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BlinQS: Blind Quality Scalable Image Compression
Algorithm without using PCRD Optimization

Naveen Cheggoju, Member, IEEE, and Vishal R. Satpute, Member, IEEE,

Abstract—Quality Scalability is one of the important features
of interactive imaging to obtain better perceptual quality at a
specified target bit rate. In JPEG 2000, it is achieved using
quality layers obtained by Rate-Distortion (R-D) optimization
techniques in Tier-II coding. Some important concerns here
are: (i) inefficient conventional Post-Compression Rate-Distortion
(PCRD) optimization algorithms, (ii) lack of quality scalability
for less or single quality layer string. This paper takes the above
mentioned concerns into account and proposes a Blind Quality
Scalable (BlinQS) algorithm that provides scalability with the
least computational complexity. The novel part of this method is
to eliminate the Tier-II coding and add a blind string selection
algorithm through a normal distribution for efficient rate control.
The results obtained suggest that the proposed method achieves
better results than JPEG-2000 at single quality layer and achieves
results close to JPEG-2000 without using PCRD optimization
algorithms.

Index Terms—Blind quality scalability (BlinQS), Image Com-
pression, Rate-Distortion Optimization, JPEG-2000 Standard.

I. INTRODUCTION

SCalability is one of the main features of any interactive
device. Scalability may refer to adaptation in size, shape,

quality, rate, etc. In the field of image compression, scalability
refers to adaptation in resolution, rate, quality and component.
Among these, rate scalability and quality scalability need to
achieve a good trade-off for maintaining the image quality
at a specified or required target rate. This trade-off has been
addressed in the new image compression standard JPEG-2000
using the concept of quality layers [1], [2]. These layers are
generated in iterative manner using Post-Compression Rate-
Distortion (PCRD) optimization algorithms for all the individ-
ual code-blocks. To implement R-D optimization algorithms,
JPEG-2000 creates a Tier-II coding system module as shown
in Figure 1 [1]. This module takes the block summary of
each code-block as the inputs and arranges them in increasing
order of quality for the specified target rates. Some important
concerns of this coding are: (i) inefficient conventional Post-
Compression Rate-Distortion (PCRD) optimization algorithms
(iterative in nature), (ii) lack of quality scalability for less
or single quality layer string. Research communities around
the globe have been carrying out research to address these
key issues in scalable compression. This has been the prime
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Fig. 1. Coding blocks of JPEG-2000

obstacle of JPEG-2000 widespread adoption in entertainment
and broadcast sectors [3].

For interactive imaging in entertainment and broadcast
sectors, scalability refers to two targets: (i) low computational
complexity for fast processing, and, (ii) highly independent
data rearrangement to achieve optimal quality at any required
rate. JPEG-2000 has attempted to achieve this and earned
more popularity in the field of interactive imaging, especially
in the cloud-based content distribution applications. Having
earned all the praises for its flexibility, JPEG-2000 has its
own limitations pertaining to the computational complexity of
the block coding (PCRD) algorithms. This has been the prime
obstacle of JPEG-2000 widespread adoption in entertainment
and broadcast sectors [3]. To break through the obstacles and
make JPEG-2000 more flexible researchers throughout the
world are continuing their research by keeping the following
as the prime targets:

1) low computational complexity for fast processing, and,
2) highly independent data rearrangement to achieve opti-

mal quality at any required rate.
To achieve scalability at low computational complexity,

choosing effective optimization algorithm is necessary. This
challange has been taken up by [4], [5], [6], [7] by coding the
data and obtain the rate-disortion simultaneously . However,
these algorithms fail to decrease the computational load on
the encoder. To further reduce the computational complexity,
wavelet data based and step size based rate-distortion algo-
rithms have been presented in [8] and [9] respectively. Later,
other approaches including Lagrange multiplier have been pro-
posed in [10], [11]. In [12], authors have proposed three rate
control methods (successive bit-plane rate allocation (SBRA),
priority scanning rate allocation (PSRA) and priority scanning
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with optimal truncation (PSOT)) over PCRD algorithms for
reducing computational complexity and memory usage. These
rate control methods have provided different trade-off among
quality, complexity, memory utilization and coding delay. In
[13], a low complexity R-D optimization method based on
a reverse order for resolution levels and coding passes has
been proposed. This method has attained a comparable quality
performance with the conventional method, maintaining low
complexity. These algorithms have proven to be efficient, but,
high throughput has not been achieved. In [3], D. Taubman
et. al, have coined the term FBCOT (Fast Block Coding
with Optimized Truncation), to widespread the adoption of
JPEG-2000 in entertainment and broadcast sectors. This JPEG-
2000 compatible algorithm has sole target of increasing the
throughput by reducing the computational complexity. This
algorithm offers 10X or higher speed compared to the previous
algorithms with a slight sacrifice in the coding efficiency. In
order to optimize JPEG-2000 for image transmission through
wireless networks, Joint Source-Channel Coding (JSCC) has
been proposed in [14] and congestion control for interac-
tive applications over SDN networks has been proposed in
[15]. Further detailed study of rate-distortion optimization for
JPEG-2000 is found in [16], [17]. These R-D optimization
algorithms have been significant in reducing the computational
complexity but the problem of scalability for any required rate
remains unsolved.

To solve this problem of scalability for any bit rate, there
is a need to develop algorithms which do not rely on the
rate-distortion algorithms at the encoder, rather calculate the
quality layers at the transcoder without actually having the
knowledge of the code-block information. One such method
has been proposed in [18], in which characterisation of code-
blocks does not depend on the distortion measures related to
the original image. The method proposed in [18], has been
inspired by the algorithms presented in [19], [20], which also
speak about achieving the better quality of reconstruction when
there is a compressed string with single quality layer or less
number of quality layers. As this method is computationally
expensive another method called Block-Wise Layer Truncation
(BWLT) has been proposed in [21]. The main insight behind
BWLT is to dismantle and reassemble the to-be-fragmented
layer by selecting the most relevant codestream segments of
codeblocks within that layer. All these methods are targetted to
achieve optimum scalability for single layered or less number
of quality layered strings. In [22] and [23], authors focussed
on proposing new estimators to approximate the distortion
produced by the successive coding of transform coefficients
in bitplane image coders. Recently CNN based lossy image
compression with multiple bit-rate has been proposed in [24].
This paper focusses on learning multiple bit-rates from a single
CNN using Tuceker Decomposition Network (TDNet). Even
using CNN based approach, the optimum quality is achieved
only for the predefined bit rates learnt at the encoder.

Investigation has been done in modification of bit plane
strategies using several theoretical-practical mechanisms con-
ceived from rate-distortion theory. The research work pre-
sented in this paper, is mainly focussed on achieving the
scalability for even a single-layered string with the minimal

complexity. To achieve this, a strong decision making is
necessary at the transcoder, to optimally choose the code-
blocks and the truncation points.

Further the paper is organized in the following order:
Section-II discusses R-D optimizaion and quality scalable
algorithm used in JPEG-2000, Section-III introduces the pro-
posed method for achieving Blind Quality Scalable Image
compression, Section-IV presents comparative analysis of
BlinQS with the JPEG-2000 standard and finally, Section-V
draws the conclusion of the work followed by the references.

II. QUALITY SCALING IN JPEG-2000

In JPEG-2000, quality scalability is achieved by arranging
the obtained bit streams in the form of layers as shown in
Figure 2 [25]. To get the clear interpretation of quality layer,
the basic terms code-block and sub-band are indicated in
Figure 3. Each quality layer contains the truncation point for
each code-block, thus having an interpretation of the overall
image quality. As per the experimentation done for JPEG-
2000, it is found that the number of quality layers should be
approximately twice the number of sub-bit-planes to achieve
optimal quality scalability. Increased number of layers may
create the same quality reconstructed at different rates which
are approximately same, causing an increase in the overhead
[25]. Hence, the practice of more number of quality layers is
not followed in JPEG-2000.

Fig. 2. Illustration of Quality Layers in JPEG-2000

A. Rate-distortion (R-D) optimization algorithm in JPEG-
2000

Rate (R) and Distortion (D) in JPEG-2000 should satisfy
the equations (1) and (2) [25],

D = ΣiD
ni
i (1)

R = ΣiR
ni
i (2)
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Fig. 3. Illustration of Code-blocks and Sub-bands in JPEG-2000

where, i represents the current code-block number, ni is the
truncation point for the code-block Bi. Here, the main target is
to find the values of ni, which minimizes D corresponding to
constrained target rate Rmax ≥ R. This optimization problem
can be solved by minimizing (3) which is obtained by using
the well-known method of Lagrange multipliers,

Σ(Rnii − λD
ni
i ) (3)

where, λ is the Lagrange multiplier which should be varied
until the target rate is achieved with minimum distortion.
To obtain the values of λ, Algorithm-1 need to be followed
[25]. This algorithm is an iterative method to obtain the best
possible values of λ which achieves optimum distortion for
a required target rate. To form progressive quality layers,
ni obtained for the calculated values of λ are taken as the
truncation points and the bits are arranged accordingly.

Algorithm 1 Procedure get the value of λ
Require: λ

1: ni = 0
2: {
3: for k = 1, 2, 3 . . . do
4: ∆Rki = Rki − Rnii
5: ∆Dk

i = Dk
i − Dni

i

6: if ∆Dki
∆Rki

> λ−1 then
7: set ni = k
8: end if
9: end for

10: }

III. BLINQS: BLIND QUALITY SCALABILITY ALGORITHM

This section introduces the proposed BlinQS image com-
pression algorithm to achieve optimum quality at target rate
without using PCRD algorithms. As discussed in section-II, R-
D optimization algorithms used for generating quality layers
are iterative in nature, thus they increase the computational
complexity. BlinQS aims to bypass the R-D optimization
algorithm and achieve near optimal quality, thus reducing the
computation load on the encoder. This has been achieved
by using blind selection of the code-blocks obtained through

gaussian normal distribution. It has shown good approximation
in chosing the code-blocks optimally for required target rate.
This is because, the code-blocks are arranged in the order
of descending information content and selected depending on
the variance boundary in which the code-block falls. As this
operation is computationally effective, it does not create any
prominent load on the transcoder, where BlinQS algorithm
has been placed. Thus the aim of reducing the computational
complexity and memoryless scalability has been achieved
using BlinQS algorithm. Complete algorithm is explained in
three sections: (i) Encoding, (ii) Inclusion map, and, (iii)
Decoding. BlinQS is a part of the transcoder which forms
the quality layers blindly from the encoded string using the
inclusion map. Main tasks to be performed by the BlinQS
trancoder on the received string are:

1) Getting the value of δb for each sub-band.
2) Calculating the truncation point of the code-blocks.

A. BlinQS: Encoding

Encoding module consists of three sub-modules, (i) Image
Transformation, (ii) Image Compression using Set Partition
In Hierarchical Trees (SPIHT), and, (iii) String arrangement
along with the header. The encoding procedure is briefly
explained in Figure 4a.

Input	Image

Apply	DWT

Divide	the	image	into	n	code-
blocks	(Bi)

Apply	DWT	on	code-
block	Bi

Apply	SPIHT

Obtain	coded	string	of	length	'Li'

Concatenate	all	the	strings	to	form
a	single	data	stream	(similar	to

INPAC)

Compressed	string

(i++)	<=	n

i=1

Apply	adaptive
quantization

(a) BlinQS encoder

Extracting	the	string	length	'Li'

Apply	SPIHT	Decoder	for
code	blocks	in	'Im'	upto	'ni'

bits	

Apply	IDWT	on	reconstructed	code-
block	'Bi'

Arrange	the	reconstructed
code-blocks	'Bi'

Apply	IDWT	to	obtain	the
reconstructed	image	at	target	rate	'R'

(i++)	<=	n
i=1

Transcoded	String

Multiply	adaptive	quantization
parameter

(b) BlinQS decoder

Fig. 4. Flow Chart of Proposed BlinQS Image Compression Algorithm

1) Image Tranformation: As shown in Figure 4a, the first
step of BlinQS encoding algorithm is to transform the image
using Discrete Wavelet Transform (DWT). To decompose the
image, ‘Biorthogonal 4.4 (bior4.4)’ wavelet family has been
used [26]. Before decomposing, an intensity level shift of -127
is performed on the image and then it is decomposed using
DWT into sub-bands.

After decomposition, the sub-bands are divided into code-
blocks as illustrated in Figure 3, which can be considered as
the building blocks of the coding. They are encoded using
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Compressed	string	with	header

Get	lengths	'Li'	from	the
header

Compute	%
contribution	'PLi'	

Find	norm	'Xi'	for	each
value	of	'PLi'

Plot	'Xi'	vs	'PLi'	and
find	'Im'

Get	'ni'	from	'Im'

Transcoded	string	with	header

Check	for	the	required
bit	rate	'Rs	in	bpp'

Standard
Rate

Get	'j'	and	'k'	from
Algorithm	3

Calculate	xnew

No

Yes

(a)

Fig. 5. BlinQS inclusion map selection

the SPIHT algorithm. To improve the efficiency of SPIHT,
DWT is applied for each code-block in High-pass region using
the same ‘bior4.4‘ wavelet family before encoding. This has
shown substantial improvement in terms of compression ratio.

2) Image compression using SPIHT: SPIHT is an im-
provement to Embedded Zerotress of Wavelet (EZW) having
main characteristics of SPIHT that include: efficiency, self-
adaptiveness, precise rate-control, simple and fast, and fully
embedded output [27], [28], [29]. SPIHT directly provides
the binary output, hence, there is no need of using another
algorithm for converting bits to symbols [30].

3) Quantization factor (δb): SPIHT algorithm is applied on
each code-block (CB), after quantizing them by a factor of pre-
defined quantization parameter (δb) (obtained from Algorithm-
2), to obtain the compressed string of the corresponding code-
block. Here, quantization parameter (δb) is the function of
encoding sub-band δb = f(SB), i.e., the quantization factor
depends on, in which sub-band the code-block is present as
shown in Figure 6. Let δb denote the quantization parameter
for sub-band SBb, where b denotes DWT level of the sub-
band. Each subband has different δb value, which is calculated
as per Algorithm-2. Higher the value of δb, lesser the string
length (Li) generated for the code-block Bi of the sub-band
SBb and higher the quantization error (Qe) i.e, δb α 1

Li
α Qe.

Therefore, to maintain the reconstruction quality of image, LL
components are not quantized before coding (i.e., δb = 1) and
rest of the image is quantized with δb > 1 upto a maximum
point δmax. Hence, δb is adapted with the sub-band in which
the process of quantization is going on, which is termed as

Fig. 6. Representation of δadap selection based on sub-band

Algorithm 2 Finding δb
Require: δb

1: δmax (Maximum value of δb)
2: δb = 1, SBb = Maximum sub-band level (MSB)
3: {
4: for b = MSB ,MSB − 1,MSB − 2 . . . do
5: δb = δb + 1
6: if δb ≥ δmax then
7: break;
8: end if
9: end for

10: }

adaptive delta (δadap).
Let ‘Li‘ denote the length of the compressed string obtained

from the code-block ‘Bi’, and ‘Lip’ denote the length of
compressed string obtained from bit plane ‘p’ of code-block
‘Bi’. For a given code-block ‘Bi’, the total compressed string
length ‘Li’ is the summation of the individual ‘Lip’ from
each bit plane as mentioned in equation (4) and complete
string length ‘L’ is given by equation (5). Before transmitting
or storing this string, header is formed for ease of access
and flexibility in operation, details of which are given in
subsection-III-A4.

Li =

No. of planes∑
p=1

Lip (4)

L =

No. of CBs∑
i=1

Li (5)

where, Np represents number of planes in the transformed
image and Nc represents the number of code-blocks.
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4) String arrangement along with header: The lengths Lip,
obtained from the SPIHT encoder are arranged in the order
of their subbands i.e., LL2, HL2, LH2 and so on. While
arranging the string in header, strings obtained from each bit
plane ‘p’ of code-block ‘Bi’ is considered as a separate entity
and is placed in the header along with marker bytes which
stores the length of the string i.e., Lip. Therefore, effective
length of the string stored is ‘Bits occupied by string + marker
bytes’. Along with this information, basic information such
as size of image, level of DWT applied on image, code-
block size etc, are appended to the header, which forms the
basic information header. Using the basic information header,
marker byte lengths are extracted first at the transcoder to form
the quality layers before decoding, which is discussed in brief
in sub-section III-B.

B. BlinQS: Inclusion map

Blind Quality Scalability refers to “obtaining the inclusion
map and truncation points for the optimum reconstruction of
an image at a specified bit rate.” An overview of this algorithm
is given in Figure 5. Inclusion map (Im) is a matrix which
consists of the information regarding code-blocks needed for
decoding the image for the specified rate. The procedure for
obtaining the inclusion map generation is briefly discussed in
the following steps.

1) Calculation of string contribution: Step-1: Calculate the
precentage contribution (PLi) of each compressed code-block
(CB) using equation (6), where i=1,2,. . . ,Nc.

PLi =

(
Li
L

)
∗ 100 (6)

2) Calculation of Normal Distribution Coefficients: Step-2:
Find the normal distribution coefficients (X) of array ‘PL’
using the mean (µ) and variance (σ2) of the elements in the
array using the equations (7), (8) and (9).

µ =

∑
PLi

Nc
(7)

σ2 =

∑
i

(PLi − µ)2

Nc
(8)

Xi = f(PLi|µ, σ2) =
1√

2πσ2
e

−(PLi−µ)
2

2σ2 (9)

3) Obtaining the code-blocks: Step-3: Plot the values of
‘Xi’, against the percentage lengths (PLi) obtained from
equation (6), i.e. Xi vs PLi and divide the plot by taking
the step-size of xsσ. This plot for ‘Lena’ image is shown
in Figure 7. Here, the bit rates mentioned in set Rstd =
{0.0625, 0.125, 0.25, 0.5, 1.0, 2.0} are considered as standard
bit rates for which xs = 1, where s ε [1,5], and for bit rates
Rs < Rnew < Rs+1, a new term xnew is introduced, which
can be found out using Algorithm-3. xnewε(0, 1) acts as the
local step-size generator between Rs and Rs+1 to precisely
choose the code-blocks Bi for the new rate Rnew. Standard
rates are addressed here as R1, R2, . . . , R6 and the partition

Algorithm 3 Finding xnew
Require: xnew = j

k+1 , where, j, k ε Z
1: known values, Rstd, Rnew, kmax
2: find the location of Rnew
3: Rs < Rnew < Rs+1, s ε [1,5]
4: get ∆L = |Rs −Rnew| and ∆H = |Rs+1 −Rnew|
5: assign k = 1
6: while k ≤ kmax do
7: assign j = 1
8: while j ≤ k do
9: if βj > T then

10: if ∆L < ∆H then
11: Rnewk = Rs + (Rs+1 −Rs) ∗ j

k+1
12: end if
13: if ∆L > ∆H then
14: Rnewk = Rs+1 − (Rs+1 −Rs) ∗ j

k+1
15: end if
16: βj = |Rnew −Rnewk |
17: j + +
18: else
19: break;
20: end if
21: end while
22: k + +
23: end while
24: obtain j and k
25: if ∆L == ∆H then
26: assign k = 1 and j = 1
27: end if

number for each rate is denoted by locRs . From normal
distribution plot in Figure 7, inclusion map for standard rates
can be obtained as indicated by the arrows i.e., for 0.0625:
code-blocks upto µ + 2σ (i.e. locR1

= 2), for 0.125: code-
blocks upto µ + 1σ (i.e. locR2 = 3) and so on. xnew plays a
major role in obtaining the inclusion map for Rnew. If xnewε
(0,1), total number of partitions increase by a factor of ’k’.
Therefore, value of locRnew can be obtained from equation
(10), where, s and j are indicated in Algorithm-3.

locRnew = locRs + j if∆L < ∆H (10a)

locRnew = locRs + (k − j) if∆L > ∆H (10b)

4) Calculation of inclusion map: Step-4: After obtaining
locRnew and xnew values, all the code-block strings present
ahead of locRnew are included in the inclusion map (Im). The
included code-blocks can be determined from equation (11)
as indicated below.

Im = CBi ∀f−1(Xi|µ, σ2) ≥ (xs + xnew)σ if∆L < ∆H

(11a)

Im = CBi ∀f−1(Xi|µ, σ2) ≥ (xs+1 − xnew)σ if∆L > ∆H

(11b)
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5) Calculation of truncation points: Step-5: The truncation
points are obtained by solving equation (12), which considers
the code-blocks in the inclusion map (Im).

After obtaining the inclusion map, truncation points ‘ni’ for
each code-block ‘Bi’ in the inclusion map have to be identified
for a specified target rate ‘Rmax’. The truncation points
obtained here must follow the conditions specified in equations
(2) and (12). On solving equation (12), ni ≈ R/ΣiLi, where,
i follows the values obtained from the inclusion map. On
obtaining the values of ni for each code-block in the inclusion
map, a new header with the obtained lengths and string is
formed and sent to decoder for image decoding.

C. BlinQS: Decoding

Firstly, in decoding module, bits received are separated and
required information is extracted from the header formed in
section-III-B. Functionalities of the decoder are summarized in
the flowchart given in Figure 5. Value of δb for each sub-band
is calculated as per the algorithm given in Algorithm-2. After
obtaining the adaptive delta, truncation points ‘ni’ for each
code-block ‘Bi’ have to be identified for a specified target
rate ‘Rmax’. The truncation points obtained here must follow
the conditions specified in equation (12).∑

i

Li ∗ ni = R ≤ Rmax (12)

On solving equation (12), ni ≈ R/ΣiLi. On obtaining the
values of ni for each code-block, SPIHT decoding is applied to
the respective blocks up to the truncation points ‘ni’. Inverse
SPIHT is applied on the blocks in the inclusion map upto
the obtained truncation points. δb obtained from Algorithm-
2 is multiplied with the corresponding block values and then
Inverse Discrete Wavelet Transform (IDWT) is applied using
’bior4.4’ wavelet family and arranged in image format. The
blocks which are not available in the inclusion map are filled
with zeros and image is transformed into spatial domain by

applying IDWT. And finally, the transformed image is level
shifted by “+127” to get the reconstructed image.

IV. RESULTS AND DISCUSSIONS

This section presents the performance comparison of
BlinQS with JPEG-2000 standard. Results have been presented
at standard and non-standard rates for three (3) standard
images: Lena (512 × 512), Barbara (512 × 512) and Elaine
(512 × 512). This section is divided into three subsections:
(i) Inclusion map and truncation points, (ii) Quantitative and
qualitative comparison of BlinQS, and (iii) Computational
complexity and trade-off.

A. Inclusion map and the truncation points
The inclusion map and the truncation points of the corre-

sponding code-blocks for Lena image are presented in Figure
8. In this figure, the white bar indicates the complete length of
the string (Li) obtained for code-blocks Bi and the black bar
indicates the truncation point for Bi i.e., amount of string used
for reconstruction for the target rate. Obtained Peak Signal to
Noise Ratio (PSNR) values for the standard rates mentioned
in Rstd are shown in Figure 8. These values clearly show
the effect of inclusion map and the truncation points obtained
using BlinQS. For required rates, 0.5 and 1.0, the inclusion
map obtained is same as shown in Figure 7, but the truncation
points for these rates are different. Therefore, it is clear that
the truncation points have played a major role in providing
good quality at that rates. To optimally maintain the quality,
BlinQS does not pick the blocks in the order, instead it picks
up the blocks in the order of their contribution to the quality
which can be derived using Xi. This can be clearly seen
for the target rates 0.125 and 0.25 in Figure 8, where some
of the code-blocks are skipped by the algorithm to achieve
optimum quality. For obtaining the optimum quality for the
non-standard rates Rnew, the local step size xnew plays a vital
role in obtaining the inclusion map Im, which is obtained from
Algorithm-3.
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TABLE I
PSNR (DB) COMPARISON OF BLINQS AND JPEG-2000 AT STANDARD

RATES

Image Rate (bpp) J2K J2K* BlinQS

Lena

0.0625 26.76 22.31 26.35

0.125 29.73 25.29 28.43

0.25 32.82 27.3 30.69

0.5 36.06 29.45 34.54

1 38.78 33.13 38.22

Barbara

0.0625 22.51 20.08 22.64

0.125 24.27 22.141 23.63

0.25 27.05 22.894 25.18

0.5 30.61 23.785 28.91

1 35.56 24.929 34.17

Elaine

0.0625 28.17 23.15 27.61

0.125 30.35 27.28 29.39

0.25 31.79 28.615 30.51

0.5 33.03 30.88 31.82

1 35.12 32.66 34.37

J2K: JPEG-2000 from [31], [32], #-without quality layers

*Proposed BlinQS has comfortably ahead of J2K# at all the rates and
performing equally well with J2K despite using the single layered string.
This adds a new degree of freedom at the user end to chose any required rate
independent from the encoder.

TABLE II
SAMPLE DATABASE

S. No Image Name Resolution Set

1 Baboon

512×512 Set-I
2 Plane
3 Peppers
4 Ship

5 Boat
3840×2160 Set-II (4K)6 Sand

*Apart from the standard images, results for UHD and other standard images
are taken for comparison. More images are taken for comparison in Appendix
V
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26
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Rate vs PSNR (dB) comparison for Barbara

J2K (5 quality layers)

J2K# (Single quality layer

BlinQS (Sinlge quality layer

(b) Barbara

Fig. 9. Rate vs PSNR (dB)

B. Tabular and graphical results

To evaluate the performance of the BlinQS under same
platform, results have been compared against JPEG-2000 at
standard rates (bpp) with and without quality layer in Table-
I. BlinQS has a clear domination over JPEG-2000 without
quality layers and a near optimal value with quality layers.
This shows that the estimation of BlinQS in optimizing the
quality is very good. In JPEG-2000, the variation in PSNR
is around 10dB for layered and non-layered string [18], but
using BlinQS that has been reduced by a large extent and
satisfactory results in terms of visual quality and PSNR are
obtained.

To further investigate the proposed method, test images
with various resolutions and textures have been selected for
comparison and some of the sample test images are presented
in Table- II. The detailed PSNR values of around 100 images
are presented in Appendix V. PSNR and Structural Similarity
(SSIM) index values obtained for these images, using BlinQS
and JPEG-2000 are presented in Tables-III and IV respectively.
From the PSNR values presented in Table- III, it can be
observed that even at lower rates BlinQS is giving more quality
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(a) Lena

(b) Rate= 0.0625 bpp (c) Rate= 0.125 bpp (d) Rate= 0.25 bpp (e) Rate= 0.5 bpp (f) Rate= 1.0 bpp (g) Rate= 1.19

Fig. 10. Lena reconstructed at standard rates: (a) Original Image, (b)-(g) Reconstructed at specified rates using the proposed BlinQS algorithm

(a) Barbara

(b) Rate= 0.0625 bpp (c) Rate= 0.125 bpp (d) Rate= 0.25 bpp (e) Rate= 0.5 bpp (f) Rate= 1.0 bpp (g) Rate= 1.73 bpp

Fig. 11. Barbara reconstructed at standard rates: (a) Original Image, (b)-(g) Reconstructed at specified rates using the proposed BlinQS algorithm

(a) boat

(b) Rate= 0.0625 bpp (c) Rate= 0.125 bpp (d) Rate= 0.25 bpp (e) Rate= 0.5 bpp (f) Rate= 1.0 bpp (g) Rate= 1.38 bpp

Fig. 12. Boat image reconstructed at standard rates: (a) Original Image, (b)-(g) Reconstructed at specified rates using the proposed BlinQS algorithm
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than JPEG-2000 without quality layer (J2K#) and PSNR is
≈30dB (but <J2K value) which clearly tells the visual quality
of the image is flawless. From the SSIM values presented in
Table- IV, it can be clearly seen that BlinQS is giving almost
same results as that of J2K and giving very goos results when
compared to J2K#. he comparison graph between “PSNR
(dB) and Rate” of Lena (512×512) and Barbara (512×512)
is depicted in Figure 9. From this graph, it can be clearly
seen that BlinQS is almost following JPEG-2000 in-terms of
PSNR value. It is even closer at lower rates like 0.0625 bpp
and 0.125 bpp when compared to other rates.

C. Visual quality representation

For qualitative analysis, reconstructed images of BlinQS
at various standard rates have been presented in Figures-
10, 11 and 12. Where, sub-figure (a), represents the original
image used for encoding and (b) to (g) represents the images
reconstructed at standard rates as mentioned in the figure
captions. The maximum possible rate that can be obtained
through the compressed string is represented in subfigure
(g). The visual quality is flawless when observed at rates
Rstd >0.5, and quite good even for lower rates. PSNR values
for the respective rates are given in Table-I and also mentioned
in the figure along with the obtained rate. Hence, it can be
clearly seen that in both qualitative and quantitative analysis
BlinQS has provided nearly same results as that of JPEG-2000.

D. Computational complexity and trade-off

The basic idea of BlinQS is to reduce the computational
load by removing the iterative R-D optimization algorithm and
achieve blind scalbility. The computational complexity of R-
D optimization algorithm is given by O(Ncrv ×Npt), where
Ncrv represents the number of code-blocks and Npt represents
number of average points in each code-block [33]. Hence,
BlinQS has reduced the computational load by the order of
O(Ncrv ×Npt) at a sacrifice of ≈ 7% of PSNR compared to
JPEG-2000.

To achieve optimal quality, non-iterative and computation-
ally less complex algorithm using gaussian normal distribution
has been added to the decoder for standard rates. For non-
standard rates, iterations are used to achieve optimal quality.
It adds computational complexity of O(Ndepth), where Ndepth
represents precision of the target rate that depends on the
threshold and target rate selected by the user. This has also
added a new degree of freedom for choosing any required rate
at the decoder rather than limiting to the rates calculated at
the encoder. Hence, loss of ≈ 7% of PSNR has resulted in
the decoder independency for optimal reconstruction at target
rate and reduced computational load.

V. CONCLUSION

This paper addresses the necessity of blind quality scalabil-
ity for image compression and its implementation. The main
concerns of quality scalability, iterative coding and lack of
scalability for single layered string, are taken into consider-
ation for developing BlinQS (Blind Quality Scalable) image
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compression. Normal distribution of percentage lengths has
been used for getting the inclusion map for the target rate and
this map is used for generating the truncation points (ni) for
the respective blocks. Algorithm to obtain the inclusion map
for achieving optimum reconstruction quality without iterative
process at decoder has been introduced. This has reduced
the computational complexity by a factor of O(Ncrv ×Npt).
The PSNR values obtained by the proposed algorithm have
been presented in the the comparison table, which shows
that BlinQS has obtained nearly same results using single
string without using quality layers. Results shown for standard
images clearly show the visual quality of the reconstructed
image is flawless at higher rates and quite good even at lower
rates. On an average, PSNR values obtained for BlinQS are
7% less than that of JPEG-2000 by reducing the computational
load on encoder and making the single string scalable at any
desired target rate.
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APPENDIX

This appendix presents the comparison results of BlinQS
algorithm against JPEG-2000 with and without quality layers
in Table V. Images presented here comprise of standard images
and other images downloaded from standard datasets like
SCIEN test images and videos [34], Laboratory for Image
& Video Engineering, Texas [35], [36], [37], Robert Chung

colour management database and Roger K. Fawcett Distin-
guished Professor [38]. In Table V, J2K# stands for JPEG-
2000 without quality layers and J2K stands for JPEG-2000
with quality layers.

TABLE V
PSNR (DB)COMPARISON OF BLINQS AGAINST JPEG-2000 WITH AND

WITHOUT QUALITY LAYERS AT DIFFERENT RATES (BPP)

Image Method PSNR for different rates
Name 0.0625 0.125 0.25 0.5 1

1.pgm
J2K 23.37 25.42 28.30 32.08 37.08
J2K# 20.08 22.14 22.89 23.78 24.92
BlinQS 22.64 23.63 25.17 28.54 34.36

109.pgm
J2K 20.69 21.68 23.12 25.47 28.96
J2K# 19.17 19.84 19.99 20.90 21.79
BlinQS 20.37 20.94 21.16 22.72 26.06

111.pgm
J2K 26.11 29.29 32.53 36.54 41.26
J2K# 20.48 22.62 24.35 26.75 30.38
BlinQS 24.82 26.40 28.42 33.01 37.74

113.pgm
J2K 27.69 30.81 33.43 35.72 38.19
J2K# 21.49 24.35 24.96 28.70 31.66
BlinQS 25.39 27.43 29.78 31.96 36.12

198.pgm
J2K 25.21 27.41 30.02 33.20 36.64
J2K# 21.01 22.79 23.02 25.97 28.96
BlinQS 24.19 25.51 27.18 29.51 34.50

N1A.pgm
J2K 23.48 25.02 27.27 30.66 35.72
J2K# 21.47 21.78 22.10 22.51 24.33
BlinQS 21.97 22.58 23.12 25.31 30.37

N5A.pgm
J2K 21.41 23.71 26.78 30.64 35.51
J2K# 16.69 17.70 18.53 20.07 22.47
BlinQS 18.66 19.23 20.30 22.25 28.15

building2.bmp
J2K 17.79 19.14 20.92 23.42 27.30
J2K# 15.46 16.06 16.78 18.45 20.14
BlinQS 15.26 16.74 16.95 18.27 21.37

buildings.bmp
J2K 19.44 21.09 23.43 26.75 31.49
J2K# 15.99 17.42 18.20 19.74 21.71
BlinQS 18.67 19.25 20.71 22.31 27.14

coins.bmp
J2K 23.17 24.93 27.25 29.98 34.18
J2K# 19.42 21.35 21.83 24.45 26.29
BlinQS 22.28 21.09 22.24 23.89 29.23

elaine.pgm
J2K 29.34 31.14 32.33 33.52 36.07
J2K# 23.15 27.28 28.62 30.88 32.66
BlinQS 27.06 27.85 28.70 30.69 34.38

fhd2.pgm
J2K 23.63 25.20 27.19 30.05 34.51
J2K# 20.83 22.04 22.84 24.36 25.75
BlinQS 22.90 22.39 22.72 24.71 30.19

fhd3.pgm
J2K 43.26 47.37 50.52 52.65 54.37
J2K# 32.67 37.62 42.27 48.19 54.40
BlinQS 35.82 38.61 42.28 46.63 46.63

fhd4.pgm
J2K 28.73 31.45 34.53 37.94 42.21
J2K# 22.94 25.88 28.19 31.72 35.54
BlinQS 24.39 23.16 25.62 29.16 38.78

flowers.bmp
J2K 18.39 19.65 21.47 24.05 28.50
J2K# 16.18 16.98 17.50 18.88 20.27
BlinQS 15.55 16.41 17.82 19.80 24.29

img2.pgm
J2K 34.19 36.93 39.14 41.08 43.49
J2K# 25.42 28.15 29.62 32.25 37.43
BlinQS 30.82 33.49 36.25 38.92 40.01

k01.bmp
J2K 29.40 32.06 35.40 38.88 42.37
J2K# 23.08 25.42 26.82 30.87 35.65
BlinQS 25.91 28.02 30.99 34.26 35.26
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Image Method PSNR for different rates
Name 0.0625 0.125 0.25 0.5 1

k06.bmp
J2K 32.18 35.28 38.73 41.86 45.04
J2K# 25.47 27.85 29.65 33.55 39.66
BlinQS 29.14 32.29 35.67 40.55 40.77

k08.bmp
J2K 27.45 29.86 32.22 34.27 36.90
J2K# 21.23 23.60 25.66 28.30 31.52
BlinQS 25.23 26.54 29.15 31.81 35.52

k09.bmp
J2K 34.78 35.40 36.01 37.11 38.96
J2K# 29.61 31.45 33.14 34.08 36.68
BlinQS 33.58 34.65 35.19 36.15 36.73

k10.bmp
J2K 35.04 35.74 36.43 37.58 39.59
J2K# 29.83 32.13 33.65 35.60 37.19
BlinQS 33.88 34.96 35.59 36.71 37.18

k12.bmp
J2K 39.51 41.53 43.11 44.53 46.74
J2K# 31.52 34.15 37.69 39.35 42.51
BlinQS 36.22 38.16 40.18 42.29 42.29

k13.bmp
J2K 26.14 28.34 31.17 34.65 38.91
J2K# 21.96 23.72 24.90 28.45 30.20
BlinQS 23.86 24.50 26.71 31.30 37.15

k15.bmp
J2K 37.01 39.54 42.05 44.52 47.39
J2K# 29.84 32.32 35.36 37.95 41.83
BlinQS 33.43 35.64 38.37 42.02 42.02

k16.bmp
J2K 34.02 36.71 39.45 42.07 44.61
J2K# 27.23 29.51 30.72 33.83 39.44
BlinQS 31.93 34.72 37.33 40.61 40.61

k19.bmp
J2K 33.63 36.06 38.44 40.62 43.69
J2K# 26.61 28.69 31.05 34.18 39.98
BlinQS 30.95 33.15 36.10 39.41 39.70

k20.bmp
J2K 36.20 38.41 40.16 41.85 44.29
J2K# 29.19 31.42 34.46 36.59 41.06
BlinQS 32.64 34.82 36.57 37.85 37.85

k21.bmp
J2K 32.08 34.47 36.65 38.68 41.52
J2K# 25.36 28.16 29.08 32.78 37.17
BlinQS 29.37 31.52 33.92 37.41 38.56

k22.bmp
J2K 33.90 36.28 38.71 41.07 44.42
J2K# 28.72 30.67 32.84 35.97 40.38
BlinQS 31.18 33.59 36.30 39.90 40.03

k23.bmp
J2K 40.14 41.31 42.53 44.36 46.99
J2K# 33.16 36.10 39.89 41.72 44.46
BlinQS 35.76 36.71 37.52 37.89 37.89

lena512.pgm
J2K 28.15 31.01 33.89 37.08 40.27
J2K# 22.31 25.29 27.30 29.45 33.13
BlinQS 22.26 25.01 28.91 33.97 38.34

lighthouse.bmp
J2K 24.72 26.38 28.59 31.98 37.12
J2K# 20.96 22.40 23.06 24.48 26.60
BlinQS 23.94 24.38 25.35 27.97 33.55

plane.bmp
J2K 28.41 30.70 33.33 37.12 43.08
J2K# 23.07 24.54 26.69 28.09 31.36
BlinQS 25.86 26.99 28.17 31.60 35.43

sailing1.bmp
J2K 24.41 25.68 27.80 30.88 35.51
J2K# 21.20 22.40 22.84 24.31 26.50
BlinQS 23.75 24.26 25.30 27.23 31.40

Image Method PSNR for different rates
Name 0.0625 0.125 0.25 0.5 1

uhd.pgm
J2K 30.49 32.58 35.37 39.46 45.30
J2K# 26.31 27.87 29.38 30.94 34.25
BlinQS 25.59 26.24 28.74 33.97 41.53

uhd1.pgm
J2K 43.85 45.64 47.79 50.30 53.29
J2K# 38.49 41.12 43.88 46.03 50.98
BlinQS 35.50 38.62 42.81 45.65 45.87

uhd10.pgm
J2K 30.56 33.44 37.29 41.88 46.84
J2K# 24.50 25.75 26.75 28.65 34.74
BlinQS 25.11 27.08 29.72 35.52 42.14

uhd7.pgm
J2K 28.70 32.07 36.18 41.30 47.01
J2K# 22.46 24.31 26.24 28.84 35.27
BlinQS 22.39 24.75 28.31 34.41 42.47

uhd8.pgm
J2K 39.61 40.31 41.11 42.50 44.85
J2K# 34.34 34.97 36.55 37.36 39.66
BlinQS 36.50 35.22 37.05 39.46 41.34

uhd9.pgm
J2K 30.42 31.16 32.57 34.78 38.93
J2K# 28.73 29.10 29.82 30.09 31.20
BlinQS 29.32 25.25 25.20 30.19 35.54

us092.pgm
J2K 20.02 21.26 23.37 26.48 31.40
J2K# 17.44 18.46 19.13 20.05 21.15
BlinQS 17.49 18.80 17.95 20.42 25.76

J2K: JPEG-2000 with quality layers from [31], [32],
J2K#- JPEG-2000 without quality layers from [31], [32]
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