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Knee Osteoarthritis Severity Prediction using an
Attentive Multi-Scale Deep Convolutional Neural
Network

Rohit Kumar Jain, Prasen Kumar Sharma, Sibaji Gaj, Arijit Sur and Palash Ghosh

Abstract— Knee Osteoarthritis (OA) is a destructive joint
disease identified by joint stiffness, pain, and functional
disability concerning millions of lives across the globe. It
is generally assessed by evaluating physical symptoms,
medical history, and other joint screening tests like radio-
graphs, Magnetic Resonance Imaging (MRI), and Computed
Tomography (CT) scans. Unfortunately, the conventional
methods are very subjective, which forms a barrier in
detecting the disease progression at an early stage. This
paper presents a deep learning-based framework, namely
OsteoHRNet, that automatically assesses the Knee OA
severity in terms of Kellgren and Lawrence (KL) grade clas-
sification from X-rays. As a primary novelty, the proposed
approach is built upon one of the most recent deep models,
called the High-Resolution Network (HRNet), to capture
the multi-scale features of knee X-rays. In addition, we
have also incorporated an attention mechanism to filter out
the counterproductive features and boost the performance
further. Our proposed model has achieved the best multi-
class accuracy of 71.74% and MAE of 0.311 on the baseline
cohort of the OAI dataset, which is a remarkable gain over
the existing best-published works. We have also employed
the Gradient-based Class Activation Maps (Grad-CAMs)
visualization to justify the proposed network learning.

Index Terms— Classification, deep learning, kellgren
lawrence grade, knee osteoarthritis, knee x-ray.

. INTRODUCTION

NEE osteoarthritis is a common joint disorder caused by

the eroding of the articular cartilage between the joints,
which leaves the bones of the knee touching and rubbing
against each other. In general, it occurs in the synovial joints
and results from a combination of genetic factors, injury, and
overuse [1]. Obesity, specific occupation, stress, trauma, age,
gender, and family history are some well-defined risk factors
[2]. The pain and stiffness in the joints begin to worsen by the
rigorous activity and stress compared to other inflammatory
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Fig. 1. Knee OA disease progression: A qualitative demonstration of

sample X-rays and their corresponding KL grades.

arthritis where activity and exercising improve symptoms. It
can also lead to instability, joint deformity, and reduction in
joint functionality [2]. In addition, the distance between the
knee joint begins to flatten out due to the loss of the cartilage,
leading to the progression of knee OA [1]. The following key
changes, described by the word LOSS, marks the progression
of knee OA:

e L— “loss of joint space”, caused by the cartilage loss,

e O-— “osteophytes formations”, projections that form along
the margins of the joint,

e S-— “subarticular sclerosi”, increase in bone density along
the joint line, and

e S-— “subchondral cysts”, caused due to holes in the bone
filled with fluid along the joints [3].

Radiographic screening (X-Rays), MRI, and CT scans are
a few of the common ways to detect the structural changes
in the joint and diagnose knee OA’s biological condition.
However, the traditional treatment for knee OA may not be
effective enough to completely fix the disease in today’s time.
Therefore, it is of utmost importance to detect the deformation
of the joint at such a stage before which it becomes impossible
to reverse the loss [4]. Generally, the knee OA severity is
measured in terms of the World Health Organization (WHO)
approved KL grading scale [5]. KL grading is a 5-point semi-
quantitative progressive ordinal scale ranging from grade 0
(low severity) to 4 (high severity). Fig. |I| shows the disease
progression along with its corresponding KL grade.

A. Challenges

In general, a complete cure for this disease remains quite
challenging to find, and OA management is mainly palliative
[1], [6]. MRI screenings and CT scans are effective as they
highlight the three-dimensional structure of the knee joints [7]



[8]. However, they have certain drawbacks, including limited
availability, extreme device expenses, the time required in
diagnosing, and the inclination to image ancient rarities [9],
[10]. At the same time, X-Rays are the most effective and
economically feasible way of diagnosing the disease, given the
routine knee OA diagnosis. However, the currently adopted
methods for assessing the disease progression from X-Ray
images may not be much effective. They, in general, require
a very skilled practitioner to analyze the radiographic scans
accurately and are thus absolutely subjective. In most cases,
the practitioners require multiple tests to quantify the condition
accurately, which is generally time-consuming. The analysis
may differ based on their expertise and sometimes may be
inaccurate. Further, multiple tests may be costly for some of
the patients.

A better and in-depth understanding of knee OA may result
in timely prevention and treatment. It is believed that early
treatments and preventive measures are the most effective
way of managing knee OA. Unfortunately, there has been no
significant and predominant way of identifying the disease at
an early stage to date. Recently, the use of Machine Learning
(ML) and Deep Convolutional Neural Networks (CNNs) for
knee OA analysis have shown remarkable supremacy in detect-
ing even the slightest differences in biological joint structural
variations in the X-Rays [11].

Deep CNNs have been widely adopted in many medical
imaging tasks, including classifications of COVID-19, pneu-
monia, tumor, bone fracture, polyps detection, etc. For e.g.,
CheXNet [12], a 121-layers deep CNN, performed astonish-
ingly better than the average performance of four specialists in
assessing pneumonia using plain radiographs [13]. However,
it is difficult to collect the medical images, as the collection
and annotation of such data are challenged by the expert
availability, and the data privacy concerns [13].

B. The Osteoarthritis Initiative (OAl) Dataset

OAL is a distributed, observational study of patients, which
is publicly available [ﬂ It facilitates the scientific and research
community worldwide to work on knee OA progression and
develop new treatments and techniques beneficial for its de-
tection and treatment. In this work, we have utilized the data
acquired from the OAI repository and made available by Chen
et al. [14], [15]. The dataset comprises knee bilateral posterior-
anterior fixed flexion radiographs of 4796 participants, includ-
ing male and female subjects from the baseline cohort. Fig. [I]
shows sample X-ray images pertaining to each KL grade.

II. RELATED DEVELOPMENTS

Several schemes have been developed for the Knee OA
severity prediction in the past few years. Shamir et al. [16]
utilized a weighted nearest neighbors algorithm that incorpo-
rated the hand-crafted features like Gabor filters, Chebyshev
statistics, multi-scale histograms, etc. Antony et al. [17] pro-
posed to utilize the transfer learning of the existing pre-trained
deep CNNG . Later, Antony ef al. [18] customized a deep CNN

IDataset source: https://nda.nih.gov/oai/

from scratch and optimized the network using a weighted
combination of the traditional cross-entropy and the mean
squared error, which served as dual-objective learning. Tuilpin
et al. [19] developed a method inspired from the deep Siamese
network [20], for learning the similarity metric between the
pair of radiographs. Gorriz et al. [21] developed an end-to-end
attention-based network, bypassing the need to localize knee
joint, to quantify the knee OA severity automatically. Chen
et al. [15] proposed to utilize pre-trained VGG-19 [22] along
with an adjustable ordinal loss for the proportionate penalty to
the misclassification. Yong et al. [23] utilized the pretrained
DenseNet-161 [24], along with an ordinal regression module
(ORM), in order to treat the ordinality of the KL grading.
They further optimized the network using the cumulative link
(CL) loss function.

A. Motivation

Deep CNNs are renowned for learning the highly correlated
features in an image. In addition, it is a widely known fact
that the first few layers of a deep CNN contribute to the
learning of low-level features in an image. Whereas the last
few layers contribute to the learning of the high-level features,
enabling the final classification by adaptively learning spatial
hierarchies of features [25]. While the low-level features are
the minute details of an image, including points, lines, edges,
etc., the high-level features comprise several low-level fea-
tures, which make up the more prominent and robust structures
for classification.

However, in general, the knee X-Rays do not comprise
many edgy or low-level structures. Due to a lack of such vital
information, it may be difficult for a deep CNN to learn an
efficient classification particularly, in the case of knee OA,
where one KL grade is not very distinctive from the other
unless carefully inspected (see Fig. . A few of the most
recent state-of-the-art methods [15], [23] have directly utilized
the existing popular image classification models in a plug-
and-play fashion without supervising the network engineering
relevant to the given problem. It should be mentioned that
while a majority of those methods were built for a generic
image classification problem, a few of them were explicitly
designed using architectural search, e.g., MobileNetV2 [26].

Moreover, for the knee OA severity classification, the pre-
sented best-performing deep CNNs were enormous in size,
exceeding 500 MB [15], to be precise. As a result, such mod-
els may require substantially high computational resources,
making it challenging to deploy in real-time environments.
Therefore, it may be said that the direct usage of popular
classification models may not be appropriate. Although some
recent methods [19], [27], [21] [23], have started to design
the models specific to knee OA given the amount of infor-
mation present in the knee X-rays. However, they still lack
in terms of accuracy and computational overhead. For e.g.,
Zhang et al. [27] utilized the Convolutional Block Attention
Module, namely CBAM [28], after every residual layer in
their proposed architecture, which may not be computationally
pleasant. The attention module has performed undoubtedly
well in many high-level vision tasks. However, one must not
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overlook its computational overhead considering the presence
of fully connected layers.

The applicability of deep CNNs in medical imaging heavily
depends on the amount of data available for efficient learning.
As an alternative, many deep learning-based methods have
utilized the data augmentation techniques to further boost the
performance, which has not been much considered in the
existing works.

B. Our Contributions

Based on the aforementioned drawbacks of the existing best-
published works, our contributions are five-fold, as follows:

1) We propose an efficient deep CNN for the knee OA
severity prediction in terms of KL grades using X-ray
images. Unlike existing methods, our proposed scheme
is not a blind plug-and-play of popular deep models. The
proposed scheme has been built upon a high-resolution
network; namely, HRNet [29], that takes the spatial
scale of the X-Ray image into account for efficient
classification.

2) We also propose to utilize the attention mechanism only
once in the entire network to reduce the computational
overhead and adaptive filtering of the counterproductive
features just before classification.

3) Also, instead of relying on traditional entropy-based
minimization, we have adopted the ordinal loss [15] to
optimize the proposed scheme.

4) To further boost the performance of the proposed
scheme, we have incorporated the data augmentation

techniques, which have not been much considered in
any recent work so far.

5) Lastly, we present an extensive set of experiments and
Grad-CAM [30] visualization to justify the importance
of each module of the proposed framework.

The rest of the paper is organized as follows: Section [[I]
presents the proposed method and the adopted cost function.
Section [[V] briefly describes the incorporated dataset, training
details, competing methods, and evaluation metrics. Section
presents the quantitative and qualitative comparison against the
best-published works. Section presents a brief discussion
on the learning of proposed scheme in terms of Grad-CAM
visualization of obtained results. Section demonstrates the
ablation study against various components, and finally, the
paper is concluded in Section [VIII}

I1l. PROPOSED METHOD

This section presents the details of the proposed model,
followed by a brief description of the incorporated cost func-
tion. The proposed framework is built upon the HRNet and
Convolution Block Attention Module (CBAM) in a serially
cascaded manner. A descriptive representation of the proposed
model is shown in Fig.

A. High Resolution Network

High-Resolution Network (HRNet) [29] is a novel and
revolutionary multi-resolution deep CNN, which tends to
maintain high-resolution feature representations throughout
the network. It starts as a stream of 2D convolutions and
subsequently adds up the high-to-low resolution streams to
form the following stages. It then merges the multi-resolution
streams in parallel for information exchange [29] as shown in
Fig. 2| (marked as High-Resolution Network). HRNet tends to
generate reliable multi-resolution representations with strong
spatial sensitivity. It has been achieved by utilizing parallel
connections instead of serial (see Fig. [3[a)) and recurrent fu-
sion of the intermediate representations from multi-resolution
streams (see Fig. 3(b)), as shown in Fig. }] As a result,
it enables the network to learn more highly correlated and
semantically robust spatial features. This motivates us to
incorporate HRNet for processing the knee X-Ray images,
which lack such rich spatial features.

To formally define, let D;; denotes the sub-network in the
it" stage of j*" resolution index. The spatial resolution in this
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Fig. 4. Graphical demonstration of how HRNet fuses information from
different resolutions.

branch is 1/27 — 1 of that of the high-resolution (HR) branch.
For e.g., HRNet, which consists of four different resolution
scales, can be illustrated as follows:

D1 — Doy — D31 — Dp
N Doy — D3y — Dy )

N D33 — Dy

¢ Dua,

Later, the obtained multi-resolution feature maps are fused
to exchange the learned variscaled information, as shown in
Fig. @ For this, HRNet utilizes bilinear upsampling followed
by the 1 x 1 convolution to adjust the number of channels
when transforming the lower resolution feature map to a higher
resolution scale, or a strided 3 x 3 convolution otherwise.

B. Convolutional Block Attention Module

Convolutional Block Attention Module (CBAM) consists of
two sequential sub-modules : (a) channel attention module,
and (b) spatial attention module [28]. Given an input feature
map, P € REXHXW CBAM sequentially infers a one-
dimensional channel attention map Map, € RE>*1*! and a
two-dimensional spatial attention map Map, € R¥>H*W,
Thus we obtain a final refined attention map, here denoted
as T, and the comprehensive attention mechanism can be
summarized as:

P* = Map.(P) ® P,

2
T = Map,(P*) & P*, @

where ® signifies element-wise multiplication. Map, is first
generated by making use of the cross-channel relationship of
the features, as,

Map.(P) = g(MLP(A(P))) + MLP(M(P)), (3)

where g, MLP, A, and M denote sigmoid function, multi-
layer perceptron, average pool and max pool, respectively.

Whereas, the Map, is generated efficiently by performing
M and A along the channel axis. Next, the pooled descriptors
are concatenated together to generate a reliable and efficient
feature descriptor by utilizing the inter-spatial correlation of
the features. It can be written as,

Map,(P) = g(k™"([A(P); M(P)])), )

where k7*7 denotes the convolution operation with kernel of
size 7 x 7.

C. Network Architecture

We propose a deep CNN, called OsteoHRNet, that utilizes
the HRNet as the backbone and is further empowered with
an attention mechanism for the knee KL grade classification.
CBAM is integrated at the end of the HRNet, followed by
a fully connected (FC) output layer, as depicted in Fig. [2|
It may be said that the integration of the CBAM module
after HRNet has been beneficial in learning adaptive enriched
features for an efficient KL grade classification. It can also be
observed that the proposed one-time integration of CBAM is
computationally pleasant, compared to the multiple additions
in the existing work [27]. The resultant output from the CBAM
is then fed into the final fully connected layer, which outputs
the probabilities of the KL grade for the given input X-
Ray image. HRNet has been considered for reliable feature
extraction, whereas the capabilities of CBAM are leveraged to
help the model better focus on relevant features.

D. Cost Functions

A majority of the existing works on knee OA severity
classification have considered the nominal nature of KL grades
for classification. However, inspired by the idea of Chen et al.
[15], we approach this task as an ordinal regression problem
and therefore utilize the ordinal loss function instead of the
traditional cross-entropy. The ordinal loss function used in this
paper is a weighted ratio of the traditional cross-entropy. Given
the ordinality in the KL grading, it must be acknowledged that
extra information is provided by progressive grading. This
approach penalizes the distant grade misclassification more
than the nearby grade according to the penalty weights. For
e.g., a grade 1 classified as grade 3 is penalized more severely
than it is classified as grade 2 and even more for being
classified as grade 4. An ordinal matrix C),«,, is considered as
the penalty weights between the outcome and the true grade,
i.e., ¢y, denotes the penalty weight for predicting a grade v
as u with n = 5. In this study, with five KL grades to classify
and c,,, = 1, the adopted ordinal loss can be written as

n—1
Lo = Z Cuv * Qu, (5)
u=0
where u, v are the predicted and true KL grades of the input
image, respectively, p, is the output probability by the final
output layer of the architecture with ¢, = p, if u # v and
qu = 1—p, , otherwise. We have utilized the following penalty
matrix for our experimentation.

1 3 6 7 9
4 1 4 5 7
6 4 1 3 5
9 7 4 1 4
11 9 7 5 1

IV. EXPERIMENTAL DETAILS
A. Dataset

We have utilized the X-ray radiographs acquired from the
OAI repository which has been made available by Chen
et al. [14]. The images obtained are of 4796 participants,



TABLE |
DISTRIBUTION OF THE DATASET

H Dataset “ Grade0 Gradel Grade2 Grade3  Grade4 “ Total H
Training 2286 1046 1516 757 173 5778
Testing 639 296 447 223 51 1656
Validation 328 153 212 106 27 826
Total 3253 1495 2175 1086 251 8260

including men and women. Given that we focus primarily on
the KL grades, radiographs with annotated KL grades from
the baseline cohort are acquired to assess our method. The
dataset of a total of 8260 radiographs, including the left and
right knee, was split into train, test, and validation sets in the
ratio of 7:2:1 with balanced distribution across all KL grades
[14]. Table |I| shows the train, test, and validation distribution
of the dataset.

B. Training Details

The entire code is developed using Pytorch [31] framework,
and all the experiments have been conducted on a 12GB Tesla
K40c GPU. Furthermore, the training of all the experimental
models was optimized using stochastic gradient descent (SGD)
for 30 epochs with an initial learning rate of Se-4. Additionally,
owing to the GPU capacity, the batch size was set to 24.

C. Competing Methods

In [15], the authors proposed to utilize the pre-trained VGG-
19 [32] network with a novel ordinal loss function. Yong et
al. [23] proposed to utilize the DenseNet-161 [24] with the
ordinal regression module (ORM). We have compared the
OsteoHRNet against the results obtained by the best-published
studies mentioned above for a robust comparison.

D. Evaluation Metrics

In this study, we have utilized the following three eval-
uation metrics to analyze and compare the performance of
our proposed model : (a) Multi-class accuracy, (b) Quadratic
Weighted Cohen’s Kappa coefficient (QWK), and (c) Mean
Absolute Error (MAE). Traditionally, multi-class accuracy is
defined as the average number of outcomes matching the
ground truth across all the classes. Accuracy for five classes
with N instances is formulated as below

5
Accuracy = <3 S0 Flola)=g(x)),  ©)

i=1 z:g(x)=1

where, F' is a function which returns 1 if the prediction is
correct and O otherwise.

MAE is the mean of the absolute error of the individual
prediction over all the input instances. The error in the
prediction value is determined by the difference between the
predicted and the true value for that given instance. MAE for
five classes with N instances can be expressed as below

~ , )

where, y; & y; are the true and the predicted grade, respec-
tively.

A weighted Cohen Kappa is a metric that accounts for
the similarity between predictions and the actual values. The
Kappa coefficient is a chance-adjusted index of agreement
measuring the reliability of inter-annotator for qualitative pre-
diction. The Quadratic Weighted Kappa (QWK) is evaluated
using a predefined table of weights which measures the extent
of non-alignment between the two raters. The greater the
disagreement, the greater the weight.

Zp,;a wp,5Op.p
)

Zp,ﬁ Wp.pEp 5

O is the contingency matrix for K classes such that O, ;

denotes the count of p grade images predicted as p. The
weight, w, is defined as

(®)

k=1-—

(p—p)*
Wpp = (1-K)? ©)

Next, E' is calculated as the normalized product between the
predicted grade’s and original grade’s histogram vector. Of the
three metrics, accuracy and QWK are positive in nature while
MAE is negative in nature.

V. RESULTS
A. Comparison against State-of-the-Art Methods

It can be observed from Table [[T] that the proposed method
has outperformed the existing best-published works [15] [23]
in terms of classification accuracy, MAE, and QWK. It should
be mentioned that Yong et al. [23] reported the macro accuracy

E| and contingency matrix of their best model. For a fair

comparison, equivalent to the above, we have reported their
results in multi-class accuracy of 70.23%. Whereas Chen et
al. [15] has reported the best multi-class accuracy of 69.69%.
OsteoHRNet has reported a maximum multi-class accuracy
of 71.74%, multi-class average accuracy of 70.52%, MAE of
0.311, and QWK of 0.869 which is a significant improvement
over [23], [15]. Fig. |§]represents the confusion matrix obtained
by using the proposed and existing methods [15], [23] which
when fed with 1656 test images.

TABLE Il
QUANTITATIVE COMPARISON AGAINST THE EXISTING METHODS IN
TERMS OF MULTI-CLASS ACCURACY, MAE, AND QWK.

|| Method Accuracy MAE QWK ||
VGG 19 - Ordinal [15] 69.69 % 0.344  0.8460
DenseNet 161 - ORM [23] 70.23 % 0.330  0.8609
OsteoHRNET 7174 % 0311  0.8690

Furthermore, we have employed the Gradient-weighted
Class Activation Maps (Grad CAM) [30] visualization tech-
nique to demonstrate the superiority of the proposed OsteoHR-
Net. It also helps in showcasing the most relevant regions
the network has learned to focus on in the X-ray images.
Figs. [6] [7 [8 O} and [I0] shows the qualitative comparison of

2Macro accuracy: 88.09%
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Fig. 6. Grad-CAM visualizations generated against KL grade 0 test images using Chen et al. [15] and OsteoHRNet.
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Fig. 7. Grad-CAM visualizations generated against KL grade 1 test images using Chen et al. [15] and OsteoHRNet.
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Fig. 8. Grad-CAM visualizations generated against KL grade 2 test images using Chen et al. [15] and OsteoHRNet.
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Fig. 9. Grad-CAM visualizations generated against KL grade 3 test images using Chen et al. [15] and OsteoHRNet.
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Fig. 10. Grad-CAM visualizations generated against KL grade 4 test images using Chen et al. [15] and OsteoHRNet.
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Fig. 11. Grad-CAM visualization for the incorrect classification by Chen
et al. [15] (VGG-19; left) and proposed OsteoHRNEet (right) for grade 2
radiograph.

the proposed model against the existing methods in terms of
Grad-CAM visualization. It can be observed that the proposed
OsteoHRNet considers both features and the area between the
knee joints for an efficient severity classification (denoted by
the darker colors up the scales). Moreover, it can be said
that the decision-making of OsteoHRNet aligns in accordance
with the actual real-world medical criterion of KL grade
classification. The proposed model has efficiently learned the
prominent features such as joint-space narrowing, osteophytes
formations, and bone deformity, thus predicting the most
relevant radiological KL grading. This validates the enriched
and superior results obtained by the proposed OsteoHRNet
model.

VI. DiscuUssION

It is evident from Fig[3] that the OsteoHRNet has outper-
formed the previous works [15], [23], significantly. It should

0 25 50 75 100 125 150 175 200

0 25 50 75 100 125 150 175 200

Fig. 12. Grad-CAM visualization for the incorrect classification by Chen
et al. [15] (VGG-19; left) and proposed OsteoHRNEet (right) for grade 4
radiograph.

be mentioned that the OsteoHRNet classifies the higher grade
X-rays very accurately while reducing the misclassification
between far away grades. In comparison to existing methods,
there has been a significant increase in correct classifica-
tions for grade 2. Furthermore, the nearby misclassifications
between higher grades (grade 2-grade 3, grade 3-grade 4)
are minimum for the proposed method, which needs to be
acknowledged. Also, by way of analysis using obtained Grad-
CAM visualization of such incorrect classifications, it can
be observed that OsteoHRNet is trying to locate joint space
narrowing and osteophytes in accordance with the medical
characteristics. At the same time, VGG-19 [15] is confused
and focuses on the entire knee, giving importance to irrelevant
features for KL grade classification, as seen in Figure [IT} [T2]

Owing to its superior network learning, our model is ex-
tremely relevant to the medical setting of KL grade clas-
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Fig. 14. Grad-CAM visualizations for the incorrectly classified radiographs ontained by using OsteoHRNet.

sification. Furthermore, the Grad-CAM visualization of our
model can be extended for the use of the medical practitioner
to provide confidence in the findings. However, our study
has some limitations, and certain radiographs could not be
correctly classified due to the lack of rich features in the
radiographs. Fig. [T4] shows nearby grade misclassifications,
which to a great extent is unavoidable. But, there is high inter
and intraobserver variability (correlation coefficient = 0.83)
for manual knee KL grading [33]. Thus, our proposed fully
automated KL grading method can be extended in clinical
settings for getting reliable and reproducible OA grading.

VII. ABLATION STUDY

TABLE Il
EFFECTS OF DIFFERENT NETWORK MODULES & COST FUNCTION

Architecture Cross Entropy Ordinal Loss
Accuracy MAE  Accuracy MAE
HRNet 64.10 % 0460  65.00 %  0.440
HRNet + CBAM | 6530 % 0423 66.70 %  0.392
OsteoHRNet 69.90 % 0373 7174 %  0.311

This section presents an ablation study to demonstrate
the contributions made by each sub-module of the proposed
OsteoHRNet. For this, we have performed the following
baselines:

1) HRNet: Original HRNet trained by utilizing the adopted

dataset.

2) HRNet + CBAM: Original HRNet followed by the
CBAM module trained using the adopted dataset.

3) OsteoHRNet: Original HRNet followed by the CBAM
module trained using the adopted dataset. Further, dur-
ing training, we have employed the data augmentation
techniques to enhance the performance of the proposed
model.

It can be observed from Table [ that the addition of the
CBAM module and data augmentation techniques have im-
mensely improved the performance compared to its curtailed
baseline. The CBAM module might have adaptively learned
the relevant features from the HRNet. Such features may have
contributed more towards an efficient classification compared
to the features learned by the original HRNet [29], VGG-19
[32], or DenseNetl161 [24].

Fig. [[3] demonstrates the Grad-CAM visualizations for our
ablation study. It can be observed that the proposed OsteoHR-
Net has learned the robust features progressively on each

component of our proposed network. Thus, it is verified that
each component of our network contributes to the final knee
OA KL grade prediction.

VIII. CONCLUSION

This paper proposes a novel OsteoHRNet by adopting the
HRNet as the backbone and integrating the CBAM module
for an improved knee OA severity prediction results from
plain radiographs. The proposed network was able to per-
form exceptionally well and attain significant improvements
over the previously proposed methods owing to the HRNet’s
capability to maintain high-resolution features throughout the
network and its ability to capture reliable spatial features. The
intermediate extracted features were significantly refined with
the help of the attention mechanism; therefore, the radiographs
with a similarity between classes and variations within classes
could be distinguished better. Moreover, we have employed
the Grad-CAM visualizations to validate that the model has
learned the most relevant spatial features in the radiographs.
In the future, we will work on the entire OAI multi-modal
data and consider all the cohorts in our study.
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