
Vol.:(0123456789)

Multimedia Tools and Applications (2023) 82:45453–45469
https://doi.org/10.1007/s11042-023-15490-y

1 3

Research on the optimization of energy consumption
for multi‑priority tasks in mobile computing offloading

Yanhu Zhang1,2 · Lijuan Yan1

Received: 3 February 2022 / Revised: 27 April 2022 / Accepted: 18 April 2023 /
Published online: 3 May 2023
© The Author(s) 2023

Abstract
To solve the problem of insufficient energy consumption for multi-priority tasks in the
computing and unloading environments of mobile devices, we designed evaluation meth-
ods to improve the traditional simulated annealing algorithm and obtain the optimal allo-
cation scheme for these tasks under multiple computing resources. Firstly, we proposed
the task model and discussed the classification and definition of task priority as well as
the procedure of task processing in detail. Secondly, a calculation model for the energy
consumption of mobile devices is provided. Thirdly, an evaluation mechanism is designed
to evaluate the unloading distribution scheme of mobile devices effectively. Finally, the
improved traditional simulated annealing algorithm was applied to find the optimal dis-
tribution scheme for this computing environment. All allocation schemes obtained in this
study were compared and analyzed via simulation. The results showed that the proposed
algorithm can reduce the energy consumption of mobile devices more significantly, shorten
the system response time, and complete high-priority tasks based on time constraints.

Keywords Mobile edge computing · Computation offloading · Multiple priority tasks ·
Simulated annealing algorithm · Evaluation value · Energy consumption model · Energy
efficient

1 Introduction

As the mobile Internet continues to develop, intelligent devices have produced a tremen-
dous amount of data. According to the literature [4, 10, 19], the current demand for smart
mobile devices suggests that global data from the mobile devices will overwhelm the avail-
able network capability, thereby adversely affecting the user’s experience of new technolo-
gies (e.g. the Internet of Things and VR). In order to alleviate such a contradiction, the

 * Lijuan Yan
 juanjanny@qq.com

 Yanhu Zhang
 forzyh@163.com

1 Guangdong Songshan Polytechnic, Shaoguan 512126, Guangdong, China
2 Jose Rizal University, 1550 Mandaluyong, Metro Manila, Philippines

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-15490-y&domain=pdf

45454 Multimedia Tools and Applications (2023) 82:45453–45469

1 3

concept of Mobile Edge Computing (MEC) or cloud computing was proposed. The core
idea of MEC is to place the server that is capable to process computing powers close to
the mobile terminal and send some data originally planned for the cloud server to the edge
server for processing. In this way, the network data transmission load could be reduced,
which could improve the system’s overall performance.

Scholars have studied the energy consumption optimization of mobile devices from var-
ious directions, and the findings have been abundant. Specifically, Yu Bowen et al. [1] pro-
posed a task unloading algorithm based on the COMED framework to optimize the overall
energy consumption of base stations and devices. Zha et al. [24] designed a task unloading
algorithm based on energy efficiency and used the auction theory to find the optimal task
unloading solution. Sivanandam et al. [18] proposed a multiprocessor scheduling algorithm
based on particle swarm optimization and transformed the particle swarm vector into a
scheduling-first model. Meng et al. [14] provided a random task transfer algorithm based
on machine learning that could generate the optimal transfer strategy for random tasks
when combined with the improved Q learning and deep learning algorithms. Liu et al. [13]
studied the deep learning task offloading and proposed a set of sparse beam forming frame-
works. [22] Designed a task scheduling algorithm to minimize energy consumption with
particle swarm optimization of multiple resources in the edge terminals. Zhou et al. [28]
proposed an improved game theory algorithm to reduce the task computation time. Goyal
S et al. [6] proposed a cloud-based optimized framework for energy-resource allocation
based on the Whale Optimization Algorithm to minimize energy consumption. However,
these researches are primarily focused on optimizing the allocation of computing resources
with optimization algorithms to reduce the energy consumption of mobile devices. They
failed to address the energy consumption of mobile devices within the scenario of multiple
computing resources.

Another direction to optimize energy consumption is to prioritize the satisfaction of
time constraints. Specifically, Xu et al. [9] proposed a computational unloading model to
reduce the energy consumption of mobile terminals while meeting the time constraints.
Yang et al. [23] considered the capacity constraints of lead-time, backhaul links, and the
maximum user delay and proposed an effective unloading scheme to minimize the total
network energy consumption. Zhang et al. [26] adopted an artificial fish swarm algorithm
to design the offloading strategy of energy consumption optimization with time delay con-
straints. Zhang et al. [27] proposed a computation offloading scheme for energy perception
by weighing energy consumption and time delay and introduced the residual battery energy
of the smart devices into the definition of the weight factor, thereby reducing the total sys-
tem energy consumption remarkably. These studies adopted strategies to reduce the energy
consumption of mobile devices while satisfying the task time constraint. No in-depth dis-
cussions were performed on optimizing energy consumption in multi-resource scenarios.

Moreover, scholars have investigated the optimization of equipment energy consump-
tion under multiple computing resource scenarios. Particularly, a reasonable optimiza-
tion strategy for energy consumption of multi-equipment calculation unloading has been
provided and discussed in detail [2, 3]. Kim Y et al. [11] calculated the discharge and
scheduling of mobile edge server resources to optimize the energy consumption and
efficiency for mobile devices and the server. Tong et al. [20] proposed a task offload-
ing and resource allocation algorithm in the MEC environment. Ding et al. [5] stud-
ied the code-oriented partition to compute the offload strategy and determine the user’s
execution locations and minimized the system overhead with an offload strategy, but the
authors failed to take task parallelism into account. Li et al. [12] proposed a switching
strategy to calculate discharge so that the mobility time caused by increased unloading

45455Multimedia Tools and Applications (2023) 82:45453–45469

1 3

may be shortened. Zhao et al. [21] proposed a privacy perception computing offloading
algorithm based on the Lyapunov optimization theory. Similar work had been performed
in other reports as well [7, 8, 15–17, 25]. In these studies, the authors investigated the
optimization of energy consumption of mobile devices under the scenario of multiple
computing resources but didn’t discuss the optimization problem of energy consumption
in the case of multi-priority tasks.

Despite the promising and abundant results in optimizing the energy consumption of
mobile devices in a multi-task environment, little research has addressed the energy con-
sumption optimization problem for mobile devices in a multi-priority task environment. In
practice, tasks may be categorized as urgent, important, and general tasks based on their
urgency. Unwanted consequences would emerge if all such tasks are treated in the same
way. Therefore, during MEC task processing, task priority must be considered.

In the literature, a study similar to this one was performed by Zhu et al. [29], in which
the task priority was divided into five levels. The authors used the auction algorithm to
process tasks according to their priorities, and the obtained task allocation was satisfactory.
Even so, the authors didn’t consider the sequence of task entry and the waiting time after
admission, leading to possible prolonged waiting for some tasks.

Zhou et al. [28] developed a new cooperative unloading mechanism to improve the
experience of mobile users and specifically investigated the processing of multi-priority
tasks. In order to reduce the devices’ energy consumption, the author suggested establish-
ing a task center to manage mobile users more effectively and achieve low-delay communi-
cation. Besides, the tasks could be pre-processed according to their task priority to enhance
the efficiency of task input and improve user experience. And finally, the Double DDPG
algorithm was proposed to ensure the lowest service delay.

Task priority allocation in previous literature has been primarily based on the time con-
straints without considering the situation in which the task priority changes during task
assignments or under the waitlist for execution. In some cases, such changes may result in
late processing of the urgent tasks or a long waiting time for low-priority tasks.

To address such a problem, both the sequence of task admission and the waiting time
after task assignment are taken into account in this study. An appropriate algorithm to
mark task priorities according to the waiting time is proposed, thereby addressing the prob-
lem of prolonged waiting and optimizing the energy consumption of mobile devices in the
case of multi-priority tasks.

Besides, in order to solve the problems mentioned above, a computational unloading
method (MPT algorithm for short) for multi-priority tasks was developed to optimize the
energy consumption of mobile intelligent devices under the environment of multi-comput-
ing resources. With the MPT algorithm, the prolonged waiting time for both high-prior-
ity and low-priority tasks may be addressed, providing insights for scenarios with similar
requirements. The MPT algorithm could be summarized in 3 steps. Firstly, a method to
quantify the priority of computing tasks was designed to assign a priority value to each
computing task. Secondly, a strategy to quantify and evaluate the energy consumption of
unloading schemes was designed. And finally, an improved simulated annealing algorithm
was proposed to optimize the computational unloading scheme based on the evaluation
strategy. With the improved algorithm, a computational unloading scheme that is capable
to reduce the energy consumption of mobile devices was derived.

Since the traditional simulated annealing algorithm is insufficient to optimize the
unloading scheme under multi-computing resources, it was improved in this paper accord-
ing to the current scene to optimize the unloading scheme and minimize the energy con-
sumption of mobile devices.

45456 Multimedia Tools and Applications (2023) 82:45453–45469

1 3

Our major contributions are summarized as follows. Firstly, an appropriate solution
for multi-priority tasks in a multi-computing resource environment is proposed. Sec-
ondly, a comprehensive evaluation strategy for energy consumption and aging perfor-
mance is provided for tasks with different priorities. Finally a promising algorithm to
optimize energy consumption for multi-priority tasks in the multi-resource moving-edge
computing-unloading environment is given, which produces the final computing unload-
ing execution scheme with the best overall performance.

The rest of this paper is organized as follows. Section 2 explains the concepts
involved in this paper; Section 3 gives the calculation workflow for the task priority
values under a multi-priority task environment. Section 4 gives the energy consumption
calculation model for each resource under the multi-resource environment; Section 5
presents the calculation workflow and demonstrates the evaluation mechanism as well
as the optimization algorithm for the total energy consumption of mobile devices; Sec-
tion 6 uses a simulation experiment to test the proposed algorithm; Section 7 concludes
this paper.

2 Task processing model

2.1 Task priority

Tasks on the to-do list differ by their urgency. Some tasks are so urgent that they must
be dealt with immediately while other tasks may wait for later processing. The urgency
levels usually include urgent (requiring immediate computing), important (requiring
computing as soon as possible), and normal (may wait for later computing).

If all tasks are sorted randomly for calculation and unloading, urgent and important
tasks are probably not handled in time, leading to possible unwanted consequences.
Therefore, a strategy is proposed to divide the tasks into several priority levels accord-
ing to emergency levels so that the tasks can be unloaded reasonably in mobile edge
computing (Fig. 1).

Fig. 1 Multi-priority task processing flow chart

45457Multimedia Tools and Applications (2023) 82:45453–45469

1 3

2.2 Modeling the task processing flow

The execution process for priority tasks in the workflow system is given in Fig. 2. The tasks
in the task pool, in which the pending tasks are stored, are mutually independent, and the cor-
responding parameters of each task are shown in Table 1.

The task pool has only an entry and an exit. When the task entry portal is open, new tasks
can enter the task pool. The classifier selects the pending tasks and allocates these tasks to dif-
ferent pending areas based on certain rules. Each pending area has three regions (I, II, and III)
with different priority levels. Region I has the highest priority and preempts the resources of
any other non-executing tasks. Region II can preempt all resources in Region III and Region
III has the lowest priority for resource allocation.

When no tasks are within the task pool and the time area is fixed at every interval, the task
pool entry opens. When the number of tasks in the task pool exceeds the predetermined limit,
no new tasks shall be received. Since the task entry in the task pool is opened for a pre-defined
time, new and old tasks will be mixed together in the task pool. At this time, the classifier
determines the task sequence by the priority value T of each task, which is calculated by the
equation below:

(1)Priority value T = 10priority + order value

Fig. 2 The flow chart of the MPC algorithm

Table 1 Task-related data

Task no. A B C D E F G H I

load 1200 200 3200 1400 3000 500 800 720 1450
The amount of data 2600 1800 1600 700 500 220 140 65 150
priority I I II II II III III III III
Order no. 5 6 3 4 9 1 2 7 8
The priority value 15 16 103 104 109 1001 1002 1007 1008

45458 Multimedia Tools and Applications (2023) 82:45453–45469

1 3

The tasks in the waiting area shall be executed in the sequence of Regions I, II, and
III, and the tasks in the same pending area shall not be prioritized for optimal energy
consumption.

In the task pool, each task is calculated a fixed number of times and assigned to a com-
puting resource with its data. These data are transmitted to the corresponding operations
through the network, and each task has a priority rank, in which the value I represents the
highest priority, followed by II and III.

As the tasks enter the task pool, the system assigns an admission number and a priority
value T for each task according to their entry sequence and Eq. 5. Subsequently, the classi-
fier distributes the tasks to the corresponding task waiting area based on their T values, and
the scheduling optimization algorithm is executed by the scheduler to assign computing
resources to these tasks. In some cases, the system takes too long to finish these assign-
ments due to a large amount of computation in Regions I and II, so the tasks in the task
pool would have their priorities changed. Under such a situation, the original assignment
would be unfair to tasks with changed priorities, and the time threshold TPLIM is set in
the system to evade such unfairness. When the total time to run tasks in Regions I and II
exceed TPLIM, the classifier redeploys the tasks and loads them into the three Regions
according to the latest task priority.

This article is primarily focused on the situation in which the task priority can change
dynamically. In some special scenarios, tasks constantly enter the high-priority task pool.
If such entry is continuous, tasks with lower priority values might wait for a long time
before being performed, which is particularly unfair for such tasks and unwanted for good
user experience. Therefore, Formula 1 was proposed to reflect the overall dynamic change
of task priority, in which multiple factors such as the emergency states and the task waiting
time are taken into consideration.

When the classifier detects that all tasks in the area to be processed are finished,
the tasks in the task pool will be sorted according to their priority values. Those tasks
with a priority value smaller than m1 will be assigned to Region I to wait. Regions
II and III would receive tasks with a priority value within m1- m2 and greater than m2,
respectively(m1 < m2). Subsequently, the scheduler allocates computing resources in the
order of I, II, and III. For tasks in the same priority level, their priority values are consid-
ered identical when dispatching computing resources to optimize the energy consumption
of mobile devices.

3 Calculation models

3.1 Total energy consumption model of mobile devices

In the SA algorithm, an evaluation value is used to evaluate an allocation scheme. In a
multi-task and multi-resource calculation unloading model, the evaluation value is also
used to evaluate the resource allocation scheme comprehensively to achieve the lowest
energy consumption.

When calculating the total energy consumption of a device, assume that T = {T1, T2,
T3} is an existing calculation unloading scheme, where T1 = {t1,t2…tn} is a set of n tasks
assigned to mobile edge devices, T2 = {tn + 1,tn + 2…tm} is a set of m-n tasks assigned to the
edge server, and T3 = {tm + 1,tm + 2…tk} is a set of k-m tasks assigned to the cloud server. The
total energy consumption Esum generated by the mobile devices when T is completed is:

45459Multimedia Tools and Applications (2023) 82:45453–45469

1 3

Where Esum is the total energy consumption of the mobile devices; ET1 is the energy
consumption of the mobile edge devices to complete T1; ET2 is the energy consumption of
the mobile edge devices when the edge server completes T2; ET3 is the energy consumption
of the mobile edge devices when the cloud server completes T3; Edst refers to the energy
consumption when running the distribution algorithm, which is calculated as:

Where Prun is the running power of the mobile edge device, CcodeNum is the total number
of instructions in the distribution algorithm (calculated according to the maximum number
of iterations in the corresponding algorithm or the number of empirical iterations), Sedge is
the running speed of the mobile edge device, and λ is an adjustment coefficient.

3.2 The calculation model for evaluation values

Two preconditions exist in this paper when reducing the energy consumption of mobile
devices. Firstly, the time required for the system to complete the total task should meet the
time constraint Tlim. Secondly, tasks with higher priority have tighter time constraints than
their counterparts with lower priority. Assume λ1、λ2、λ3 are the time constraint coeffi-
cients for priority levels I, II, and III, respectively. In other words, tasks of priority I, II,
and III shall be completed within λ1*Tlim, λ2*Tlim, and λ3*Tlim, respectively, or their evalu-
ation values will be penalized. Following that, the numbers of tasks that are not completed
within their corresponding time constraints in the allocation scheme are counted separately
by priorities. Assume that the total number of tasks of priority I is Ci and the number
of unfinished tasks is CNi, then we have the following equation to obtain the value for
evaluation:

Where, Esum is the total energy consumed by mobile edge devices; Tsum is the maximum
time consumed by all equipment participating in computing the force unloading task; Tlim
is the time constraint; α and β are the total and priority task time constraint adjustment fac-
tors, respectively.

The calculation equations for Esum and Tsum are:

Ci and CNi are calculated by the following equations:

(2)Esum = ET1 + ET2 + ET3 + Edst

(3)Edst = Prun
∗
CcodeNum

Sedge

∗

�

(4)F =

⎛
⎜⎜⎜⎜⎜⎝

Esum Tsum ≤ T
lim

and CNi == 0

Esum ∗
Tsum

Tlim
∗ 𝛼 Tsum > T

lim
and CNi == 0

Esum ∗
Ci

Ci−CNi

∗ 𝛽 Tsum ≤ T
lim

and CNi <> 0

Esum ∗ (
Tsum

Tlim
∗ 𝛼 +

Ci

Ci−CNi

∗ 𝛽) Tsum > T
lim

and CNi <> 0

(5)Esum = Eedge + Eec + Ecloud

(6)Tsum = Max

(
Tedge, Tec, Tcloud

)

45460 Multimedia Tools and Applications (2023) 82:45453–45469

1 3

4 Improved algorithm

4.1 Algorithm flow chart

Where S represents the position of the allocation scheme, S ‘represents the position of the
new allocation scheme, V represents the speed, F is the evaluation value of the allocation
scheme, r’ is a random value between 0 and 1, and Coe is the set threshold. As the number
of iterations increases, the F value gradually approaches 0.

4.2 Implementation of algorithm

The traditional SA algorithm compares the evaluation values F of the new and current
positions. When the new position has a bigger evaluation value than the current position,
the allocation scheme represented by the new position is considered better and the new
position is accepted. Otherwise, the allocation scheme of the new position is considered
inferior to the current one.

In order to exclude the possibility of the new evaluation value being the local optimum, the sys-
tem is designed to accept the new position by comparing the random number r with the variable
factor, and the variable factor’s value tends to be 0. Even with the ability to solve the local opti-
mum problem, the traditional simulation algorithm is still unsatisfactory because in most cases,
the resulting resource allocation scheme by the end of the algorithm is not the optimal solution.

Therefore, in this study, we propose an improved SA algorithm based on mobile edge
calculation unloading in the multi-resource environment to solve the local optimum prob-
lem and obtain the optimal solution. Specifically, an attribute is added to the annealing
factor to store the allocation scheme pBest corresponding to the optimal evaluation value of
the annealing factor. When the annealing factor fails to obtain a solution better than pBest
and the consecutive Res or the total execution time for level I and II tasks exceed TPlim in
the search process, the iteration ends and the optimal solution pBest is obtained. The algo-
rithm implementation details are described below:

5 Experiment and result analysis

5.1 Experimental environment

Matlab 2016A was used to perform the simulation experiment. Intel(R) Xeon dual-core
2.4G CPU and 4G memory 4G were the hardware configuration used in the simulation.
The time constraints include 1) no more than 1/3*Vave for priority I tasks; 2) no more than

(7)Ci =

n∑
j=1

(
Ci−1 + 1

)
Ci priority = i

(8)CNi =

n∑
j=1

(
CNi−1 + 1

)
Ci priority = i And TNi < 𝜆∗

1
Tlin

45461Multimedia Tools and Applications (2023) 82:45453–45469

1 3

2/3*Vave for priority II tasks;.3) no more than 1.5*Vave for priority III tasks. Particularly,
Vave is the average speed of processing computing resources for all participating tasks. The
detailed parameters of the proposed algorithm are shown in Table 2.

5.2 Experimental results and analysis

The algorithm in this paper is analyzed and verified by comparing its unloading strategies
with those of other algorithms.

5.2.1 Comparison of unloading strategies

The unloading strategy obtained by the proposed algorithm was compared with 5 other
strategies from the dimensions of energy consumption evaluation and mobile device opera-
tion times to verify the algorithm’s comprehensive performance. The so-called other strate-
gies for comparison are derived from the traditional SA algorithm, namely no unloading at
all (MBC), complete unloading to edge server (ESC), complete unloading to cloud server
(CSC), Ref. [28], and mixed unloading strategy (SA).

Algorithm 1 Energy consumption optimization algorithm for priority tasks in a multi-resource mobile edge
computing unloading environment

45462 Multimedia Tools and Applications (2023) 82:45453–45469

1 3

Comparison of energy consumption In this study, the evaluation values for the energy
consumption of mobile devices were compared in 5 unloading schemes, where the num-
bers of tasks were 100, 200, 300, 400, and 500, respectively.

The SA, Ref. [28], and the proposed algorithms were tested 500 times, and the maxi-
mum iteration number in each test was set to 1000. The optimal energy and time consump-
tion results were obtained for each distribution scheme, and the average results of the 500
experiments were taken for analysis. The hybrid unloading strategy was implemented to
find better resource allocation schemes in the experimental environment, and the proposed
algorithm was verified to show better performance than the traditional SA algorithm. The
specific energy consumption evaluation values of the algorithms tested are shown in Fig. 3.

Comparison of running time The times required by the six unloading strategies mentioned
above are compared (Fig. 4). When the task volume was 200, the running time of the pro-
posed algorithm is 2.34 times, 2.18 times, 3.12 times, and 1.33 times shorter than the MBC,
the ESC, the CSC, the Ref [28], and the SA strategies, respectively. Therefore, the unloading
strategy obtained with the proposed algorithm can reduce the system response time remark-
ably, and it also shows that the complexity of MPT algorithm is better than other algorithms.

Comparison of computational complexity A brief comparison of the time complexity of the
above algorithms was provided, and the result shows that the algorithm complexity of MBC,
ESC and CSC is O(1), and the algorithm complexity of Ref. [28], SA and MPT is O(n).

5.2.2 Comparison of reference algorithms

The algorithms mentioned in references [2, 3, 9, 28], and were compared with the proposed
algorithm on a number of important indicators. The experimental parameters are similar to
those in 5.2.1, and each algorithm was compared with 500 experiments and the maximum

Table 2 Detailed parameters of the proposed algorithms

Description Value

size of data 10–350 MB
amount of calculation 100–3500 CPU Cycles
running power of mobile devices 60 MW
sending power of mobile devices 15 MW
receiving power of mobile devices 5 MW
standby power of mobile devices 3 MW
computation capacity of local devices 0.5 GHz
computation capacity of edge devices 1.7 GHz
computation capacity of cloud servers 2.5 GHz
speeds of uploading data to edge servers 12 MB/s
speeds of downloading data from edge servers 24 MB/s
speeds of uploading data to cloud servers 7.2 MB/s
speeds of downloading data from cloud servers 14.4 MB/s
workflows 100–500 tasks
channel bandwidth 5.0*10−3GHz
background noise power 1.0*10−13w

45463Multimedia Tools and Applications (2023) 82:45453–45469

1 3

Fig. 3 Comparison of energy consumption of each unloading strategy

Fig. 4 Response time comparison of various unloading strategies

45464 Multimedia Tools and Applications (2023) 82:45453–45469

1 3

iteration number of 1000. The average value of the 1000 iterations was taken as the data for
comparison.

Comparison of energy consumption The energy consumption of mobile devices over
the last distribution scheme (500 tasks) was calculated by each algorithm for comparison
(Fig. 5). The energy consumption evaluation value of the proposed algorithm is identified
to be superior to that in references [2, 3, 28], and, but inferior to that in reference [9].

Convergence performance comparison The proposed algorithm was compared with the
traditional SA algorithm as well as the algorithms in references [2, 3, 9, 28], and to verify
its convergence. When the algorithm ended, the number of iterations corresponding to the
scheme was recorded. Each algorithm ran for 500 times, and the average iteration numbers
were calculated for comparative analysis (Fig. 6). The proposed algorithm is superior to the
traditional SA algorithm as well as the algorithms mentioned in references [2, 3, 28], and
but inferior to the algorithm in reference [9]. Nevertheless, compared to the algorithm in
reference [9], the proposed algorithm still exhibits higher overall stability.

Comparison of task completion rates According to the parameter settings in 5.1, the time
constraints of high-priority tasks are more stringent. In order to reveal the actual situations
in which tasks with varied priorities are completed within the time constraints, the alloca-
tion schemes of the six unloading strategies were run 500 times to calculate the average
completion rates (Fig. 7).

With the proposed algorithm, the on-time completion rate for Level I tasks is over
100%. For Level II and Level III tasks, the on-time completion rates are over 98%. All on-
time completion rates are significantly higher than those obtained from other algorithms.

Fig. 5 Comparison of energy consumption across reference algorithms

45465Multimedia Tools and Applications (2023) 82:45453–45469

1 3

We recommend an algorithm that is suitable for optimizing the energy consumption of
mobile devices in multi-priority task and multi-resource environment. This algorithm can
ensure that the task with high priority can be executed first. In addition, the recommenda-
tion algorithm considers the waiting time of all tasks in a balanced way when determining
the execution order. Compared with other algorithms, simulation experiments show that MPT
algorithm can better reduce the energy consumption of mobile devices and prolong the life
cycle of mobile devices on the basis of ensuring that high-priority tasks are processed in time.

6 Open issues

In this paper, when dealing with the priority of tasks, it is assumed that the tasks to be dealt
with are relatively fixed in a certain time segment. In actual situations, the number and type
of tasks are likely to change dynamically, which is not considered in this paper and will be the
direction of research in the next stage.

7 Conclusion

In order to improve the battery life of mobile devices under multiple priority tasks, this
paper proposed a mobile edge equipment energy consumption calculation model, which
was used to calculate the energy consumption of equipment under the scenario of multi-
priority tasks. Subsequently, we designed a rating scheme that can be used for evaluation.
and finally, an improved SA algorithm is implemented to find the optimal solution. Simula-
tion results show that the proposed algorithm can complete almost all tasks of all priorities
within the constraint time, and the common tasks meet the response time. The proposed

Fig. 6 Comparison of convergence performance

45466 Multimedia Tools and Applications (2023) 82:45453–45469

1 3

task scheduling scheme can reduce the energy consumption of mobile devices remarkably
with satisfactory convergence.

a Time-bound completion rates for Level I tasks

b Time-bound completion rates for Level II and Level III tasks

Fig. 7 Time completion rates for tasks with differed priorities. a. Time-bound completion rates for Level I
tasks. b Time-bound completion rates for Level II and Level III tasks

45467Multimedia Tools and Applications (2023) 82:45453–45469

1 3

Funding This work was supported by the Characteristic Innovation Research Fund for Universities of
Guangdong Province (No.2019GKTSCX041) and the Science and Technology Program of Shaoguan (No.
210722094530279).

Declarations

Competing financial interests The authors declare no competing financial interests.

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bowen Y, Lingjun P, Yuting X et al (2018) Joint task offloading and base station association in mobile edge
computing[J]. J Comput Res Dev 55(3):537–550

 2. Changsheng Y, Kaibin H et al (2017) Energy-efficient resource allocation for mobile-edge computation
offloading[J]. IEEE trans on. Wirel Commun 16(3):1397–1411

 3. Chen X, Lie J, Wenzhong L et al (2016) Efficient multi-user computation offloading for mobile-edge cloud
computing. [J]IEEE/ACM Trans on Netw 24(5):2795–2808

 4. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update (2016) 2016—2021 White
Paper[EB/OL].(2016-03-05)

 5. Ding Y, Liu C, Zhou X, Liu Z, Tang Z (2019) A code-oriented partitioning computation offloading strategy
for multiple users and multiple Mobile edge computing servers. IEEE trans. Ind. Inform 16:4800–4810
[CrossRef]

 6. Goyal S, Bhushan S, Kumar Y, Rana AuHS, Bhutta MR, Ijaz MF, Son Y (2021) An optimized framework
for energy-resource allocation in a cloud environment based on the whale optimization algorithm. Sensors
21(5):1583. https:// doi. org/ 10. 3390/ s2105 1583

 7. Gupta D, Rani S, Ahmed SH, Verma S, Ijaz MF, Shafi J (2021) Edge caching based on collaborative filtering
for heterogeneous ICN-IoT applications. Sens 21:5491. https:// doi. org/ 10. 3390/ s2116 5491

 8. He X, Lu H, Huang H et al (2020) QoE-Based cooperative task offloading with deep reinforcement learning
in mobile edge networks. IEEE Wirel Commun 99:2–8. https:// doi. org/ 10. 1109/ MWC. 001. 19004 06

 9. Jia XU, Xaeiun LI, Ruimiao D et al (2019) Energy efficient multi resource computation offloading strategy in
mobile edge computing[J]. Comput Integr Manufact Syst 25(4):954–961. https:// doi. org/ 10. 13196/j. cims.
2019. 04. 018

 10. Jiena L, Jia-bo Z, Zufan Z et al (2020) Survey of mobile edge computing ofloading strategies [J]. J Chin
Comput Syst 41(9):1866–1877

 11. Kim Y, Kwak J, Chong S (2015) Dual-side dynamic controls for cost minimization in mobile cloud com-
puting systems [C]// Proc of the 13th IEEE Int Symp on Modeling and Optimization in Mobile, Ad Hoc,
and Wireless Networks. Piscataway, NJ:IEEE, :443–450

 12. Li B, Niu L, Huang X, Ding H (2020) Mobility prediction based computation offloading handoff strategy
for vehicular edge computing. J Electron Inf Technol 42(11):2664–2670. https:// doi. org/ 10. 11999/ JEIT1
90483

 13. Liu L, Liu X, Zeng S, Wang T, Pang R (2019) Research on virtual machines migration strategy based on
mobile user mobility in mobile edge computing. J Chongqing Univ Posts Telecommun 31:158–165

 14. Meng H, Huo R, Guo Q, Huang T, Liu Y (2019) Machine learning-based stochastic task offloading
algorithm in mobile-edge computing[J]. Journal of Beijing University of Posts and Telecom 42(2):25–
30. https:// doi. org/ 10. 13190/j. jbupt. 2018- 078

 15. Panigrahi R, Borah S, Bhoi AK, Ijaz MF, Pramanik M, Kumar Y, Jhaveri RH (2021) A consolidated deci-
sion tree-based intrusion detection system for binary and multiclass imbalanced datasets. Math 9:751.
https:// doi. org/ 10. 3390/ math9 070751

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051583
https://doi.org/10.3390/s21165491
https://doi.org/10.1109/MWC.001.1900406
https://doi.org/10.13196/j.cims.2019.04.018
https://doi.org/10.13196/j.cims.2019.04.018
https://doi.org/10.11999/JEIT190483
https://doi.org/10.11999/JEIT190483
https://doi.org/10.13190/j.jbupt.2018-078
https://doi.org/10.3390/math9070751

45468 Multimedia Tools and Applications (2023) 82:45453–45469

1 3

 16. Panigrahi R, Borah S, Bhoi AK, Ijaz MF, Pramanik M, Jhaveri RH, Chowdhary CL (2021) Performance
assessment of supervised classifiers for designing intrusion detection systems: a comprehensive review
and recommendations for future research. Math 9:690. https:// doi. org/ 10. 3390/ math9 060690

 17. Rani S, Koundal DK, Ijaz MF, Elhoseny M, Alghamdi MI (2021) An optimized framework for WSN rout-
ing in the context of industry 4.0. Sens 21:6474. https:// doi. org/ 10. 3390/ s2119 6474

 18. Sivanandam SN, Visalakshi P, Bhuvaneswari A (2007) Multiprocessor scheduling using hybrid particle
swarm optimization with dynamically varying inertia. Int J Comput Sci Appl 4(3):95–106

 19. Steinbrunn M, Moerkotte G, Kemper A (1997) Heuristic and Ran2 domized optimization for the join
ordering problem[J]. VLDB J 6(3):8–17

 20. Tong Z, Deng X, Ye F, Basodi S, Xiao X, Pan Y (2020) Adaptive computation offloading and resource
allocation strategy in a mobile edge computing environment. Inf Sci 537:116–131 [CrossRef]

 21. Xing Z, Jianhua P, Wei Y (2020) A privacy-aware computation offloading method based on Lyapunov
optimization. J Electron Inf Technol 42:704–711

 22. Xu J, Li X, Ding R, Liu X (2019) Energy efficient multi-resource computation offloading strategy in
mobile edge computing

 23. Yang L, Zhang H, Li M, Guo J, Ji H (2018) Mobile edge computing empowered energy efficient task off-
loading in 5G. IEEE Trans Veh Technol 67:6398–6409 [CrossRef]

 24. Yiyi Z, Ye Y, Jinhu L et al (2020) A task offloading algorithm in mobile edge cloud computing. [J] Com-
put Appl Softw 37(6):135–141

 25. Zhang, Y, Yan, L (2022) A fast face recognition based on image gradient compensation for feature descrip-
tion. Multimed Tools Appl. https:// doi. org/ 10. 1007/ s11042- 022- 12804-4

 26. Zhang H, Guo J, Yang L, Li X, Ji H (2017) Computation offloading considering fronthaul and backhaul
in small-cell networks integrated with MEC. In Proceedings of the 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Atlanta, GA, USA, 1–4 May 2017; pp. 115–120

 27. Zhang J, Hu X, Ning Z, Ngai EC-H, Zhou L, Wei J, Cheng J, Hu B (2017) Energy-latency tradeoff for
energy-aware offloading in Mobile edge computing networks. IEEE IoT J 5:2633–2645 [CrossRef]

 28. Zhou S, Jadoon W (2021) Jointly optimizing offloading decision and bandwidth allocation with energy
constraint in Mobile edge computing environment[J]. Computing, (99)

 29. Zhu Y (2020) Research on multi-priority task scheduling algorithms for Mobile edge computing [D]. Univ
Electron Sci Technol China

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Yanhu Zhang born in 1981. Senior engineer. ph. D. His research interest
covers algorithm research, edge computing, image recognition (for-
zyh@163.com).

https://doi.org/10.3390/math9060690
https://doi.org/10.3390/s21196474
https://doi.org/10.1007/s11042-022-12804-4

45469Multimedia Tools and Applications (2023) 82:45453–45469

1 3

Lijuan Yan born in 1983. Lecturer. M.S. Her research interest covers
algorithm research, image recognition, wireless network(juanjanny@
qq.com).

	Research on the optimization of energy consumption for multi-priority tasks in mobile computing offloading
	Abstract
	1 Introduction
	2 Task processing model
	2.1 Task priority
	2.2 Modeling the task processing flow

	3 Calculation models
	3.1 Total energy consumption model of mobile devices
	3.2 The calculation model for evaluation values

	4 Improved algorithm
	4.1 Algorithm flow chart
	4.2 Implementation of algorithm

	5 Experiment and result analysis
	5.1 Experimental environment
	5.2 Experimental results and analysis
	5.2.1 Comparison of unloading strategies
	5.2.2 Comparison of reference algorithms

	6 Open issues
	7 Conclusion
	References

