose the categorical form as our loss function, 
the form of which (Eq. 15) is derived as follows:

Where ŷj is the output value and yj is the ground truth. For fairness and convenience, in 
this study, OMCNIC and other compared methods use the same hyperparameter settings as 
follows. Batch normalization was applied, the Adam optimizer with an initial learning rate 
of 0.001 and a learning rate delay of 0.5 per every 10 epochs were applied. Additionally, 
the following settings were used: the number of hidden units ∈ {8, 16, 32, 64}, the dropout 
ratio ∈ {0, 0.3, 0.5} and the batch size ∈ {8, 16, 32}.

4.3  Effect of structure‑constrained deep feature fusion

Based on previous work, our OMCNIC has achieved good classification results. As listed 
in Table  1, ‘Category’ indicates the entire six categories composed of chronic suppura-
tive otitis media, middle ear cholesteatoma and normal, ‘coor’ indicates the coordinate dis-
tance of vertices and ‘Feat’ indicates the feature vector of vertices that our GIN algorithm 
adopted. The experimental results indicate that the OMCNIC algorithm with the coordi-
nate distance and feature vector achieve the best overall classification results, yielding an 

(13)ReLU(t) =

{

t, if t > 0

0, if t ≤ 0

(14)Si =
eai

∑C

j=1
e
aj

(15)Loss = −
outputsize
∑

j=1

yjlogŷj
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average accuracy, sensitivity and specificity on the actual test set of 96.36%, 99.00%, and 
89.68%, respectively. In the validation set, the Val accuracy, Val sensitivity and Val speci-
ficity are 80.81%, 91.87%, and 93.57%, respectively. When the feature vector concatena-
tion was removed, in terms of accuracy and specificity on the training dataset, OMCNIC 
performance was reduced by 2.88% and 4.24%, respectively, but still improved by 1.8% 
and 0.96% compared with GIN, respectively. When the coordinate weight adjustment was 
removed, in terms of accuracy and specificity on training datasets, OMCNIC performance 
was reduced by 1.66% and 2.01%, respectively, but still improved by 3.02% and 3.19%, 
respectively, compared with GIN.

In particular, our OMCNIC obtained dramatically better performance than previous GIN, 
increasing the performance by 4.68% on accuracy, 8.56% on sensitivity and 5.2% on specificity. 
This shows the effectiveness of our OMCNIC in taking the structural coordinate distance and 
feature vector influence between GIN-based vertices and their neighbors. As shown in Table 1, 
when we remove feature vector concentration or coordinate distance adjustment from the OMC-
NIC framework, the overall accuracy of OMCNIC decreases, but is still outperformed to GIN. 
The experimental results clearly support that the structural characteristics, i.e., the feature vector 
and coordinate distance, which could efficiently make the GNN learning more local structural 
features of the middle ear, hence boosting the identification of structural ME properties.

We demonstrate the confusion matrix of the testing results in Fig.  5a. The confusion 
matrix provides a more complete display of the performance of our algorithm. On the one 
hand, by testing the performance of our algorithm with structure-constrained deep feature 
fusion, we found that our OMCNIC achieved the best entire average classification results. 
On the other hand, by comparing the results from Fig. 5a, we can find that the classification 
accuracy of MEC and CSOM is overall higher than that of normal cases, that is primary 
owing to the following reasons. First of all, due to the unbalance distribution of the datasets, 
the pathological details of some middle ear structures of normal and chronic suppurative 
otitis media cannot be learned well. In contrast, the middle ear structure of middle ear chole-
steatoma in the middle is well illustrated by the nodes graph, so it can be learned well by the 
computer implementation. Therefore, based on the goal of no missed diagnosis, we give a 
biased mechanism in the classification process that actually made a low accuracy in normal 
classes. As shown in Fig. 5b, we demonstrate the ROC result of our proposed algorithm.

4.4  Comparison with baseline models

We evaluated the efficiency of our proposed algorithm for constructing the GNN to learn 
the structural representation for the middle ear, developing comparisons with VGG-16, 

Table 1  Our OMCNIC Classification Result

The bold entries indicate that the OMCNIC algorithm with the coordinate distance and feature vector 
achieves the best overall classification results
Coor: Coordinate; Feat: Feature Vector; Val: Validation; Acc: Accuracy; Sens: Sensitivity; Spec: Specificity

Evaluation Metrics

Category Coor Feat Acc(%) Val Acc(%) Sens(%) Val Sens(%) Spec(%) Val Spec(%)
CSOMCN(L&R) × × 91.68% 68.49% 90.44% 86.50% 84.48% 78.27%

✓ × 93.48% 70.92% 99.00% 89.59% 85.44% 80.42%
× ✓ 94.70% 78.05% 99.00% 90.62% 87.67% 90.62%
✓ ✓ 96.36% 80.81% 99.00% 91.87% 89.68% 93.57%
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InceptionV3, the graph convolutional network (GCN [22]) and the graph attention network 
(GAT [48]). We used accuracy for disease identification of the middle ear to evaluate and 
compare the performance differences between our model and the baseline model. Figure 6 
shows the accuracy in the testing dataset of the comparative models on the identification 
of disorders of the middle ear. All in all, the overall performance of our OMCNIC is sig-
nificantly better than other SOTA models. Therefore, OMCNIC is a formidable alternative 
framework for structural middle ear disease identification.

As shown in Fig. 6, VGG-16 and InceptionV3 (the first two rows) perform the worst. 
It is not surprising because they are the models that have access to spatial representations. 
Their disappointing performance empirically supports the necessity of spatial dependen-
cies for middle ear identification. Since the other two GNN models are enabled to capture 
neighboring information, we then compare them to find which method utilizes structure 
knowledge more effectively, most of the classification results are better than the former two 
models. Consequently, OMCNIC achieves moderate improvement increments of at least 

(a) ConfusionMatrix (b) ROC curve

Fig. 5  The testing performance of our OMCNIC. a Confusion Matrix. b ROC curve

Fig. 6  Comparison of accuracy results in tests of different models on ME patches
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0.90% with CSOM Left and at most 16.70% with Normal Right over the other two GNN 
model CSOMCN classification accuracy results, respectively; because the structural rela-
tion between ME patches can be excellent modeled as a graph by the GIN. As expected, the 
OMCNIC outperforms those comparative models, showing its ability to blend the repre-
sentations of different graph structures.

As shown in Table 2, Inception-V3 [51] performed worst in accuracy and recall meas-
ures, while VGG-16 [55] performed worst in Precision and F1-score measures; we found 
that, compared with other methods, our OMCNIC model is only slightly inferior to the other 
models in specificity indicators, the other indicators have reached state of the art (SOTA) 
superior to the other two models. In addition, due to the very similar pathological charac-
teristics of CSOM and MEC and the imbalance between these two types of data, partial 
symptoms are not evident, and the fact that both CSOM and MEC are prone to misdiag-
nosis, which leads to a greater number of false positives; low specificity is then obtained. 
Their disappointing performance in the first two CNN models empirically demonstrates 
this necessity for MED recognition of pathological graph structure dependence and rep-
resentation relationships. However, OMCNIC significantly increased by 19.66%, 15.70%, 
0.50% and 8.49% compared with the Inception-V3 model in accuracy, recall, precision 
and F1-score, respectively; and then, compared with VGG-16 model, our OMCNIC model 
increased by 6.16%, 13.60%, 5.95% and 10.30% in accuracy, recall, precision and F1-score, 
respectively. Because of the structural constraints between ME patches, the GIN model 
can be well constructed for unique and easy-to-learn middle ear pathological features, as 
expected, this shows the importance and high efficiency of the structural information rep-
resentation features of middle ear pathology chart in the diagnosis of middle ear diseases.

Furthermore, for the class MEC that has very few samples or unbalanced samples, the GCNs 
could gain higher identification accuracy by take into account the form of a graph structure. In 
contrast, the CNN models cannot precisely model those classes. Nevertheless, it is notable that 
the structure-constrained deep feature fusion is capable of better identifying these challenging 
examples, due to the common use of the coordinate distance and the feature vector of nodes.

5  Discussion

The experimental results indicate that the enhanced GIN algorithm (i.e., OMCNIC) is obvi-
ously better than all the baseline models, including GIN, in terms of accuracy, and has obtained 
the best performance at present. These results show that OMCNIC has powerful graph struc-
ture modeling. This is mainly because OMCNIC not only inherits the powerful judgment 
power of GIN, but also uses structural feature information in graph structural modeling.

Table 2  Comparison of our approach with the state-of-the-art approaches in CSOMCN classification

The bold entries indicate that the performance of our OMCNIC algorithm is superior to the existing model 
in most of the evaluation indicators

Methods Number 
of patients

Age (mean ± SD) Accuracy Recall Specificity Precision F1-score

Inception-V3 [51] 562 42.70 ± 13.74 76.70% 83.30% 91.40% 95.55% 89.01%
VGG-16 [55] 573 38.75 ± 14.38 90.20% 85.40% 93.68% 90.10% 87.20%
Our OMCNIC 499 38.75 ± 14.38 96.36% 99.00% 89.68% 96.05% 97.50%
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In the preprocessing phase, our preprocessing in medicine is faced with the exclu-
sion and inclusion criteria, which need to be based on the clinical diagnostic criteria of 
CSOM and MEC, it includes reviewing the medical history, preoperative examination 
results, intraoperative and postoperative pathological findings, screening the patients’ 
data that accord with the standard of CT, and eliminating the patients’ data that have too 
much noise and do not accord with the requirement of CT; to do this, we asked expe-
rienced otolaryngology to sift through and remove the ear data that doesn’t meet our 
requirements. And then, when faced data imbalances during the technical pre-process-
ing phase, reasonable data expansion and data enhancement are required, and because 
MEC patient data are scarce, we reused MEC data, adding inverted left ear MEC case 
data to the training of the right ear pathology classifier.

Graph isomorphism network (GIN) has the greatest ability to represent from differ-
ent graph structures and has quantifiable generalization ability, which quickly attracted 
wide attention from the GNN community and the performance is better than other pre-
vious GNN framework. Nevertheless, the GIN has not sufficiently utilizing the features 
information of the structural graph, cannot to adequately take advantage its structural 
modeling capability. Based on the GIN, our work primarily utilizing the structural char-
acteristics, i.e., the feature vector concentration and coordinate distance between the 
vertex and its neighbors, to heighten the graph structural modeling capacity and to pro-
mote identification of ME properties. Therefore, we proposed a better method to iden-
tify the ME properties, called OMCNIC, which is based on the improvement of GIN. 
We can obvious find that the OMCNIC performance is dramatically affected by the fea-
ture vector concatenation and coordinate weight regulation. Our OMCNIC was realized 
by cascading the feature vector of the vertex neighbors and the coordinate distance of 
the vertex, thus adjusting the neighborhood weight in the information cluster by adding 
a control gate unit.

In the future, we will expand and explore our further work from the following aspects: 
(1) continue to expand the sample size, cooperate with many medical institutions, carry 
out multi-center research, and further improve the generalizability and interpretability of 
the model; (2) single layer was used in this study, and we hope to improve the accuracy of 
small-scale lesions by analyzing the images from 3D multi-angle; (3) to expand the image 
of atypical cases, we hope to extend our algorithm to computer-aided diagnostics other 
middle ear and inner ear diseases. In addition, we look forward to developing a framework 
for the assistant diagnosis of middle ear diseases, it has great social benefits for the disease 
management of the ME and CSOM patient database, the construction of a multi-discipli-
nary team and the multi-center on-line combined diagnosis and treatment.

6  Conclusion

In this paper, our OMCNIC presents a promising method for the identification of large-
scale middle ear diseases. The experimental results indicate that our structure-constrained 
deep feature fusion algorithm can quickly and effectively classify CSOM and MEC. The 
presented algorithm is also promising for other graph structural modeling problems in 
medical and biomedical domains. Nevertheless, like to other deep learning methods, our 
OMCNIC method still has a weakly interpretability. It is difficult to obviously recognize 
which sub- structures of the ME play significant roles in the identification challenge. In the 
future, we will continue our research in enhancing the model interpretability.
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