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Abstract
Brain-Computer Interfaces (BCI) is an exciting and emerging research area for research-
ers and scientists. It is a suitable combination of software and hardware to operate any 
device mentally. This review emphasizes the significant stages in the BCI domain, cur-
rent problems, and state-of-the-art findings. This article also covers how current results can 
contribute to new knowledge about BCI, an overview of BCI from its early developments 
to recent advancements, BCI applications, challenges, and future directions. The authors 
pointed to unresolved issues and expressed how BCI is valuable for analyzing the human 
brain. Humans’ dependence on machines has led humankind into a new future where BCI 
can play an essential role in improving this modern world.

Keywords  Brain-computer interface (BCI) · BCI advancements · EEG feature extraction · 
BCI future · BCI challenges · BCI tools

1  Introduction

Brain-computer interface (BCI) is an interesting topic for researchers, as evidenced by 
extensive research and study material. Interacting with any device or PC using brain sig-
nals is the central idea behind the BCI. The BCI encompasses a thought signal that drives 
hardware with software applications. According to this definition, BCI aims to capture the 
brain signal with the help of sensors, process the captured signal, extract features from 
these signals and then send that desired output to control any device. It’s a relay between 
the brain and the device. The possibility of a BCI began in 1929 when Hans Berger [180] 
explained the electroencephalogram (EEG). He recorded the brain waves and identified the 
oscillations with every brain activity. Such brain waves are also known as Berger waves. In 
1973, J.J.Vidal [295] tried to implement an EEG-based BCI, which recorded the evoked 
electrical activity of the brain using EEG. Farwell and Don Chin [89] used P300 to link the 
brain and the machine. U. Hoffman [126] also proposed a P300-based BCI to re-establish 
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the link between the brain and the affected body part. According to J.P. Donoghue et al. 
[82], "a BCI in which the major goal is to provide an instruction signal from the cortex that 
may control any paralyzed body part or any actual device." According to J.R. Wolpaw et al. 
[312], "a BCI is a device that connects the brain to a non-physical channel of communica-
tion and command."

Humans’ ability to communicate with each other is one of the fundamental principles of 
human civilization because they cannot fully understand others’ perspectives without com-
munication. The field of communication is very diverse, i.e., speech, conversation, visual 
communication, gesture, or writing. With the help of communication, one can share emo-
tions, expectations, and creative thoughts among human beings. BCI is a boon for those 
where communication is not possible, i.e., locked-in syndrome, spinal cord injury, brain 
stroke, cerebral palsy, etc. Due to these disabilities, one cannot communicate with others 
while they are well aware of things around them [23, 127]. BCI provides basic communi-
cation abilities by interfacing the human brain and the device. The user generates various 
brain waves that are converted into commands for the device [215].

BCI was originally developed for biomedical applications to allow physically disa-
bled users to move around, replace the disappeared motor functions and develop assis-
tive devices for medical purposes. But after a long time, this technology has expanded 
and found its way into various non-medical applications. The extension of BCI is very 
vast in non-medical applications [86, 266] such as lie detection [171, 302], drowsiness 
detection [69, 101, 175], virtual reality [46, 50, 259, 276, 285], video games [161, 209], 
drivers fatigue detection [131, 191, 206, 304, 327], stress detection [329, 337], brain to 
brain interface [19, 110, 221, 249], driving humanoid robots [53, 278], wheelchair con-
trol [94], BCI mobile robot [34], emotion recognition [11, 133], biometrics [9, 240], upper 
limb rehabilitation after stroke [55, 97, 313] etc. In the last decade, many research and 
review articles have been published, as shown in Fig. 1. The number of published articles 
increased continuously, but a decline can be seen due to the COVID-19 pandemic. To write 
a specialized review article on BCI, the authors referred to some important BCI review 
articles in Table 1. Wolpaw et al. [311] summarised the first international meeting on the 

Fig. 1   Brain-Computer Interface research and review articles published by reputed publication houses such 
as Springer, Nature, Elsevier, IEEE, Taylor and Francis, Wiley
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Table 1   Some Important BCI review Articles

Reference Summary

Wolpaw et al. [311] • The article summarized the first international meeting on the research and 
development of BCI

• The article explained the BCI definition, essential features, invasive data 
acquisition methods, signal analysis, translational algorithms, BCI applica-
tions, and the future

Hwang et al. [134] • The article summarized EEG-based BCI articles from 2007 to 2011
• It also discussed different BCI paradigms, classification algorithms, BCI 

applications, and feature types
Ramadan et al. [247] • The article explained various brain control signals, characteristics, and 

differences. The current hardware and software of BCI technology are well 
explained

• Various neuroimaging methods, BCI challenges, and future directions are 
excellently explained

Ahn et al. [4] • Performance-based motor imagery BCI studies and their results have been 
discussed

• Physiological conditions affected the BCI performance
Nicolas et al. [217] • The article excellently discussed the various neuroimaging modalities, EEG 

control signals, and different artifacts removing techniques
• Various algorithms have been described in the feature extraction and clas-

sification section
Abdulkader et al. [1] • This article discussed various applications of BCI

• Critical technical problems and their solutions have been discussed in this 
article

Choi et al. [60] • The current state-of-the-art hybrid BCIs have been reviewed in this article
• The article focused extensively on the task and measurement characteristics of 

hybrid BCIs
Amiri et al. [14] • The article reviewed various hybrid BCIs, their multiple combinations, ben-

efits, and drawbacks
Papanastasiou et al. [229] • The article described how BCI devices impacted the subject’s attention and 

working memory and how proper training enhanced cognitive skills
• The authors discussed the rehabilitation of neuro-developmental diseases for 

multiple population groups and provided future instructions for application-
based BCIs

Van et al. [87] • The article characterized the brain connectivity and functions in 1200 healthy 
subjects using multiple imaging modalities

Saha et al. [261] • The article explained BCI challenges and applications excellently
Chaudhari et al. [54] • BCI applications in communication and rehabilitation have been explained 

very well
Lotte et al. [185] • The article discussed different machine learning classification algorithms used 

in EEG-based BCIs from 2007 to 2017
Abiri et al. [2] • A comprehensive review of EEG-based brain-computer interface paradigms
Banville et al. [30] • A review article on non-invasive modalities such as EEG, fTCD, NIRS, and 

hybrid BCIs
• Different EEG control signals, experimental protocols, and signal processing 

methods have been discussed
Rezeika et al. [254] • The article summarised different BCI spelling models, their categorization 

and methodologies, and the current system’s limitations
Rashid et al. [250] • The article described essential components of BCI, different EEG data acqui-

sition frameworks, data processing strategies, feature extraction, classification 
methods, etc

• The Application-based approach, current challenges, and future directions 
have also been provided in this article
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developments of BCI. The article explained the BCI’s basic developments and future pos-
sibilities, while the paper lags from the feature extraction and processing point of view. 
Hwang et al. [134] summarized EEG-based BCI articles from 2007 to 2011. The article 
discussed different BCI paradigms, classification algorithms, BCI applications, and fea-
ture types, but the future directions and current state of the art were missing. Ramadan 
et al. [247] discussed EEG control signals and their classifications excellently. The authors 
described BCI very well from the software and hardware perspective, but the signal pro-
cessing and application parts were not appropriately explained. Ahn et  al. [4] provided 
various performance-based motor imagery BCI studies. The article explained how physi-
ological factors affect the performance of a BCI and how BCI reliability can be improved 
to deal with these fluctuations. The feature extraction and the application-based approaches 
were not adequately considered. Nicolas et al. [217] proposed an excellent review article 
considering every aspect of BCI.

Abdulkader et al. [1] discussed the fundamental aspects and covered a broad spectrum 
of EEG-based BCI. The article also discussed BCI applications, essential usability issues, 
and solutions. However, the articles reviewed were fewer. Choi et  al. [60] proposed an 
excellent article on hybrid BCIs. A systematic methodology has been adopted for the clas-
sification of hybrid BCIs. The article focused extensively on the task and measurement 
characteristics of hybrid BCIs. Ameri et al. [14] also discussed hybrid BCIs and their mul-
tiple combinations, benefits, and drawbacks. Papanastasiou et al. [229] described how BCI 
devices impacted the subject’s attention skills and working memory. BCI-based applica-
tions enhance persons’ cognitive skills with proper training and rehabilitation. The article 
also discussed the rehabilitation of neuro-developmental diseases for multiple population 
groups and provided future instructions for application-based BCIs. Van et al. [87] charac-
terized the brain connectivity and functions in 1200 healthy subjects using multiple imag-
ing modalities. Saha et al. [261] explained the BCI challenges and applications excellently. 
Chaudhari et al. [54] explained the BCI contributions to communication and rehabilitation. 
Lotte et al. reviewed [185] different EEG-based BCI classification algorithms from 2007 to 
2017. The article also provided the guidelines for selecting the appropriate machine learn-
ing technique, and their pros and cons, while the evaluation performance matrix was miss-
ing. Abiri et al. [2] proposed a comprehensive review of EEG-based brain-computer inter-
face paradigms. Different EEG external stimulation paradigms have been explained in this 
article. Banville and Falk [30] reviewed various non-invasive data acquisition modalities, 
i.e., EEG, functional translational Doppler (fTCD), near-infrared spectroscopy (NIRS), and 

Table 1   (continued)

Reference Summary

Zhang et al. [331] • The article explained BCI architecture and invasive and non-invasive data 
acquisition techniques

• The article also covered different EEG paradigms, deep learning approaches 
in BCI, hybrid BCIs, and future directions

Islam et al. [141] • The article summarized various features, features extraction techniques, sys-
tem performance, and algorithms used in emotion recognition

• It also excellently described the deep learning and shallow learning techniques 
used in emotion recognition

Zhang et al. [330] • Applications of transfer learning on the brain-computer interface were 
explained well
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hybrid BCIs based on these techniques. The authors summarised the fifty-five BCI stud-
ies from 2008 to 2014. EEG control signals, experimental protocols, and signal process-
ing methods with future directions were explained well in this article. Rezika et al. [254] 
reviewed different BCI spelling models, their categorization, and the current system’s 
limitations in a specific manner. Rashid et  al. [250] proposed a very informative article 
including every aspect of BCI, i.e., essential components, control signals, data acquisition 
methods, data processing, feature extraction, and classification methods with popular BCI 
applications. Zhang et al. [331] proposed an excellent BCI article that explained various 
aspects of BCI and the deep learning approaches used in BCI. Islam et al. [141] reviewed 
different feature extraction techniques used in emotion recognition and provided observa-
tions and recommendations for future research. The article excellently explained the usabil-
ity of deep learning and shallow learning techniques. Zhang et al. [330] proposed an article 
on the applications of transfer learning in the BCI. The article focused on all non-invasive 
methods, EEG signals, experimental design protocols, signal processing methods, and 
future directions of EEG-based BCI research. However, the experimental results between 
BCI applications for EEG modulation were missing.

After a deep investigation, the authors found that most of the published articles were 
application-specific. Some BCI-related information was missing or not accurately 
described, including methodology descriptions, recent advancements, future research 
directions, etc. The authors focused on a review article that provides the basic BCI infor-
mation and effectively covers the application, recent advancements, and challenges of the 
BCI. The basic structure of this study is shown in Fig. 2. The authors also compared some 
recently published BCI reviews with this article, as shown in Table 2. Covering all the BCI 
aspects in a single article is really challenging. The authors are already working on one 
more BCI article based on BCI feature extraction and processing techniques.

The inclusion criteria for the articles were that they covered various aspects of BCI, 
including applications, recent advancements, challenges, and future directions. As 
described in Fig. 3, the PRISMA method has been adopted to search these articles.

This review article will be helpful to the research community for the following points:

(1)	 Introductory information about BCI and its components will be helpful for novice 
researchers.

BCI
(Introduction, Components)

BCI TOOLS AND 
APPLICATIONS

Rehabilitation

Hardware 

Developments

Multimedia

Robotics 

Virtual Reality

BCI RECENT 
ADVANCEMENTS

Healthcare

Safety

Emotion 

Recognition

Robotics

Cognitive 

Ability

BCI CHALLENGES

Technological 

Neurological

Socioeconomic

Fig. 2   Study diagram
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(2)	 The article provides knowledge about the Software/tools and BCI Applications, provid-
ing insights and interest for researchers in this field.

(3)	 The article contains the recent advancements and challenges of the BCI that will be 
helpful for the developers and expert-level researchers to think of solutions to these 
challenges.

(4)	 The discussion and future possibilities will be helpful in developing new thinking and 
possibilities in this field.

The paper is organized as follows. The second section of the article contains BCI com-
ponents, i.e., the signal acquisition, why the EEG is better than other signal acquisition tech-
niques, and the comparison between the EEG and other data acquisition modalities. This sec-
tion also contains pre-processing, feature extraction, and classification. Different BCI software 
and the BCI applications are described in the third section. The fourth section contains the 
BCI’s recent advancements. Section five explains the challenges in BCI. The sixth and seventh 
sections are the discussion, conclusion, and future scope.

Table 2   Comparison of the proposed article with some already published BCI articles

Reference BCI Compo-
nents

BCI Applica-
tions

BCI Chal-
lenges

BCI Tools BCI Future 
Directions

BCI
Recent 
Advance-
ments

[247] ✓ ✓ ✓ ✓ ✓ ✘
[1] ✓ ✓ ✓ ✘ ✘ ✘
[261] ✘ ✓ ✓ ✘ ✓ ✓
[250] ✓ ✓ ✓ ✘ ✓ ✓
[331] ✓ ✓ ✘ ✘ ✓ ✘
This
Study

✓ ✓ ✓ ✓ ✓ ✓

Fig. 3   PRISMA technique 
adopted to search the database Searching the database in Springer, Web of Science, 

IEEE, Nature, Taylor and Francis etc.

N = 769

Articles after content screening and duplicity

removal N = 638

After Abstract reading, Eligible Articles N = 467

After reading the complete text, Selected Articles

N = 294

Focused Articles N= 182 (BCI Applications, Recent 

Advancements, and Challenges based)
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2 � BCI Components

The brain-computer interface is an effective and powerful tool for user system commu-
nication without muscle intervention [130]. Every BCI system consists of these essential 
components; signal acquisition, pre-processing, feature extraction, classification, and appli-
cations [121]. Figure 4 illustrates a typical BCI system that indicates the different stages 
of the BCI. In the signal acquisition stage, brain activity is captured by different types of 
sensors and different data acquisition modalities (EEG/fMRI/NIRS/MEG) [234]. This cap-
tured raw signal has various artifacts removed in the pre-processing stage [85]. Then in 
the feature extraction stage, a few relevant signal values are extracted, called features [24]. 
These extracted features are then classified using different techniques in the classification 
stage [277].

2.1 � Signal Acquisition

The two major parts of the human brain are the cerebral cortex and subcortical regions. 
Subcortical regions are essential to control various activities such as body temperature, 
heart rate, reflexes, learning, respiration, etc. The cerebral cortex or cerebrum is responsi-
ble to controls sensory and motor functions and various activities like language refinement, 
planning, thinking, pattern identification, etc.

The cerebral cortex is divided into two hemispheres, each of which is divided into four 
lobes: frontal, parietal, temporal and occipital, as shown in Fig. 5. The frontal lobe is asso-
ciated with planning, thinking, problem-solving and emotional control. The parietal lobe 
is associated with Sleeping, manipulation, awareness, and perception [250]. Memory, 
emotion generation, and language processing are associated with the temporal lobes. The 
occipital lobe is responsible for all visual activities.

Fig.4   Typical BCI components



47010	 Multimedia Tools and Applications (2023) 82:47003–47047

1 3

The nervous system is another essential human body system. It is divided into two parts: 
the central and peripheral systems. The central nervous system comprises the spinal cord 
and the brain. The autonomic nervous system is part of the peripheral nervous system. It is 
responsible for regulating digestion, hormone secretion, and breathing. Acquiring the raw 
signal is a crucial step for a typical BCI system. Different types of electrodes have been 
used for signal acquisition, as shown in Table 3. Some of them are injected inside the scalp 
by the surgery, and others are placed on the scalp. These electrodes are application-specific 
and selected based on their availability and ergonomics. Based on the signal acquisition 
techniques, BCIs are divided into two types: either invasive (surgical) [16, 292] or non-
invasive (nonsurgical) [62, 336]. Neurosurgery introduced microelectrodes into the brain 
[264]. A high-quality signal can be picked up with this technique, but there is a possibility 
of tissue damage during such surgery that could result in signal loss. A disadvantage of 
such an electrode is that it is impossible to pick up signals from any part of the brain other 
than the implantation site [336]. The brain signals can be picked up by the scalp in non-
invasive BCI [172, 301]. The signal quality is not as effective as with the invasive BCI, 
but it is preferred since surgery is avoided. Numerous non-invasive devices are available 
today and can easily be used for signal acquisition without any special training or medi-
cal supervision. Emotive, Open BCI and National Instruments are some companies that 
provide easy-to-use electrodes and electrode caps [115, 183]. The semi-invasive is another 
type of BCI where the electrodes are placed on the exposed part of the brain. The strip or 
grid electrodes cover a vast cortex space (up to 256 electrodes), enabling many cognitive 
studies [52]. In [247, 250], different EEG electrode has been discussed.

2.1.1 � EEG instead of other signal acquisition techniques

EEG is a non-invasive technique. Using EEG, we can extract signals from the brain and 
use them for further pre-processing. In the EEG, we can quantify the electrical signal gen-
erated by the physio-electrical activity of the brain. The EEG waveform varies with the 
position of the electrodes. It is a complex pattern compared to Electrocardiography (ECG). 
EEG is an inexpensive, affordable, safe, and readily available technology [116, 163]. There 
are two classes of EEG electrodes, one is active, and the other is passive. The active elec-
trodes have an amplifier circuitry, but the passive electrode necessitates an external ampli-
fier circuit to amplify the diagnosed brain signal [198]. The saline solution minimizes the 

Fig. 5   Different parts of the 
human brain Frontal Lobe

Cerebellum

Spinal cord
Temporal

Lobe

Occipital Lobe

Parietal Lobe



47011Multimedia Tools and Applications (2023) 82:47003–47047	

1 3

impedance between the body and the electrode interface. This gel dries over time, so we 
adopt the dry electrodes instead [177, 203]. Advantages of using EEG are a low signal-
to-noise ratio (SNR), a high resolution, and a rapid response (0.5-130 ms) [100]. Different 
standards are available globally for using EEG electrodes. As shown in Fig. 6, the 10–20 

Table 3   Available EEG devices and their basic descriptions

Device Description

Brain Products Wireless communication, Channels available (8/16/32), Sampling frequency 
(250/ 500/1000)Hz

NeuroScan Wired communication, Channels available (32/40/64), Sampling frequency 
(20 kHz) and (1000 /1024 /4096) Hz

OpenBCI Wireless communication, Channels available 16, Sampling rate 256 Hz
Muse Wireless communication, Channels available 4, Sampling rate 256 Hz
Bio semi Wired communication, Channels available (16/32/64), Sampling frequency 

(2/4 /8/16) KHz
mBrain Train Wireless communication, Channels available 24, Sampling rate 250–500 Hz
Neuroelectrics Enobio 32 Wireless communication, Channels available 32, Sampling rate 500 Hz
Emotive Wireless communication, Channels available (5/14/32), Sampling frequency 

128 Hz
Melon EEG head Wireless communication, channels available 3, sampling rate 20 Hz
NeuroSky Wireless communication, Channels available 1, Sampling rate 512 Hz
PLX Xwave Wireless communication, Channels available 1, Sampling rate 250 Hz
Advanced brain monitoring Wireless communication, Channels available 24, Sampling rate 256 Hz
AntNeuro eego Wireless communication, Channels available 64, Sampling rate 2084 Hz
MyndBand Wireless communication, Channels available 3, Sampling rate 512 Hz
Enobio Wireless communication, Channels available (8/20/32), Sampling rate 500 Hz
Quasar Wireless communication, channels available 8, Sampling rate 400 Hz
Cognionics Mobile Wireless communication, Channels available 72, Sampling rate 500–1000 Hz
OxyMon Wireless communication, Channels available 1 to 112, Sampling rate 

32.64 Hz
g.tech nautilus Wireless communication, Channels available 64, Sampling rate 500 Hz

Fig. 6   EEG electrode placement 
10–20 system
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system is one of the configurations accepted globally for data acquisition [44, 331]. The 
system relies on the connection between the electrode location and the cerebral cortex’s 
underlying area. The numerals 10 and 20 indicate that the distance between adjacent elec-
trodes is 10% or 20% of the skull’s total front-back or right-left distance, respectively. The 
lobe on either side is represented by a letter, while a number represents the hemisphere 
location. The frontal, parietal, occipital, and temporal lobes are denoted by F, P, O, and T 
in this system. The electrode placements of the right hemispheres are indicated by the even 
digits 2,4,6,8. The electrode placements in the left hemisphere are represented by odd num-
bers 1,3,5,7. Table 4 shows different EEG bands with different frequency ranges, ampli-
tudes and characteristics [196, 212, 334].

Except EEG, Electrocorticography (ECoG) is a semi-invasive technology where elec-
trodes are placed inside the skull to improve spatial resolution [244]. This technique cannot 
be adopted outside the hospital room [315]. The non-invasive Magnetoencephalography 
(MEG) uses the brain’s magnetic field to record the brain’s neural activity [201, 263]. Posi-
tron Emission Tomography (PET) refers to the metabolic process. It is used to test how our 
organs and tissues work [138]. It is also a non-invasive technique, but the operating cost is 
high, and portability is another issue with this technique [29]. Functional magnetic reso-
nance imaging (fMRI) is based on the principle that there is a variation in the oxygen con-
tent in the blood to receive the signals from active brain regions [37, 274]. Table 5 shows 
various signal acquisition techniques’ advantages and drawbacks.

2.2 � Pre‑Processing

Pre-processing is required to extract the noise from the recorded EEG signal. The analog-
to-digital (A/D) conversion, amplification, and filtering are performed in the pre-process-
ing stage [36, 143]. When we record the electrical neural activity of the brain, some elec-
trical and muscular activities can also be recorded. These undesired signals are known 
as artifacts [265]. The removal of artifacts is necessary before further signal processing 
[291]. Endogenous and exogenous are the two broad categories of artifacts. Electromyo-
graphy (EMG) is the artifact usually due to muscle activity such as muscle contractions. 
In addition, cardiac activity also introduces a rhythmic disturbance into the brain waves. 
Some undesired signals are generated by blinking and other eye movements and develop 
a low-frequency pattern with the brain signal. These all are endogenous artifacts [147]. 

Table 4   Different EEG bands and their characteristics

EEG Bands Frequency Range (Hz) Characteristics Location on Brain

Delta 0.5–4 Deep sleep, Unconscious Frontal
Theta 4–7 Drowsiness, Imaginary, Enthusiastic Midline, Temporal
Alpha 7–12 Relaxation, calm, eyes closed Frontal, Occipital
Mu 8–13 Motor neurons activated Sensory-motor cortex
Beta 12–30 Alertness, aware of surroundings, Thinking Frontal, Symmetri-

cally distributed on 
both sides

Gamma Above 30 Abnormality, Agitation, Short term memory 
for matching objects

Frontal, central, 
somatosensory 
cortex
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Exogenous artifacts may be due to the 50/60 Hz mains disturbance from AC sources [142]. 
After identification, artifact removal is the next step [139, 219]. The brain signals can be 
removed from the EMG and ECG signals [166, 310]. The EEG signal is usually between 
0.2 and 40 Hz. So we can apply filters to eliminate artifacts above and below this range, 
such as discrete Fourier transform (DFT), finite impulse response (FIR filters), and infinite 
impulse response filters (IIR). Some standard methods for removing artifacts are linear fil-
tering, principal component analysis [22], independent component analysis [262], etc. A 
good pre-processing increases signal quality, which results in better feature extraction and 
classification performance.

2.3 � Feature Extraction

The activity of finding secret facts and the behavior of the captured signal is called feature 
extraction [145]. The behavior of a signal set can be represented by its characteristics [128, 
186, 326]. Various techniques are now available for the feature extraction process, viz. 
principal component analysis, independent component analysis, autoregressive (AR) mod-
eling [328], genetic algorithm [273], and sequential selection [106]. The principal compo-
nent analysis is preferred to extract the activities and obtain the signal information [320]. 
AR modeling and genetic algorithms are used for pattern recognition and feature extraction 
in patients with epilepsy [3, 6, 25, 78]. Table 6 shows the different feature extraction tech-
niques and their applications.

In time-domain analysis, the signal amplitudes vary with time. When extracting features 
in the time domain, we take a specific time window of the signal and extract characteris-
tic properties. Statistical data properties can remove the most valuable elements from the 
signal [293]. In addition, various application-oriented techniques such as AR, LPC, and 
KB modeling are also available. The signal characteristics depend on the signal’s present 
and past values in AR and LPC models. The advantages of these techniques are signal 
compression, noise reduction, resolution enhancements, biometric modeling, EOG, EMG 
analysis, cancer cell analysis, speech recognition, coding, etc.

ERS and ERD are the types of Event-Related Potential (ERP). When the signal power 
increases in a specific EEG band, it is called ERS. The ERD indicates a decrease in signal 
power in the same way. Different brain activities are recorded in various frequency bands 
like delta, alpha, or gamma. These variations in the activities are recorded and referred to 
as the ERS and ERD patterns. Evoked potentials are the electrical responses in a specific 
pattern recorded from a particular part of the nervous system, such as the brain [84, 169, 
188]. In steady-state evoked potentials (SSEPs), the person receives a periodic stimulus, 
i.e., an image flicker, a sound wave, or vibration. After receiving such a stimulus, our brain 
reacts accordingly. These SSEP signals can be steady-state visual potentials (SSVEP), 
auditory SSEP, or somatosensory SSEP. SSVEPs are the oscillations of the brain response 
in the visual cortex by repetitive visual stimuli. There are many studies in which the suc-
cessful outcome of BCI was integrated with SSVEP or VEP [51]. SSVEP is used when the 
user’s eye movements are perfect; it does not apply to uncontrolled eye and neck move-
ments [193].

P300 also belongs to the ERP types [90]. In P300, the person is exposed to a surpris-
ing task that fluctuates in the EEG pattern after every 300 ms. It deals with the process-
ing of memory variation and allows its users to spell 26 letters and numbers (0 to 9) on 
a computer screen [155]. The rhythms associated with motor actions are sensorimo-
tor (beta = 12–30 Hz) and sensory signals. The subject can control the amplitude of such 
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signals. If the signal frequency is below 1 Hz, it belongs to slow cortical potentials (SCP) 
[124]. These are very sluggish variations that can end within a few milliseconds to seconds.

The time-domain representation is often used in BCIs. Due to very low amplitudes 
(mv), detecting neural activity is sometimes challenging and provides only temporal infor-
mation. All of these difficulties can be eliminated by frequency domain analysis. The Fou-
rier transform (FT) is a dominant and joint transform used to analyze biomedical signals. 
With the help of FT, the EEG waveforms are displayed in the frequency domain. The Fou-
rier transformation tells us which frequencies are present in the signal and their propor-
tion. The Fourier transformation can be used in both continuous and discrete signals; the 
neural signal is represented in the frequency domain to characterize its properties [233]. 
A band power characteristic representation is averaging of instance values over a specific 
frequency class. The band performance function illustrated the performance details in each 
specified frequency band. The power spectrum is often applied to ascertain brain opera-
tions [83]. It explains the distribution of the power of EEG curves over a specific frequency 
range. Combined time–frequency domain analysis is the combined method of extracting 
features in both times and the frequency domain. The neurotic waveforms contain the 
attributes of both the time and frequency domains. Both temporal and spectral variations 
can be analyzed using this technique. FFT is used to determine the signal power at any time 
and explore the signal [8]. Wavelet transformation is also helpful for quickly analyzing the 
brain’s spectral patterns [13]. The various wavelets were effectively implemented for the 
execution of the BCI mechanism, such as Morlet wavelets [66], Daubechies wavelets [66], 
Mexican hat wavelets [232], etc.

2.4 � Classification

It is essential to convert the feature into the required command and get the desired action 
by an effective classifier. Various classification algorithms are available to extract the 
desired feature. Broadly the classifiers can be divided into two categories, linear and non-
linear. A direct relationship exists between the network’s input and output patterns in lin-
ear classifiers. Linear discriminant analysis LDA [317] and support vector machine SVM 
[309] are the two types of such classifiers. Fisher formulated the LDA method in 1936. It 
is an elementary classifier with reasonable reliability and low mathematical requirements 
[296]. Usually, a two-class classifier can be expanded into multiple classes. Bayesian lin-
ear discriminant analysis (BLDA) and Fisher linear discriminant analysis (FLDA) are the 
improved LDA versions [202]. The non-linear classifiers are used when there is no asso-
ciation between input and output patterns. Examples of such classifiers are artificial neural 
networks (ANN) [192], k-nearest neighbor classifiers [178], and SVMs [316]. ANN is a 
very flexible multiclass classifier that classifies the input signal by the training process. 
Developing a training algorithm is essential to the ANN; Multilayer perceptron (MLP) is 
frequently used to solve various classification-related problems.

3 � BCI Tools and BCI Applications

BCI tools are the general-purpose systems used for BCI research. These tools are used to 
collect data, Process raw data, extract unwanted signals, and monitor different brain parts 
depending on the specific application. Some of these tools are available online for free, 
while others are paid. EEGLAB is a toolbox in MATLAB for handling EEG and other 
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electrophysiological signals. After loading the data into the EEGLAB Toolbox, vari-
ous data operations such as pre-processing, removal of artifacts, time/frequency analysis, 
Independent Component Analysis (ICA), plotting the data functions for visualization, data 
scrolling, event, and channel location handling can be performed. It’s a free, multi-purpose 
toolbox developed by the Swartz Center of Computational Neuroscience (SCCN) at the 
Wadsworth Centre in 2000. Another tool called BCI2000 contains four components, i.e., 
Source, signal translation, client application, and operator component. The signal detection 
is carried out in the source component. The received signal is processed in the signal pro-
cessing component. The client application part provides a feedback signal to the person. It 
runs on Windows, Linux, and OS X and is written in C +  + . Several filters such as Fourier 
Transform, Random Filter, Spatial Filter, Normalizer, and simple low pass filters are com-
patible with BCI2000. Open Vibe is another software platform for BCI. It supports various 
data acquisition systems and includes many signal processing algorithms. It is an openly 
accessible software package for planning and experimenting with BCI. Real-time signal 
processing of the brain signal is one of the functions of Open Vibe. It can be used for sig-
nal acquisition, filtering, processing, and projecting brain signals in real-time. It is unpaid 
software that is compatible with Windows and Linux operating systems. It offers real-time 
biofeedback and diagnostics. Open Vibe can use a wide range of hardware EEG devices. It 
has various capabilities, such as signal processing algorithms, machine learning functions, 
and a better graphical user interface. TOBI is a Common Implementation Platform (CPI) 
developed for BCI in 2008. TiA, TiB, and TiC are the interfaces in TOBI. TiA sends differ-
ent signals, TiB is responsible for transmitting signal properties, and TiC is accountable for 
recognizing classes and labels in BCI. Besides these tools, we have various other widely 
used tools like BCILAB (an open-source MATLAB tool for BCI), BCI +  + , OPEN BCI, 
etc.

As shown in Fig. 7, BCI is used in various fields i.e. medicine [272], games and enter-
tainment [195], advertising [231], education [269], robotic control [257], self-regulation 
and meditation [283], smart homes [47] and safety [207]. BCI can prevent, detect and diag-
nose various diseases. AD Instruments, Advanced Brain Monitoring, ANT Neuro, BEE 
Medic, Biopac Systems Inc, Biosemi, Blackrock Microsystems, Brain Homecare, Brain 
Products, Brain Rhythms Inc, Brain Gate, Brain Master Technologies Inc, Brain Science 

Fig. 7   BCI applications



47018	 Multimedia Tools and Applications (2023) 82:47003–47047

1 3

Technology are some of the international companies that are active in the BCI research. 
Table 7 shows some important application-related findings of BCI in recent years.

4 � BCI Recent Advancements

Human psychology is an exciting topic for researchers and medical professionals. Lim 
et al. [179] proposed a comparative study that differentiates the concentration and immer-
sion state of the human brain. Thirty-two college students participated in this study, and the 
Absolute Power Analysis shows the difference between the two states. The concept can be 
used in future studies with more number of candidates. In many countries, the death toll in 
car accidents increases every day due to driver’s drowsiness. Nguyen et al. [216] proposed 
a method to detect drowsiness while driving using EEG and NIRF (near-infrared signals). 
The author measured the subject’s vital body parameters in wakefulness and drowsiness 
conditions and found that the oxygen concentration and power densities differed. The clas-
sification accuracy can be increased in the future with actual driving tasks. It will be good 
if the automobile industry adopts such innovative approaches to prevent road crashes due 
to sluggishness. Further, Gao et  al. [104] also proposed an EEG-based system to detect 
driver fatigue while driving. The performance of this proposed method was compared to 
eight competing methods, where this method provides better classification accuracy than 
the others. From a future perspective, the method can be more reliable using deep learning 
approaches. One step ahead, a classification model for the neurological operations of suc-
cessful stopping and failed stopping trials in the reaction of the right hand was developed 
by Chikara et al. [58]. It has been observed that the quadratic discriminant analysis (QDA) 
has an accuracy of 94.94%. Catrambone et al. [49] proposed an EEG-based classification 
method to predict mechanically transient, non-transitive and device-arbitrated upper limb 
movements. The authors found a remarkable difference in the accuracy of the male and 
female data in predicting movement. The authors also achieved an accuracy of 78.55% in 
distinguishing the movements above when using EEG data extracted only from the female 
subjects. This EEG model of gender difference can also predict gender in other activities. 
Qu et al. [243] proposed a study in which the sensitive bands of EEG data were analyzed 
due to different physiological brain loads. ICA has been proposed for data processing. A 
comparison of the power spectral density was carried out. The SVM classifier shows that 
the beta band is more sensitive than other bands under different brain loads. Other classifi-
cation methods can be adopted in the future to get better accuracy.

Today stress has become one of the main complications in our society, affecting a per-
son’s mental and cognitive abilities. Mental stress can cause serious problems such as 
depression, high blood pressure, abnormal sugar levels, anxiety, etc. At the same time, in 
some extreme cases, a nervous system breakdown can also occur due to unnecessary men-
tal stress. Baik et al. [28] investigated how heart rate variability (HRV) affects the asso-
ciation between frontal and partial inequality and depression. The authors found that HRV 
balanced the association between depression and parietal alpha symmetry in the case of 
major depressive disorder (MDD) patients. Medical professionals can use this innovative 
approach in the future. Ofner et al. [222] examined arm and hand variations in patients with 
paraplegia. Innovative approaches to the epileptic brain are also increased in the last dec-
ades. Fan et al. [88] analyzed different abnormal patterns of epileptic seizures via temporal 
synchronization of EEG signals. The authors examined Spatio-temporal synchronization 
patterns by graph theory. This approach can also be helpful for real-time anomaly detection 
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Table 7   Different BCI applications and their finding (s)

Application (s) Finding (s)

Rehabilitation and Cognitive Training • The dependence of neurorehabilitation on neuroplasticity is due 
to cognitive and perceptual learning [43, 65, 271]

• The effectiveness of neurofeedback relies on the plasticity of the 
particular part of the brain [184]

• Alpha activities are linked to visually evoked potentials and 
motor skills [26]

• Neurofeedback-based training units induce the plastic nature of 
the brain and enable the rehabilitation of attention deficits [39, 
80, 108, 184, 256]

• Movement-related tasks improved motor learning for the skilled 
control of neuroprosthetics [117, 299]

• BCI can increase motor skills through training-induced plasticity 
and stimulate neuronal substrates to regain control [225, 282]

• BCI can help in training-induced plasticity and neurological 
rehabilitation to regain the lost control [63, 80, 81, 129]

• BCI-induced plasticity depends on the signal acquisition tech-
nique, feedback modality, and classification accuracy [114, 218]

• Rehabilitation through BCI needs the re-stimulation of the dam-
aged synaptic network or by the attachment of neural prostheses 
to the impaired body part [226, 248, 303, 307, 333]

• BCI-controlled orthotics increased neuromuscular coherence to 
restore movement [35, 237]

• BCI can be used in cerebral palsy [57, 137, 239], brain stroke 
[79, 95, 107, 149], spinal cord injuries [132, 160, 223, 288], 
amyotrophic lateral sclerosis [270], chronic peripheral neuropa-
thies [40], etc

• The extent of neuroplasticity achieved after rehabilitation varies 
from person to person, and consequently, an individual training 
session is necessitated [38, 173]

• BCI offers a further degree of freedom that substantially 
enhances the quality of life of physically disabled users [102, 
182, 255]

• Neurofeedback generates sturdy somatosensory oscillations 
associated with the brain [224]

• BCI-based rehabilitation differentiates the task-induced and 
resting-state activities [290]

• Controlling the feedback of rehabilitation training can promote 
the motivation of participants to stimulate and enhance the reha-
bilitation treatment effect [93]

• Optimized deep brain stimulation parameters can be used to treat 
depressive disorders [74]
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Table 7   (continued)

Application (s) Finding (s)

Hardware Developments • Development of custom neuro sensors of multiple forms, i.e., 
electrical, chemical, or biological [112, 165]

• Development of electrodes with wireless approaches that provide 
better signal quality than other wet electrodes [96, 123, 194]

• Quasi-dry electrode record signals similar to commercially avail-
able Ag/ AgCl electrodes [210]

• An auricle electrode has been proposed to increase the signal-to-
noise ratio [220]

• An electrochemical transistor-based sensor can collect neural 
signals directly from the brain surface and has a better signal-to-
noise ratio [27, 162]

• Carbon nanotubes reduce the electrode impedance and enhance 
the signal quality [61, 159]

• With advances in nanotechnology, nanowire field-effect transis-
tors have the potential for neurosensory modalities for intracel-
lular recordings [170, 187, 318]

• Calcium imaging-based sensors [98, 111]
• Multifunctional soft implants and the multilevel two-photon 

microscope have been proposed to capture the multilayered neu-
ral structures [92, 122, 168]

• An ultrasonic-based wireless system has been suggested that ena-
bles the recording of EMG and EEG on an excellent scale [268]

Gaming, Robotics, and Virtual Reality • Future computers will be expected to have emotional and percep-
tual abilities to make decisions and support people [238]

• Computers can identify and interpret potentially underlying affec-
tive states using physiological and behavioral attributes [332]

• BCI is a future tool for studying affective states and extending its 
applications to psychology [15, 18]

• Various players can participate in a game that requires shared 
decision-making and linking brain functions to another stimulus 
during a virtual reality environment [242, 297]

• Two brain signals can better judge a challenge because of the 
inter-individual variations in human perception and abilities [267]

• The EEG-based BCI can control a wheelchair, was recently 
demonstrated [76, 284]

• Using Virtual reality technologies, BCI offers immersive experi-
ences with several potential uses, including art, music, and 
neurofeedback [241]

• VR is a better neurofeedback choice for BCI than the PC screen 
[151, 189, 275, 298]

• BCI can be used with AR to remotely control a robot, providing 
advanced assistive technology for people with mobility impair-
ments [20]

• Brain-to-brain interface (BBI) experiments have recently been 
investigated [110, 148, 228, 235]

• BCI can also control humanoid robots in mines and space with-
out gravity [204, 281]

• The integration of VR and BCI into one platform is used for 
motor rehabilitation [287]

• Brain teleoperation control of a nonholonomic mobile robot 
using quadrupole potential function [289, 323]
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and its treatment. Open hand, palmar grip, and other hand variations were examined, and 
the study shows that the various signals originate from the central motor area. This innova-
tion is helpful for patients and aged persons having paraplegia. Ahn et al. [5] proposed a 
wearable stress management device; heart rate variations [HRV] and electroencephalogram 
[EEG] is used to measure stress in daily life. One step ahead, Goodday et al. [109] sug-
gested understanding the stress and predicting its importance using a digital platform. The 
authors also discussed the growth and availability of various digital platforms that require 
appropriate devices and mobile phone applications. In the future, researchers can exam-
ine the affordable and readily available techniques that are helpful to society. Waelde et al. 
[300] explain how chronic pain in children is affected by multiple mindfulness medita-
tion sessions. Gupta et al. [118] investigated how the short-term musical stimulus affects 
the cognitive abilities of the human brain. The study shows how Indian classical music 
changes EEG performances and functional activity and may be adopted for stress release in 
the future. The authors also developed a model that explained how music improves cogni-
tive abilities and brain performance.

With the help of EEG signals, human facial expressions can easily be related to our 
psychological states. Numerous approaches are available for feature extraction and clas-
sification, such as Fourier transformation, wavelet transformation, power spectral density 
(PSD), and common spatial patterns. To be able to deal better with the enormous size of 
two-dimensional EEG data, various algorithmic programs for machine learning are also 
available, such as Multi-Layer Perceptron (MLP), K-Nearest Neighbour (KNN), Support 
Vector Machine (SVM), FUZZY Logic, Adaptive Neuro-Fuzzy Interface System (ANFIS). 
Convolutional Neural Network (CNN) is one of the most important deep learning meth-
ods because of its advanced feature extraction capability. Zeng et  al. [325] suggested an 
improved framework called SincNet-R for emotional categorization and identification from 
the EEG signal. Xu et  al. [314] also proposed a multilayer CNN for categorizing EEG 
waveforms. Environmental parameters such as temperature, humidity, and air pressure 
can influence people’s cognitive abilities. Zhu et al. [335] suggested a test-based cognitive 
study that demonstrated the variations of EEG signals during the experimental activity for 
different physical parameters. Svetlov et al. [280] demonstrated the effects of Muse EEG 
tape-based  neurofeedback  devices on mindfulness-based relaxation activities. Zabielska 
et  al. [324] examined the sensorimotor rhythm desynchronization during motor imagery 
tasks. The authors also explained how the power in alpha and beta bands has decreased 
with the difficulty of both actual and unreal movements. Rahimi et al. [245] investigated 
the various states of consciousness and attention. The authors explained the significant dif-
ferences between different states of consciousness and awareness. Rodriguez et al. [258] 
examined the cross-frequency relationship for different mental states (rest, meditation, and 
arithmetic). The experiment was performed on 43 experienced meditators using a 19-chan-
nel EEG data acquisition system. The findings illustrated that the alpha-theta cross-fre-
quency relationship occurred maximally during the arithmetic condition and minimally 
during the state of mental void (meditation). Gao et al. [103] investigated the effects of the 
binaural beats on neural oscillations and cognitive functions.

Sleep quality is one of the essential vital parameters for a person’s health. Poor sleep 
disrupts our day-to-day tasks and causes insomnia. Ko et al. [167] proposed an aromather-
apy-based study that shows the increment in delta waves and a decrement in alpha waves 
during aromatherapy. The experiment was conducted on nine healthy and young partici-
pants with no sleep problems. Kim et  al. [164] proposed a new EEG-based method for 
performance evaluation. Thirty-six subjects were tested as either excellent or bad perform-
ers. The study results suggested that the microstate reflected cognitive task performance. 
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Vecsei et al. [294] experimented with the effect of radiofrequency exposure on EEG- based 
cognitive tasks. Test performance was checked before and after the recording. The results 
indicated a noticeable decrease in EEG-alpha performance during the radiofrequency 
exposure. Kalantari et al. [153] compared physiological parameters during a cognitive test 
in virtual and real environments. Head acceleration and galvanic skin response (GRS) vari-
ations are lower in the case of a virtual environment. Former et al. [99] predicted human 
behavior and performance for the rewards. The study showed that the participants put more 
cognitive effort when receiving prizes. Reiser et  al. [251] recorded mobile EEG during 
cognitive and motor tasks. The authors performed a cognitive task in real-world situations 
and observed a relationship between workload and performance. Borghini et al. [41] pro-
posed a study that was carried out on 37 professional air traffic controllers, and the results 
showed that the specific brain features could be characterized and differentiated accord-
ingly. Jia et al. [146] experimented with different ways of thinking, such as the generation 
of an idea, evolution of an idea, and controlled creative thinking. The EEG microstate-
based methodology was used to analyze the EEG data. The authors found that the alpha 
performance decreased significantly in the three conditions of the experiment. The results 
also showed that the idea of evolution requires less concentration than the other two condi-
tions. Widge et al. [308] proposed deep brain stimulation (DBS) -based method for treating 
major depressive disorder (MDD) and obsessive–compulsive disorder (OCD). Cognitive 
control is impaired in both MDD and OCD conditions, and DBS improves the subjects’ 
efficacy in a cognitive task.

P3 is an essential event-related potential adopted to identify cognitive activity and uti-
lized in clinical diagnosis. Li et  al. [176] found a linkage between P3 and resting-state 
brain activity. In addition, the long-range interactions between the frontal and occipital 
brain regions were functionally relevant to P3 parameters. Apicella et al. [17] proposed a 
method for EEG-based distraction detection during a motor rehabilitation task. The experi-
ment was carried out on 17 healthy volunteers. Various feature extraction techniques such 
as time domain, frequency domain, and multiple classifiers were used in this study. A 
k-nearest neighbor classifier achieved an accuracy of 92.8%. Guyon et al. proposed [119] 
a method to identify the variability between the different vital parameters during stress. 
The authors used a muse band-based rapid relaxation device to identify how stress changes 
critical body parameters. Arsalan et al. [21] proposed a study that classified exposure dur-
ing public speaking. Forty participants were involved in this study. Their physical param-
eters such as galvanic resistance of the skin, blood volume flow, EEG, and heart rate were 
determined before and after the public speaking test. Romero et al. [260] proposed a low-
cost EEG-based BCI for lower-limb motor recovery in post-stroke patients. The test was 
performed on eight health and two post-stroke patients. Results showed that the post-stroke 
patients attained 41.67% and 91.67% accuracy during the task. Park et  al. [230] experi-
mented with some tasks (active, passive, and motor imagery) during spinal and grasping 
movements and found that the patterns differ for two different movements. Wei et al. [306] 
proposed a method of hierarchical clustering to find the inter-and intra-subjective variabil-
ity in the EEG dataset. The data were collected in a driving task and validated the feasibil-
ity of the EEG-based models for fatigue detection. The results were helpful for plug-and-
play drowsiness detection. Alkeide et al. [10] proposed an event-driven BCI method for the 
Peabody-Image Vocabulary Test (PPVT-IV). The authors applied this approach to subjects 
with normal development and cerebral disorders. The results suggested that people could 
benefit from this BCI-assisted approach.

Rezazadeh et al. [253] proposed a hybrid multi-class fNIRS-EEG-BCI model for imagi-
nary speech. Eleven subjects performed different tasks repeatedly. The authors attained an 
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average classification accuracy of 70.45%, considerably more than previous results. The 
results indicated that a hybrid EEG and fNIRS-based model increased the classification 
accuracy of BCIs for imagined speech. Corsi et  al. [70] proposed a fusion method that 
combines attributes of simultaneously recorded electroencephalographic (EEG) and mag-
netoencephalographic (MEG) signals to enhance the performances of motor imagery-based 
brain-computer interfaces (BCI). Fifteen subjects found a considerable enhancement in 
the classification accuracy compared to the standard single-modality methods. Islam et al. 
[140] proposed a deep machine learning approach to detect emotions. Firstly the EEG data 
was converted into images and then given to the CNN to recognize the emotions. It is a 
unique and recent approach that may be helpful for future BCI users. Table 8 shows some 
recent proposed works in the field of BCI.

5 � BCI Challenges

Over the past decade, plenty of work has been done in the field of BCI. The appearance 
of non-invasive BCI devices based on an EEG signal expanded the great possibilities for 
future technologies. Still, there are various challenges. We know that invasive type elec-
trodes can be installed accurately and require a specialist to reduce the error rate. The brain 
is a complex structure, so the brain signal contains nonlinearity and noise. As a result of 
this non-linear behavior of brain signals, various non-linear methods are also used with 
available linear ones. Researchers and developers are working to resolve this nonlinear-
ity problem. A non-stationary signal is challenging to capture compared to a stationary 
one because the signal constantly changes during recording. Noise, fatigue, concentration, 
movement artifacts, and blinking of the eyes are significant factors that cause a non-station-
ary signal. The placement of electrodes in the scalp is also a factor. If the electrode place-
ment is incorrect, it also causes a transient and noisy signal [181]. Some ambient noise 
and electromagnetic effects due to power line interferences are also considered as artifacts 
[59]. Different BCI devices have been developed depending on the applications. The issue 
with such devices is that they are developed globally, and the standardization of all devices 
is very difficult. BCI research groups have followed some common standards worldwide, 
such as data acquisition and EEG electrode placement. Aside from such developments, 
there is still a lack of standardization in BCI communities worldwide. One of the main 
issues with the recorded EEG signal is its high dimensionality. The main reason for this 
high dimensionality is recording the data from multiple channels. Various feature extrac-
tion techniques have been developed to reduce the dimensions, i.e., time domain, frequency 
domain, and combined time–frequency domain.

Various signal processing techniques have been developed to extract features from the 
acquired signals. Hybrid BCIs using more than one signal, i.e., SSVEP/ERP and SSVEP/
MI, offer more robust and accurate functions [236]. Today researchers are trying to explore 
the new EEG paradigms. The information transfer rate (ITR) is another crucial issue as we 
have a limited number of bits available per second. We can get a quick response and save 
time with high ITR BCIs [321]. The target identification accuracy and the target identi-
fication time are the factors that affect the ITR. If we shorten the target recognition time 
and increase the recognition accuracy, the ITR can also be improved. If we want to adopt 
something new, our brain needs training. Training the user is a significant challenge in 
BCI. It’s a time-consuming process. The applicants must understand how they are compat-
ible with the system and control it with a response signal [135]. The user must be trained to 
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incorporate and respond after the feedback signal. The training sets can be small or large, 
depending on the system’s usability.

The design of BCIs for everyday use is also important instead of laboratory-based BCIs. 
Today, very few easy-to-use and plug-and-play BCIs are available [7, 157]. For the real-
life applications of BCI, the costs must be minimized. Inexpensive hardware and software 
development is also an issue [208]. Ethical clearance and security are also associated with 
the advancement of a BCI [120]. However, some institutes and research organizations have 
an ethics committee to resolve such issues. Security is also an issue with the BCI systems 
[67]. The user’s private information needs to be protected. Table 9 included some impor-
tant articles on BCI challenges.

6 � Discussion

The authors discussed the paper’s findings from the application and challenges perspective.

6.1 � Based on the applications

The closed-loop BCI having neurofeedback assistance helps the persons involved in self-
regulation and can control specific brain rhythms such as alpha waves to control their brain 
activities [26]. Findings also revealed that BCI neurofeedback-based training induced the 
plasticity of the brain and helped to repair and control the output of the nervous system 
[108, 256]. Plasticity induced by training aids therapy-based motor rehabilitation [225, 
282]. BCI training re-excited the relevant neural substrate to re-establish lost control for 
neuroprosthetics and hence improve human functioning skills [80, 81]. There are two 
approaches to constructing a rehabilitative BCI. In the first approach, the injured part can 
be attached with a neural prosthesis, and in the second, we must re-stimulate the dam-
aged synaptic networks [226, 248, 303, 307]. Differentiating a task-generated and resting 
activity is crucial for regulating the stimulation modality in rehabilitative BCI. The extent 
of neuroplasticity depends on person-to-person individual training sessions [38, 173]. 
External magnetic or electric field stimulus also affects the brain during rehabilitation. The 
brain’s white matter induced neuroplasticity when the motor imagery stimulus was applied 
to the stroke patients. Different rehabilitative approaches, neuroplasticity-based treatments, 
and training-induced techniques are the future of BCI. Brain stroke [79, 95, 107, 149], spi-
nal cord injuries [132, 160, 223, 288], cerebral palsy [57, 137, 239], amyotrophic lateral 
sclerosis [270], etc., can be treated more effectively in future using BCI. We have found 
that BCI provides an extended degree of freedom for physically disabled users [102, 182]

The sensor design also depends on the SNR, resolution, ergonomics, low cost, etc. 
Electrochemical transistor-based electrodes have a better signal quality and wireless com-
munication with faster data transfer. Neurosensory can be built in various ways, including 
electrical, optical, chemical, and biological [112, 165]. Both dry and wet sensors have their 
own set of restrictions and advantages. Dry EEG electrodes are more convenient, although 
they have a poorer signal-to-noise ratio than wet electrodes [96, 194]. The wet electrodes 
have conductive gel and require proper skin preparation to reduce skin–electrode imped-
ance, which might be inconvenient for users [123]. Further research suggests that dry elec-
trodes with wireless devices could provide similar signal quality to wet electrodes. A quasi-
dry electrode has been developed with the benefits of both dry and wet electrodes and is 
also compatible with Ag/ AgCl electrodes [210]. A stretchable connector-based auricle 
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Table 9   BCI Challenges

Challenges Summary

Neurological • Motivation enhances the human brain’s cognitive abilities, increasing BCI performance 
[31]

• Physiological factors such as attention, memory load, fatigue, and cognitive processes 
also depend on brain dynamics [73, 156]

• Resting-state physiological parameters are also involved in BCI performance, i.e., 
resting-state heart rate variability, respiration rate, ECG, etc. [71, 158]

• A well-organized BCI system has to be unaffected by physiological disturbances to 
impair the BCI system’s stability [105]

• A person’s current brain dynamics depend on several parameters, i.e., lifestyle, age, 
memory usage, empathy, gender, etc. [154]

• Physiological features in the frequency domain, i.e., spectral entropy and power density, 
etc., extracted from the quiescent state, can correlate with BCI performance [286]

• Case-eccentric neurophysiologic methods provide more insights into the subject and 
enhance BCI performances [246]

• A case-eccentric BCI design that considers typical brain function shows better rehabili-
tative services. An individualized BCI has been proposed to rehabilitate neurological 
disease [252]

• Neurophysiology trials-based machine learning methodology has been incorporated to 
reduce BCI illiteracy [33]

Technological • External stimuli like ERPs and SSVEPs are aim-specific [199, 211]
• These methods offer the highest ITR; limitations of these techniques include visual 

fatigue from focusing on a display for an extended period [56]
• Minimally invasive stent-electrode for neural activity recording [227]
• MI is not suitable for controlling video games and virtual things due to the slow action 

control [174]
• Hybrid BCIs, i.e., SSVEP/ERP and SSVEP/MI, seem to offer more robust features, but 

the performance is still unsatisfactory [68, 91, 152, 319]
• Various neuroimaging techniques have been used to explore cortical activities, but they 

fail in cost-effectiveness, efficiency, portability or ease of maintenance, etc.[205, 214]
• Activities dependent on blood oxygen level are typically recorded with fMRI, which is 

impossible with EEG-based BCIs [190, 322]
• The functions that estimate the prototype parameters should be selected based on the 

classifier type for optimal performance when developing the BCI [32, 305]
• MI-based BCI is used to map task-related brain signals explicitly [197]
• Both invasive and non-invasive signal recordings have demonstrated the long-term 

application of BCI systems [48]
Socioeconomic • Because of communication issues, it is complicated to find ethical approval from patients 

[144]
• Awareness of ethical guidelines and the safety of the BCI user is essential [42, 136, 200]
• BCIs can affect the nature of the subject, i.e., emotions, personality, memories, etc. [150]
• The variations in human cognition are possible and challenging to predict whether the 

cognitive changes are reversible or not [213]
• Cryptographic protocols are an integral part of BCI to protect a user’s privacy by hiding 

sensitive information [64, 279]
• A common platform for BCI research and an extensive list of international guidelines are 

necessary for sustained progress in BCI [45, 77, 125]
• For further knowledge development in neurosciences, health security, and ethical guid-

ance, the European Union has initiated the BCI projects with its partner schools [12, 72]
• Maintenance of the implanted electrodes is mandatory to avoid neurological side effects, 

bleeding, and infections [75]
• An expanded look at the fundamental BCI aspect will ascertain the basic BCI structure, 

efficacy, and future BCI applications [113]
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electrode has been developed to boost portability and is helpful for long-term recordings 
[220]. The transistor-based approach amplified the collected signals, resulting in a substan-
tially superior SNR than traditional ECoG [162]. Carbon coating can decrease electrode 
resistance to improve signal quality [61, 159]. Thanks to exceptional progress in nanotech-
nology, the nanowire FET and P–N junction-based devices can sense and record deep brain 
activities [170, 187, 318]. Gaining neural impulses directly from the brain surface is pos-
sible by a new organic electrochemical transistor-based sensor [27]. Nowadays, the elec-
trodes are developed with less invasiveness. The electrodes can be inserted in arteries/veins 
within the brain architecture utilizing computer-guided catheter angiography. The risk of 
craniotomy will be significantly reduced because of this technology. Calcium imaging 
and improved microscopes with chronically implanted lenses are two imaging approaches 
that could be used to investigate cell signaling [98, 111]. A new wireless-based ultrasonic 
device allows EEG and EMG recordings on the mm scale [268].

Future computers may be expected to have emotional and perceptual capacities such as 
making judgments [238]. Based on physiological and behavioral characteristics, computers 
may be able to discern and interpret underlying affective states [332]. BCI has the potential 
to be used to examine affective states, broadening its psychological applications [15, 18]. 
Affective state, video games, and virtual environments are some of the latest BCI trends 
[242, 297]. Some other researchers also demonstrated how the different players could col-
laboratively participate in a video game that requires a cooperative decision [267]. BCI 
offers more immersive experiences in arts, music, and neurofeedback using virtual reality 
techniques [241]. VR-BCI can help with neuroeconomics by measuring cognitive workload 
and motor rehabilitation [287]. BCI-based wheelchair and mobile robot control have dem-
onstrated their importance in the robotic industry [76, 284]. In various studies, immersive 
VR is a better neurofeedback option than a computer screen [151, 189, 275, 298]. Brain to 
Brain interface (BBI) is another perspective of the BCI developments [110, 148, 228]. Two 
human brains are involved in the BBI interfacing. The transmitter’s cognitive objectives 
have been decoded and converted into commands/instructions to the receiver’s brain in the 
BBI interfacing [235]. Astronauts’ usefulness, efficiency, and safety could benefit from a 
BCI-driven system. This technology can also be used to control humanoid robots in haz-
ardous environments, such as sending a robot into a coal mine or space to perform a poten-
tially dangerous task for humans [204, 281]. BCI can be used in space to track astronauts’ 
working capacity and control an exoskeleton. Working becomes dull and uncomfortable 
when gravity is absent. The BCI application evolution is shown in Fig. 8.

Till 2000

• Rehabilitation

• Music

• Cognitive learning

2001-2010

• Drowsiness detection

• Videogames

• Robot control

• Wheelchair controlling

2011-2020
• Brain to brain interface

• Multiplayer brain gaming

• Brain racers

Fig. 8   BCI application evolution



47031Multimedia Tools and Applications (2023) 82:47003–47047	

1 3

6.2 � Based on the challenges

BCI performance can be affected by motivation and encouragement [31]. Various physi-
ological factors such as attention, memory, load, fatigue, age, gender, lifestyle, and 
places influence a person’s brain dynamics [73, 154, 156]. A sensitive or emotional 
subject will have different performance or brain waves than a passionate subject dur-
ing the same task. Robustness is also a requirement for an efficient BCI system. An 
ideal BCI system must be robust to a subject’s physiological or essential characteris-
tics [105]. Head anatomy should also be considered a factor for the BCI performance. 
Physiological predictors such as spectral entropy and power spectral densities can be 
compared to discover some insights [286]. Case-specific investigations are also trending 
nowadays for the rehabilitation of stroke survivors [246]. An individual-designed BCI is 
helpful for rehabilitative interventions [252]. BCI literacy is another issue faced by BCI 
researchers. During any task, 15 to 30% of the people cannot produce enough robust 
EEG signals that may be useful for a BCI system. Some researchers proposed methods 
to reduce BCI illiteracy, and some techniques have been proposed based on the adaptive 
machine learning approaches [33]. Event-related potentials, steady-state visual evoked 
potentials, auditory evoked potentials, steady-state somatosensory evoked potentials, 
and motor imagery are all proposed to detect some brain activities. Still, most of them 
are application-specific and cannot use for every application. ERP and SSVERP are tar-
get specific and need a correct vision of the subject [199, 211]. These techniques can-
not be used for a visually impaired person. In such cases, an auditory evoked poten-
tial can be used. While the ITR is maximum in SSVEP, visual fatigue is the problem 
with this method because the subjects have to be continuously focused on the computer 
screen [56]. To overcome this, some researchers proposed MI-based BCI. But the MI-
based BCI is slow and thus not used for video games and virtual reality environments 
[174]. Thus a hybrid BCI is the option to overcome these issues, e.g., SSVEP/ERP and 
SSVEP/MI offer more robust features [68, 152, 319]. There are four essential criteria to 
design an ideal BCI modality: low cost, transportable, low maintenance, and nonsurgi-
cal. We have several techniques to acquire the signal efficiently, but none of the single 
modalities is always preferred [205, 214]. Both invasive and noninvasive methods have 
their advantages and drawbacks. For example, EEG provides poor spectral resolutions 
but more acceptable temporal resolutions. Some activities that depend on blood oxygen 
can be captured by fMRI [190, 322]. Integrating EEG with fMRI is a better option in 
various applications.

Regardless of scientific breakthroughs in the field of BCI, some other important fac-
tors such as privacy protection, data confidentiality, safety, ethics, and socioeconomic 
issues must be considered while using BCI. Due to communication difficulties and a lack 
of alternatives, it is difficult for a BCI researcher to obtain ethical consent or permission 
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from a BCI-wearing patient [144]. Various invasive techniques have physiological and 
neurological side effects. Nowadays, bleeding and infection cases are very few, but they 
may occur. That’s why it is necessary to maintain such electrodes very well [42]. Due to 
the direct interfacing with the brain, BCI devices can affect the user’s behavior, nature, 
emotion, memory, personality, and thinking [150]. That’s why the guidelines are essen-
tial for advanced neuroimaging techniques. Changing a person’s cognitive capabilities 
creates a difficult ethical challenge because it’s unclear whether the cognitive alterations 
are reversible and effective [213]. BCI provides an extended degree of freedom, but 
these risk factors can reduce the benefits of this technology. It is vital to pass legislation 
that allows the legal use of BCI while also protecting the privacy and confidentiality of 
stored data. A combination of machine learning and signal processing techniques has 
been shown in recent research to play a crucial role in translating any signal from the 
brain to the computer. To keep in mind such important aspects of BCI, the European 
Union has initiated BCI projects with its partner schools. Table  10 illustrates various 
BCI issues and recommendations.

7 � Conclusions and Future Scope

BCI has undergone explosive growth over the last 20–30 years resulting in the advance-
ments, innovations, and improvements of non-invasive BCI. Because of its direct com-
munication with the brain, BCI is one of the fascinating areas of research. This review 
provides information about the origin of BCI technology, its growth and applications, the 
hardware and software used, and its suitability. BCI’s recent advancements and challenges 
discussed in this review can assist future BCI developments. The market shares of the BCI 
companies increased from 2014 to 2020, which is also a positive sign for BCI developers. 
Wearable, affordable, less invasive sensor design and brain-to-brain information transfer 
are some trending topics for the BCI community. For the better future of BCI, the research-
ers and developers have to:

•	 Focus on BCI investigations based on physiological, neurological, and technological 
factors.

•	 Focus on the commercialization of BCIs, case-specific investigations, and hybrid BCIs.
•	 Focus on the ethical and safety issues for the BCI users.
•	 Focus on designing affordable, non-invasive, portable, and easy-to-maintain data acqui-

sition devices.
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