
Multimedia Tools and Applications (2024) 83:26183–26210
https://doi.org/10.1007/s11042-023-15732-z

Computational measurement of perceived pointiness
from pronunciation

Chihaya Matsuhira1 ·Marc A. Kastner2 · Takahiro Komamizu3 · Ichiro Ide1 ·
Takatsugu Hirayama4 · Yasutomo Kawanishi5 · Keisuke Doman6 ·
Daisuke Deguchi1

Received: 21 May 2022 / Revised: 2 September 2022 / Accepted: 24 April 2023 /
Published online: 29 August 2023
© The Author(s) 2023, corrected publication 2023

Abstract
Sound symbolism is a well-researched topic of psycholinguistics, which tries to comprehend
the connection between the sound of a word and its meanings. The Bouba-Kiki effect, one
form of sound symbolism, claims that people perceive the pronunciation of “Kiki” as pointier
than that of “Bouba.” There is no research that focuses onmodeling such perception, i.e., how
pointy a pronunciation sounds to humans, through computational and data-driven approaches.
To address this, this paper first proposes the novel concept of “phonetic pointiness” defined as
how pointy a shape humans are most likely to associate with a given pronunciation. We then
model this phonetic pointiness from computational and data-driven approaches to calculate a
score for an arbitrary pronunciation. There are three proposed models: a referential model, an
expressive model, and a combined model, which integrates the previous two. The idea comes
from an existing psycholinguistic classification of two types of sound symbolisms: referential
symbolism and expressive symbolism, where the former relates to vocabulary knowledge,
while the latter is based on pure human intuition. The proposed models are constructed only
with image and language data available on the Web, therefore not requiring task-specific
human annotations. We evaluate these models through a crowd-sourced user study, finding a
promising correlation between human perception and the phonetic pointiness calculated by
the proposed models. The results indicate that human perception can be modeled better by
combining both types of sound symbolisms. Furthermore, by observing the behaviors of the
models, we show several possible use-cases, such as product naming and psycholinguistic
research, which can be a useful insight to further studies and applications.
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1 Introduction

Intuitive user interfaces are important for systems, tools, or applications to be useful and
user-friendly. When designing complex user interfaces, understanding human perception is
crucial. For this, a better understanding of how humans react to different stimuli is needed.
For example, the knowledge that certain visual stimuli (such as the color red) or acoustic
stimuli (such as beeping sounds) would alert people, can help design software user interfaces
for warning people. Unlike the perception towards such stimuli, the perception towards lan-
guages, especially those related to the pronunciation of words, has received scarce attention.
Therefore, in this research, we tackle the research question of what we perceive from a word
pronunciation, such as “what kind of word pronunciation would alert people the most out of
synonyms.”

Sound symbolism [9] is a well-researched topic of psycholinguistics, which states that the
pronunciation of a word and its meaning are not fully arbitrary. One form of sound symbolism
can be observed in the Bouba-Kiki effect [13, 23]. Figure 1 shows two shapes of contrasting
pointy and round features. According to the phenomenon, if asked which shape is called
Bouba and which is called Kiki, people tend to associate the round shape (right) with Bouba
and the pointy shape (left) with Kiki.

As afirst step tomodeling the general sound symbolism, this paper focuses on the perceived
pointiness from pronunciation, which the Bouba-Kiki effect represents. We first propose and
introduce the concept of “phonetic pointiness,” a type of impression humans perceive from
pronunciation. We define it as how pointy a shape humans are most likely to associate with
a given pronunciation. Next, we model the phonetic pointiness through computational and
data-driven approaches. According to the definition, the phonetic pointiness should deeply
relate to the Bouba-Kiki effect, and thus the knowledge of this phenomenon can be useful
for modeling it. Hence, the rest of this paper will focus on measuring the human reaction
towards this phonetic pointiness by making use of the psycholinguistic findings about sound
symbolism including the Bouba-Kiki effect, as well as techniques from Computer Vision
(CV) and Natural Language Processing (NLP).

In the English language, only a few studies have been made to compute phonetic impres-
sions as well as human perception towards them. To the best of our knowledge, no study
exists that focuses on the concept of phonetic pointiness.

As related work, K. Papantoniou and S. Konstantopoulos [22] predict the polarity of a
character’s role from his or her name by training a model with manually annotated data.
V. Sabbatino et al. [25] estimate which emotion a pseudo-word would evoke in humans by
using emotion labels annotated to existingwords. Their assumption for expanding the emotion
labels of existing words to pseudo-words is that impressions perceived from a pseudo-word
(e.g., “snice”) would be influenced by the impressions of existing words having similar
pronunciation (e.g., “nice”).

This assumption has also been studied in psycholinguistics. E. Sapir [26] proposes to
classify sound symbolism into two types: referential symbolism and expressive symbolism.
The former is caused by human knowledge of words, while the latter is caused by human
intuition. Both types are explained in Fig. 2 with an example English pseudo-word /"kivi/
(pronounced asKee-Vee).Whenwe hear the pronunciation /"kivi/, wemay imagine a similar-
soundingword “Kiwi” (/"kiwi/), which could evoke a round impression from the round shape
of “Kiwifruits.” Meanwhile, we may perceive the sound /"kivi/ pointy, intuitively from its
pronunciation, like “Kiki” in the Bouba-Kiki effect. In this example, the former impression
can be regarded as the referential symbolism, and the latter can be regarded as the expressive
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Fig. 1 Two shapes often used to describe Bouba-Kiki effect (Authors: Bendž, Qef, and Andrew Dunn, CC
Attribution-Share Alike 3.0, from https://commons.wikimedia.org/w/index.php?curid=19653163). If asked
which shape is called Bouba and which is called Kiki, people tend to associate the round shape (right) with
Bouba and the pointy shape (left) with Kiki

symbolism. In addition to this theory, this paper assumes that both types of symbolisms are
mixed to form the full human perception, as illustrated in the right part of Fig. 2.

Based on these ideas, this paper proposes two different types of models, a referential
symbolism model (in short, referential model) and an expressive symbolism model (in short,
expressive model), to calculate the phonetic pointiness for an arbitrary pronunciation written
with International Phonetic Alphabet (IPA) [11]. Both models take the pronunciation of
a word as an input and output its calculated phonetic pointiness score, yet their targets
are different. The referential model first refers to an existing word (e.g., “Kiwi” (/"kiwi/))
phonetically similar to an input pronunciation (e.g., /"kivi/). Next, the visual pointiness of
its shape is measured to be the final output of the model. In contrast, the expressive model
attempts to model pure human intuition. To achieve this, we take advantage of existing
findings of the Bouba-Kiki effect in psycholinguistics. Specifically, we construct the model
based on the idea that the output of the model should be low when an input pronunciation
is similar to Bouba, and high when it is similar to Kiki. Lastly, we attempt to construct a
combined model, which combines the referential and expressive models. As explained in

Pronunciation

/ ˈkivi/ sounds 

pointy or round ?

“Kiwi”
Referential

Expressive

Perceive

Reference

Human

/ k/ and / i/
intuitively 

sounds pointy

Intuition

Round shape

Human perception

Fig. 2 Concept of referential symbolism and expressive symbolism by E. Sapir [26] in answering phonetic
pointiness of pronunciation
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the previous paragraph, since human reaction towards phonetic pointiness is assumed to be
influenced by both referential and expressive symbolisms, the combined model is expected
to fit human perception than the individual models better.

Constructing these three proposed models does not require task-specific human annota-
tions unlike the previous studies [22, 25]. Instead, we leverage image and language data
available on the Web, thus making the training less expensive. Moreover, this can provide a
benchmark of how well human perception can be modeled without human annotations.

The performance of the proposed models is evaluated through user study via crowd-
sourcing. We create 400 random pseudo-words, which are used in asking participants to
choose which of the two pseudo-words sounds rounder or pointier. In this paper, we measure
how accurate the proposed models can estimate their answers, and discuss their performance
based on the accuracy.

Because this research proposes methods to calculate the phonetic pointiness scores for
arbitrary pronunciations, various applications can be considered. For example, the proposed
models can be used to assist people in naming commercial products. Other applications
include improving human-computer interaction interfaces and helping machines understand
human perception towards languages. Furthermore, by constructing models in different lan-
guages and comparing them, this research could be a tool to be used in psycholinguistics,
comparative linguistics, cultural sociology, and even etymology.

In these applications, not only the optimal combined model but also the referential model
and the expressive model can be useful on their own, depending on the contexts. The referen-
tial model can assess what kinds of existing words humans would associate with, while the
expressive model can predict how humans would intuitively perceive when hearing a pronun-
ciation. As such, studies using our models have a choice of which model to use depending
on their use-cases.

In summary, our main contributions are:

1. the introduction of the novel concept of phonetic pointiness,
2. the first attempt to model the phonetic pointiness by means of computational and data-

driven approaches, and
3. modeling, comparing, and analyzing two different aspects of sound symbolism, i.e., the

referential aspect and the expressive aspect, to find out that the combination of both
symbolisms explains human perception better.

This paper is structured as follows. In Section 2, psycholinguistic research of the Bouba-
Kiki effect is first introduced, followed by an introduction of computational approaches to
modeling sound symbolism. Section 3 proposes threemodels to calculate phonetic pointiness,
and experiments conducted to evaluate the proposed models are reported in Section 4. Lastly,
Section 5 discusses applicability of the models before concluding the paper in Section 6.

2 Related work

To date, no work has achieved our goal of computing phonetic pointiness scores for arbitrary
pronunciations. Yet, to proceed with our research, it is essential to recognize the psycholin-
guistic findings of the Bouba-Kiki effect and how previous computational approaches have
modeled sound symbolism. In this section, Section 2.1 first introduces several psycholinguis-
tic studies of the Bouba-Kiki effect. Next, Section 2.2 introduces the current computational
approaches to sound symbolism.
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2.1 Bouba-kiki effect

The Bouba-Kiki effect was first discovered in 1929 by a psychologist W. Köhler [13]. He
showed two round/pointy shapes similar to Fig. 1 to inhabitants on Tenerife island, Spain,
and asked them which shape has a name Maluma and which shape has a name Takete. As a
result, he confirmed that most of the inhabitants associated the round one with Maluma and
the pointy one with Takete. Afterwards, in 2001, V.S. Ramachandran and E.M. Hubbard [23]
repeated Köhler’s experiment using alternative pseudo-words Bouba and Kiki instead of
Maluma and Takete, and reproduced the result as participants tended to associate the round
shape with Bouba, and the pointy shape with Kiki.

Since then, there has been a lot of psycholinguistic research on this phenomenon. Several
researchers conducted Bouba-Kiki experiments on children as well as adults and compared
their reactions [16, 21]. They confirmed that children, and even infants who have not fully
acquired their languages yet, showed the same Bouba-Kiki preferences as adults, indicating
the possibility that such human perception towards the Bouba-Kiki effect precedes children’s
language acquisition.

Others explored how much the cultural backgrounds of participants influence the Bouba-
Kiki effect. A.J. Bremner et al. [1] conducted experiments on Western and African people,
and compared the difference in their preferences for both shape-sound and shape-flavor
matching. The former experiment was the same as Köhler’s, asking participants to match
two different pronunciations with round/pointy shapes. In the latter experiment, on the other
hand, they were asked to match two flavors of still and sparkling water with round/pointy
shapes. As a result, in the shape-sound matching, both groups showed the same tendency
of associating Bouba with the round and Kiki with the pointy shape. In the shape-flavor
matching, however,Western people tended to associate sparklingwater with the pointy shape,
while African people tended to associate the opposite way, suggesting that there might be
a cultural difference in Bouba-Kiki preferences, especially in the shape-flavor matching.
Moreover, Y.C. Chen et al. [2] focused on the difference in preferences in shape-sound
matching among North American and Taiwanese people. They found out that the overall
tendency of their preferences towards the Bouba-Kiki effect is consistent, yet it is partly
tuned by their cultural backgrounds. For example, what visual characteristics are considered
important may differ among groups from different cultural backgrounds. More recently,
Ćwiek et al. [3] have shown evidence for the Bouba-Kiki effect being robust across languages
and writing systems by recruiting speakers of 25 different major languages. According to
their work, human preferences towards the Bouba-Kiki effect are not strongly affected by
the language knowledge of the participants and the shapes of the alphabets of their native
languages.

These studies suggest that, in general, the Bouba-Kiki effect is independent of the ages,
cultural backgrounds, and native languages of participants. Despite this fact, S.J. Styles and
L. Gawne [27] analyzed under which conditions the Bouba-Kiki effect can or cannot be
observed. They focused on a case reported by S.K. Rogers and A.S. Ross [24] in which the
Bouba-Kiki effect cannot be observed and analyzed the reason for this. According to their
results, eventually, it was shown that the characteristic of how natural pseudo-words sound to
participants plays an important role in this problem. In other words, if the occurrence of the
pronunciation of Bouba (i.e., written with IPA as /"bubA/) is not allowed by the phonology of
a participant’s native language, the participant may not show the Bouba-Kiki correspondence
in that experiment. Therefore, when conducting experiments similar to these, the pseudo-
words to be shown to participants should be carefully selected based on the phonology of the
participants’ native languages.
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Some researchers conducted experiments with new pseudo-words other than Bouba,
Maluma, Kiki, and Takete, and attempted to observe how humans react towards different
kinds of pronunciations [4, 17]. In these studies, the format of pseudo-words used in their
experiments is restricted to CVCV (Consonant+Vowel+Consonant+Vowel). Since the orig-
inal pseudo-words Bouba (e.g., /"bubA/) and Kiki (e.g., /"kiki/) by V.S. Ramachandran and
E.M. Hubbard had such a format, it is a reasonable first step to focus only on the CVCV
format pseudo-words.

Others attempted to unveil the pointiness associations of phonemes [12, 17, 20]. Accord-
ing to their findings, open back vowels (/A/, /O/) and rounded vowels (/u/, /o/) tend to be
associated with round shapes, and close front unrounded vowels (/i/, /e/) tend to be asso-
ciated with pointy shapes. As for consonants, sonorants (/m/, /l/) and voiced consonants
/b/, /g/ tend to be associated with round shapes, and voiceless plosives (/p/, /k/, /t/) tend
to be associated with pointy shapes.

Although these psycholinguistic findings point out several cardinal characteristics of pro-
nunciation that can lead to the estimation of the phonetic pointiness, they are still not sufficient
to measure the concept for an arbitrary pronunciation. Moreover, all the studies introduced
in this section mostly focused on the expressive aspect of sound symbolism, hence not con-
sidering the referential aspect.

2.2 Computational models for sound symbolism

Regarding the English language, only a few studies [22, 25] exist that aim to model sound
symbolism including the Bouba-Kiki effect using computational and data-driven approaches.
Studies in this direction include predicting the polarity of a character’s role in amovie fromhis
or her name [22], and estimatingwhich emotion a pseudo-wordwould evoke [25]. The former
study first obtains human annotations via crowd-sourcing, and constructs a regression model
to predict the polarity with the manually annotated data. The input of the model is mainly a
set of handmade phonological features, such as the number of certain phonemes in the input.
Besides, since the authors are also interested in what kinds of name attributes relate to the
polarity, they also input other types of features, such as the gender of the character and the
genre of themovie. The latter study focuses on estimating emotion labels evoked by a pseudo-
word by using emotion labels annotated on existing words. To obtain a mapping between
them, the authors train a language model with character- or phoneme-level embeddings.
In their study, they expand attributes (emotion labels) of existing words to pseudo-words
by considering the phonetic similarity between existing words and the target pseudo-word.
For example, they assume that a pseudo-word “snice” would evoke a positive impression
because of the similar-sounding existing word “nice.” This idea is the same as the one used
to construct the referential model in our study.

In both studies, unlike ours, the phonetic pointiness is not the main focus of the research.
Moreover, they train their model using manually annotated data, which requires a huge
number of human annotations. Furthermore, we notice a problem that the names and pseudo-
words used in the studies are mostly written with alphabets (e.g., “phrouth”). In this case,
certain tools are required to automatically convert the spellings to phonetic symbols.However,
this may cause ambiguity, since the pronunciation deduced from the spelling is not always
unique in the English language. For example, the spelling “ou” may be pronounced as /aU/
(as in “mouth”), but may also be /u/ (as in “youth”), /oU/ (as in “soul”), or /O/ (as in
“bought”). In our research, in contrast, pseudo-words are generated on the basis of phonetic
symbols (e.g., /"fôaUT/ instead of “phrouth”), thus avoiding this ambiguity.
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While modeling sound symbolism is still a developing field, sound symbolism itself has
been actively used to improve user interfaces of systems. For most of these existing studies,
the main research interest has focused on onomatopoeia. Onomatopoeia is a type of sound
symbolism bywhich a state, a sound, or amovement of a target is depicted by specific pronun-
ciation. For example, the English words “Tick-Tock” (sound of a clock) and “Bang” (sound
of explosion) can be regarded as onomatopoeia words. Other examples include animal cries
such as “Bow-Wow” for dogs and “Meow” for cats. These onomatopoeia words are espe-
cially common in comics and advertisements since they can express sounds and movements
only with text descriptions.

O. Gillet and G. Richard [6] integrated onomatopoeia information into a drum loop
retrieval system. They used onomatopoeias of the sounds of drum loops such as [ts] (for
hi-hat) and [tSa] (for snare drum) to improve the retrieval performance of their system.
S. Sundaram and S. Narayanan [28] combined onomatopoeia with audio classification. They
improved the applicability of a classification model by adding onomatopoeia information to
its training labels. In detail, they used onomatopoeia labels like “Tap” and “Clatter” as well
as general classification labels like “Doors” and “Office,” and trained a model that can output
such classification labels for input audio data. T. Fukusato and S. Morishima [5] proposed
a method to automatically select an appropriate onomatopoeia word for a certain CG ani-
mation. By referring to physical parameters of target objects such as mass and acceleration,
they estimated the most appropriate onomatopoeia words including “Bong” and “Zap” for a
collision scene between two objects.

Some onomatopoeia words are existing words, while some can be regarded as pseudo-
words. Due to this, attempts to analyze the human perception towards pseudo-words like
ours, could foster the understanding of onomatopoeia and also these studies.

3 Calculation of phonetic pointiness

In this paper, we propose three models to calculate phonetic pointiness from an input pro-
nunciation: a referential symbolism model, an expressive symbolism model, and a combined
model of the previous two.

The overviewof thesemodels is shown inFig. 3. The referentialmodel first refers to images
of existing words that are pronounced similarly to an input pronunciation (e.g., images of a
kiwi(fruit) for an input /"kivi/). Next, after extracting the silhouette of the object, it measures
the visual pointiness of the silhouette (how pointy the silhouette looks) to obtain the final

Input

/ˈkivi/

/ˈkivi/

Referential model

Expressive model

Low

High

Similarly pronounced word

kiwi ( / ˈkiwi/)

Input

Silhouette

Human intuition

Pointy:/k/, /t/, /i/, /e/,…

Round :/b/, /m/, /u/, /a/,…

Ref

Exp

Combined model

Cmb

In
te

g
ra

ti
o

n

Fig. 3 Overview of the proposed models to calculate phonetic pointiness from pronunciation
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score SRef. If the silhouette shape of the object is not pointy, SRef would be low, and if it is
pointy, SRef would be high. Meanwhile, the expressive model outputs a score SExp in terms of
how pointy an input pronunciation intuitively sounds to humans. If the input pronunciation
is similar to Bouba or Maluma, SExp would be low, and if it is similar to Kiki or Takete,
SExp would be high. The combined model uses the output scores of these two models, and
calculates a combined score SCmb.

3.1 Referential symbolismmodel

The procedure of calculating the phonetic pointiness using the proposed referential symbol-
ism model (in short, referential model) is shown in Fig. 4a. The referential model consists
of two steps: silhouette image generation from an input pronunciation and visual pointiness
calculation from the generated image.

From an input, the image generator first generates an image that displays an object sil-
houette of a word, or a mixture of silhouettes of words, which are pronounced similarly to
the input. For example, if the input is /"kivi/, the generator is expected to output a silhouette
image similar to a “Kiwi” (Kiwifruit), which is phonetically similar to /"kivi/. Next, the
visual pointiness of the silhouette is measured from the generated silhouette image. By doing
this, the output score can reflect the visual pointiness of the shapes of similar-sounding words
to the input pronunciation.

As Fig. 4a illustrates, the formulation of the referential model can be written as

SRef = V (G(I )), (1)

I G SRef

Input Score

V
Image generator

Visual pointiness 

calculator

(E.g., -3.5 )
Generated image 

(for /ˈkivi/)

(E.g., /ˈkivi/)

(a) Referential model.

Kiki

Takete Maluma

Bouba

Phonetic space

(E.g., /ˈkivi/)

Input

I

Mapped (F)

SExp

Score

(E.g., 2.3 )

Kiki

Takete

Maluma

Bouba

SExp

Score at each place

on phonetic space

(b) Expressive model.

Fig. 4 Detailed procedure of calculating phonetic pointiness by the proposed models
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where I is an input pronunciation, and G and V represent the image generator and the visual
pointiness calculator, respectively.

3.1.1 Image generation from pronunciation

For the image generator of the referential model, we adopt Deep Fusion Generative Adver-
sarial Network (DF-GAN) [29]. DF-GAN is a type of Generative Adversarial Network
(GAN) [7] and it works as a text-to-image synthesis model; It takes a caption as an input and
generates an image that matches the input caption. It has three stacked image generators. The
first generator generates 64× 64 pixels from a latent vector concatenated with a conditional
vector. The second and the third ones generate a higher resolution image from the image
generated by the previous generator. As a result, the resolution of the output of the DF-GAN,
i.e., the image generated by the third generator, becomes 256 × 256 pixels.

More technically, the input of the original DF-GAN is an array of words, such as [“a”,
“blue”, “bird”, “is”, “flying”]. In the referential model, on the other hand, the input must be
an arbitrary pronunciation. To bridge this gap, we regard each pronunciation as an array of
phonemes, thus theDF-GANcan generate an image from an array of phonemes. For example,
if a pronunciation /"kivi/ is input, we feed the DF-GANwith an array of phonemes [/"/, /k/,
/i/, /w/, /i/]. Next, in the same way as the original DF-GAN calculates, each phoneme is
embedded by a Pronunciation-Encoder (called Text-Encoder in reference [29]), and then the
embeddings are used as a conditional vector from which an output image is generated. In the
training phase, for an existing word “Kiwi” (pronounced as /"kiwi/), for example, we feed
the DF-GAN with an array of phonemes [/"/, /k/, /i/, /w/, /i/] as an input, and a silhouette
image of a kiwi as an expected output. By training the image generator in this way, we can
obtain silhouette images for an arbitrary pronunciation that reflect the silhouette shapes of
similar-sounding words.

Examples of the silhouette images generated by the image generator trained on vegetable
names and images (the dataset will be described in Section 4) are shown in Fig. 5. As
expected, the more similar the input pronunciation gets to an existing word (e.g., “Broccoli”
and “Chestnut”), the more the shape of the silhouette resembles the shape of the word.

/ ˈbɹɑkəli/ / ˈbɹɑkəl/ / ˈʧɛsnət /

“Broccoli” “Chestnut”

/ ˈʧɹɑkəl/ / ˈʧɹɑsnət // ˈʧɹɑsnəl/

i b

ʧ

k

sn

l

t

ɹɑ

ɛ

Fig. 5 Examples of silhouette images generated by the image generator trained on our vegetable dataset,
illustrating the concept that the more similar the input pronunciation gets to an existing word, the more the
shape of the silhouette resembles the shape of the word
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3.1.2 Visual pointiness calculation

For the visual pointiness calculator, we adopt a metric established in our previous study [15].
The metric measures how pointy an image is perceived by humans based on the pointi-
ness/roundness of objects appearing in the image. For example, the metric shows a high
score for a silhouette image of a spiky-shaped object, and a low score for a silhouette image
of a circle. The metric has robustness against several visual features: scale, position, rotation,
occlusion, and number of objects in an image. In addition, the metric shows a lower score
when the silhouette of an object is blurred.

The calculation of thismetric comprises four steps: 1. featuremap calculation, 2. histogram
calculation, 3. histogram standardization, and 4. summation calculation. First, we calculate a
feature map from an image, which describes the degree of visual pointedness for each pixel.
To obtain this, for each pixel, we count the number of continuous surrounding pixels that
have a darker intensity than that of the target pixel. The number at each pixel becomes an
integer ranging between 0 and 16. Next, we calculate a histogram from the feature map. Each
pixel of the map is an integer from 0 to 16. Our previous study assumed that only the numbers
between 9 and 15 correlate with the visual pointiness at the target pixel well. Hence, we make
a histogram with seven bins. A value of the n-th bin of the histogram yn is calculated as,

yn = xn
∑

n∈{9,...,15} xn
, (2)

where xn is a number of pixels having a value n in the feature map. Then, we standardize the
histogram. With an estimated mean μ̂n and an estimated standard deviation σ̂n , we calculate
the value yn−μ̂n

σ̂n
for each bin. For obtaining the estimated values, we use unbiased estimators

calculated as,

μ̂n = 1

n

m∑

i=1

yni , σ̂n = �( n−1
2 )

�( n2 )

√
√
√
√1

2

m∑

i=1

(yni − μ̂n)2, (3)

where yni is the yn for the i-th image and �(x) is the gamma function. Finally, the visual
pointiness score, i.e., the output of the referential model SRef , is calculated by summing all
values of the standardized histogram, which is

SRef =
∑

n∈{9,...,15}

yn − μ̂n

σ̂n
. (4)

Through the calculation described above, we add a slight modification to the original
implementation. It is in the fourth step, where the method above calculates a summation of
all values of the histogram. Instead of a summation, the original one calculates a weighted
sum with a hand-made weight function. The intention of the weighted sum is to make sure
that pointy edges (e.g., pixels where n = 15) are treated as pointier than less pointy ones (e.g.,
pixels where n = 9). However, as such information is already retained through step 3., i.e.,
the preceding histogram standardization in the metric calculation, we replace the weighted
sum calculation with just a summation in this paper.

3.2 Expressive symbolismmodel

The procedure of calculating the phonetic pointiness by the expressive symbolism model
(in short, expressive model) is shown in Fig. 4. The expressive model consists of two steps:
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phonetic space construction and score calculation on the space. The core assumption is that
the output score should be low if the input pronunciation is similar to Bouba or Maluma, and
high if the input pronunciation is similar to Kiki or Takete, since (Bouba,Kiki) and (Maluma,
Takete) are the most notable examples of contrasting pronunciation pairs used to confirm the
Bouba-Kiki effect.

To calculate the score, we define two pronunciation sets Wr and Wp in advance, each
of which is composed of certain words that are perceived as round or pointy by humans.
According to the findings of the Bouba-Kiki effect described in Section 2, for example, Wr

should contain Bouba and Maluma, while Wp should contain Kiki and Takete. The actual
combinations of Wr and Wp tested in our experiments will be described in Section 4.

In the score calculation, the input pronunciation is first mapped onto a phonetic space as
well as every word inWr andWp , where similar-sounding words will be located close to each
other. Next, the similarity between the input pronunciation and each word in Wr and Wp are
measured on the phonetic space, and the final output is calculated based on the similarities.
Note that, throughout the calculation of this expressive model, we attempt to model human
intuition without using human annotations.

3.2.1 Phonetic space construction

The phonetic space of the expressive model is constructed using an Auto-Encoder archi-
tecture, as shown in Fig. 6. Each phoneme in an input pronunciation is first encoded into a
phoneme embedding by Word2vec [18, 19]. Word2vec originally is a model for encoding
words into word embeddings. In the same scheme as we did with DF-GAN explained in
Section 3.1.1, we extend the idea of Word2vec word embeddings to phoneme embeddings.
In detail, an input pronunciation (e.g., /"kivi/) is first regarded as an array of phonemes (e.g.,
[/"/, /k/, /i/, /v/, /i/]), and then Word2vec is trained to estimate the adjacent phonemes
for each phoneme in the array. After pre-training Word2vec with a number of pronuncia-
tions of existing words, the pre-trained one is used to obtain phoneme embeddings. Using
such Word2vec embeddings is more effective than using simpler encodings such as One-hot
encoding, sinceWord2vec can learn the implicit phonological relationship among phonemes
from occurrences of phonemes in pronunciations of existing words [14].

The phoneme embeddings obtained by the Word2vec are then input to an encoder that
employs Long Short-Term Memory (LSTM) [10], and the encoded vector is mapped onto
its intermediate representation, which is the phonetic space. This LSTM-based encoder can
consider sequential information of input pronunciations, and thus the encoder can distin-
guish an English word “Tap” (/"tæp/) from another English word “Pat” (/"pæt/). Finally, an
LSTM-based decoder decodes the vector on the phonetic space to retrieve its corresponding

Intermed .

layer

Word2vec

embedding
Encoder Decoder

(e.g., /ˈkivi/) (e.g., /ˈkivi/)

One-hot

decoding

Input

I
Output

I

Will be used as 

a phonetic space

F

Fig. 6 Architecture of Auto-Encoder used to construct a phonetic space

123



26194 Multimedia Tools and Applications (2024) 83:26183–26210

original pronunciation. Unlike the encoding process, this decoding process does not compute
Word2vec decoding.

The encoder and decoder are simultaneously trained as an Auto-Encoder using pronun-
ciation data of existing words. Its intermediate representation is used as a phonetic space in
the following steps.

3.2.2 Score calculation on phonetic space

Given an input pronunciation I and two pronunciation sets Wr = {wr1 , wr2 , . . . } and
Wp = {wp1 , wp2 , . . . }, dissimilarities (Euclidean distances in this paper) among their pro-
nunciations are first measured on the phonetic space obtained through the process described
in Section 3.2.1. Next, based on these dissimilarities, the final score SExp is calculated as,

SExp =
∑

wp∈Wp

1

d(F(I ), F(wp))
−

∑

wr∈Wr

1

d(F(I ), F(wr ))
, (5)

where F represents the encoder of our Auto-Encoder depicted in Fig. 6, which maps pro-
nunciations to vectors on the phonetic space, and d(x, y) represents the Euclidean distance
between two vectors x and y.

According to this formula, the closer the input I approaches to a round wordwr , the lower
the score SExp will be, and the closer I approaches to a pointy word wp , the higher SExp will
be. Note that SExp will be −∞ if I is identical to the round word wr , and SExp will be +∞
if I is identical to the pointy word wp .

3.3 Combinedmodel

The combined model takes two scores SRef and SExp as an input, and calculate the combined
score SCmb. First, variances of SRef and SExp are normalized to be ŜRef and ŜExp which are
calculated as,

ŜRef = SRef
σRef

, ŜExp = SExp
σExp

, (6)

where σRef and σExp represent the standard deviations of SRef and SExp, respectively. Next,
using a weighting parameter a, the score SCmb is calculated as,

SCmb = aŜRef + (1 − a)ŜExp. (7)

Since ŜRef and ŜExp are normalized to have equal variance, the weight a can be interpreted as
the ratio of the importance of the outputs of both models. If a = 0, the output of the combined
model will be substantially equivalent to that of the expressive model. If a = 1, it will be
equivalent to that of the referential model. For our further experimentation and analysis, we
need to decide the optimal weight a that best matches human perception. Because such a
weight is not obvious, in the experiments conducted in Section 4, we apply grid-search for
searching the optimal a for each experiment. We further attempt to reveal which symbolism
is more important in which condition and to what extent the performance will improve if we
combine two types of models.
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4 Experiment

We conduct two experiments to evaluate the proposed models on a task of estimating the
human preference of the phonetic pointiness towards a pair of pseudo-words. The purposes
of these experiments are: (1) to evaluate and compare how well each proposed model grasps
human perception, and (2) to identify in what kind of pronunciation each model/symbolism
has strengths and weaknesses. For these purposes, we collect participants’ responses through
user study via crowd-sourcing. Although the Bouba-Kiki effect and the proposed phonetic
pointiness are believed to be independent of participants’ mother languages, this paper
restricts the target only to the English language.

In these experiments, we focus on two different pronunciation features: phoneme types in
pronunciation and pronunciation length. Accordingly, the first experiment is set to measure
the performance towards types of phonemes (vowels or consonants) in a simple setting, while
the second experiment measures the performance towards pronunciation length in a more
complicated setting.

These two experiments only differ in the pseudo-words used in each of the experiments.
The experiment on phoneme types (in short, phoneme experiment) uses pseudo-words having
a pronunciation in CVCV (Consonant+Vowel+Consonant+Vowel) format. This follows the
precedent studies of psycholinguistics [4, 17]. Additionally, pronunciations of two pseudo-
words in each question are set similar (e.g., /"bubaU/ and /"wuwaU/). These restrictions are
set with the aim of making questions easier for participants to respond to. The experiment
on pronunciation length (in short, length experiment) uses more arbitrary pseudo-words in
terms of pronunciation length. Each question consists of two pseudo-words having a pro-
nunciation in either CVC, CVCV, CVCVC, or CVCVCV format, while the pronunciation
lengths of the two pseudo-words are the same in each question. Unlike the phoneme exper-
iment, pronunciation of two pseudo-words in each question is not necessarily similar (e.g.,
/"loUS/ and /"gid/). Therefore, this experiment can measure the performance of the proposed
models for pronunciation length withmore arbitrary pseudo-words compared to the phoneme
experiment.

4.1 Preparing Pseudo-words and Questions

In each trial of the experiments, we show participants a pair of words that do not exist in the
English vocabulary (pseudo-words). For this reason, we create 400 pseudo-words to prepare
200 questions for each of the experiments.

4.1.1 Pseudo-words for the phoneme experiment

The phoneme experiment only uses pseudo-words in CVCV format. This experiment mea-
sures the performance towards types of phonemes. Additionally, each question (a pair of
pseudo-words A and B) should be in either of the following two formats:

• Vs differ (C1VAC2VA and C1VBC2VB; e.g., /"fuôu/ and /"fiôi/)
• Cs differ (CAV1CAV2 and CBV1CBV2; e.g., /"bubaU/ and /"wuwaU/)

Besides, in this experiment, each pseudo-word must satisfy all of the following four condi-
tions:

1. The first syllable is always stressed
2. The pronunciation is not the same as the pronunciation of existing English words
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3. The pronunciation is not the same as Bouba, Maluma, Kiki, or Takete
4. The pronunciation has high wordiness [27] in English

4.1.2 Pseudo-words for the length experiment

The length experiment uses pseudo-words either in CVC, CVCV, CVCVC, or CVCVCV
format. This experiment tests the influence of pronunciation length. More specifically, each
question (a pair of pseudo-words A and B) should be in either of the following four formats:

• Comparison of CVC words
(CA1VA1CA2 and CB1VB1CB2 ; e.g., /"loUS/ and /"gid/)

• Comparison of CVCV words
(CA1VA1CA2VA2 and CB1VB1CB2VB2 ; e.g., /"zUgaU/ and /"muTA/)

• Comparison of CVCVC words
(CA1VA1CA2VA2CA3 and CB1VB1CB2VB2CB3 ; e.g., /"mIfeIl/ and /"ToUSUT/)

• Comparison of CVCVCV words
(CA1VA1CA2VA2CA3VA3 and CB1VB1CB2VB2CB3VB3 ; e.g., /wI"kup@/ and /"v2b@zi/)

Besides, in this experiment, each pseudo-word must satisfy all of the following two condi-
tions:

1. The pronunciation is not the same as Bouba, Maluma, Kiki, or Takete
2. The pronunciation has high wordiness [27] in English

In contrast to the phoneme experiment, here we omit the condition that “the pronunciation is
not the same as the pronunciation of existing English words.” This is because the condition
is too strict to ensure the phonetic variety of the created words in this experiment, especially
in CVC format. In CVC (C1VC2) format, for example, the case where C1 is /k/ and C2 is
/t/ is quite popular in English (e.g., “Cat”:/kæt/, “Kit”:/kIt/, “Coat”:/koUt/), while the case
where C1 is /T/ and C2 is /Z/ is quite rare. Therefore, including the condition would result
in a lot of /T/+V+/Z/ words and few /k/+V+/t/ words, which can work as a negative bias
throughout the evaluation.

4.1.3 Question generation

For each of the experiments, we first create all possible pseudo-words that satisfy all of the
conditions above, and then randomly select 400 words from them to prepare 200 questions
in the aforementioned format. These pseudo-words are then converted into audio sounds to
be presented to participants.

We use the software PronunDict to check the overlap of pronunciation with existing
words in the phoneme experiment. Also, we use Speech Application Programming Interface
(SAPI) 1 to convert pronunciation written with International Phonetic Alphabet (IPA) into
spoken sounds. Here, Zira (American English, Female) is selected as the speaker, and the
speed of her speech is fixed by setting the speaking rate as−2. Besides, to ensure high wordi-
ness of the pseudo-words, we refer to American English phonology from J.C. Wells [31] for
phoneme selection and pseudo-word format creation. All phonemes used in the experiments

1 https://docs.microsoft.com/en-us/previous-versions/windows/desktop/ee125663(v=vs.85)
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Table 1 All phonemes used to create pseudo-words

Consonants /p/, /t/, /k/, /f/, /T/, /s/, /S/, /b/, /d/, /g/,

/v/, /D/, /z/, /Z/, /m/, /n/, /ô/, /l/, /w/, /j/

Vowels /eI/, /i/, /aI/, /oU/, /u/, /aU/, /OI/, /A/, /æ/, /E/, /I/, /U/, /2/, /@/

are shown in Table 1. Note that several phonemes having problems in converting to audio
sounds are excluded from the experiments such as /h/ and /N/2

4.2 Experimental settings

Both experiments are conducted targetingEnglish native speakers in a crowd-sourcing fashion
via Amazon Mechanical Turk3.

In both of the experiments, participants are first asked to listen to two pseudo-words as
audio files. Then, they are asked to respond to which pronunciation sounds pointier, with
available responses being: “Audio 1,” “Audio 2,” and “Identical.” The actual user interface
displayed to participants is shown in Fig. 7. We collect five such answers for each question
and determine a ground-truth answer for each question by taking a majority vote of the five
answers.

Besides, we categorize each question by the degree of consensus into four categories:
Perfect (all agree), Strong (four out of five agree),Weak (three out of five agree), and Others
(less than three out of five agree) categories. This categorization reflects the difficulty of the
questions from high consensus to low consensus between participants.

For the evaluation, we use questions only in the Perfect, Strong, and Weak categories
(we name the union of the three categories as All category) and do not use questions in the
Others category, in which participants’ answers did not agree well (14 and 17 questions in
each experiment, respectively).We excluded these less-agreed questions for evaluation, since
even humanswould not be able to agree on a correct answer. In both experiments, wemeasure
accuracy as an evaluation metric. In the phoneme experiment, however, we found that there
is a gap between the numbers of questions in which only vowels differ and only consonants
differ. Thus, instead of accuracy, we calculate MacroAcc, a macro average accuracy of two
accuracies AccV and AccC. The former, AccV, is an accuracy of questions in which only
vowels differ and the latter, AccC, is an accuracy of questions in which only consonants
differ. The metric MacroAcc is calculated as

MacroAcc = AccV + AccC
2

. (8)

4.3 Training data for image generator of referential model

The referential model requires many pairs of a pronunciation and a silhouette image of
existing words. As such data, we use Google Emoji dataset4, which consists of more than

2 The 400 pseudo-words used in each of the experiments are publicly available at https://www.cs.is.i.nagoya-
u.ac.jp/files/misc/matsuhirac/phoneticpointiness/.
3 https://www.mturk.com/
4 https://github.com/iamcal/emoji-data/
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Fig. 7 User interface shown to participants in the crowd-sourcing experiments

1,000 words with emoji images with a resolution of 136 × 136 pixels. Here, we use tags
attached to each emoji to determine the name of the object displayed in the emoji image.

This dataset provides emojis not only for general objects but also for facial expressions e.g.,
“Smiling Face” and “Angry Face.” Although the attached tags are different, all such emojis
related to facial expressions have the same circular-shaped face silhouette. This means that
the pronunciation of the tags might not necessarily relate to the silhouette shapes of the
objects. Thus, in this paper, we filter out several words from the whole vocabulary of the
dataset and make three sub-datasets: FruitsVegs, Animals, and FruitsVegs+Animals.

(a) FruitsVegs (b) Animals

Fig. 8 Example images and tags in emoji subdatasets
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Table 2 Combinations of Wr and
Wp used in the experiments

Abbreviation Wr Wp

BK {Bouba} {Kiki}

MT {Maluma} {Takete}

BMKT {Bouba, Maluma} {Kiki, Takete}

FruitsVegs consists of 34 emojis/words that illustrate either fruits or vegetables, and Ani-
mals consists of 111 emojis/words that illustrate animals. Example images and tags of these
categories are shown in Figs. 8a and 8b, respectively. FruitsVegs+Animals consists of 145
emojis/words from those two sub-datasets.

Lastly, wemanuallymodify several tags of emojis in these sub-datasets to bemore popular
and consistent ones. For example,wemodify “Kiwifruit” to “Kiwi,”which the fruit is casually
called, and “Wolf Face” to “Wolf” so that the entire name represents only the name of the
illustrated animal5

Figure 8 shows examples of pairs of an emoji and a raw tag in each sub-dataset. For
training the image generator, we use pronunciation data converted from modified tags as
well as silhouette images extracted from raw emoji images. We use the alpha channel of each
image to extract its silhouette.

4.4 Pronunciation sets used in expressivemodel

As the candidate elements of pronunciation sets Wr and Wp of the proposed expressive
model, we adopt well-known pseudo-words Bouba andMaluma forWr , and Kiki and Takete
for Wp . In the experiments, we test three combinations of Wr and Wp , which are shown in
Table 2.

4.5 Implementation details

We perform data augmentation for emoji silhouette images used to train the DF-GAN of the
proposed referential model. In detail, by rotating images by 10 degrees, we augment each
image into 36 rotated images. In order to decide the optimal training epoch of the DF-GAN,
we calculate Fréchet Inception Distance (FID) [8], which is a major metric to measure the
performance of image generation models. Eventually, we use the epoch that gives the lowest,
i.e., the best FID. The resolution of generated images is set as 256 × 256 pixels.

As the data to train theWord2vec and the Auto-Encoder of the proposed expressivemodel,
we use Spell Checker Oriented Word Lists (SCOWL)6, an English wordlist that contains
44,561 words. We set the number of dimensions of Word2vec word embeddings as 200,
and of the phonetic space generated by the Auto-Encoder as 256. Word2vec is trained using
Skip-gram. The Encoder of the Auto-Encoder including the Word2vec is also adopted as
the Text-Encoder of the DF-GAN used in the referential model. Note that we also perform
normalization to the embedding obtained by the Encoder before feeding them into the DF-
GAN, so that the scale matches with that of the original Text-Encoder of the DF-GAN.

5 All the modifications made to the raw tags are also available at https://www.cs.is.i.nagoya-u.ac.jp/files/
misc/matsuhirac/phoneticpointiness/.
6 http://wordlist.aspell.net/
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Fig. 9 Distribution of words in pronunciation sets as well as pseudo-words used in the phoneme experiment
on our phonetic space, and corresponding phonetic pointiness scores for each pseudo-word calculated by the
expressive model

For converting English words into pronunciation written with International Phonetic
Alphabet (IPA), we use a Python package eng-to-ipa7. With regard to this package, we
found that the conversion does not support the phoneme /2/, so the pronunciation of words
that contains /2/ is always described with /@/ instead (e.g., “Hut” is converted into /"h@t/

instead of /"h2t/). Considering this, we replace all /2/ in pseudo-words with /@/ just before
inputting them into the proposed models. Due to this additional conversion, for example, a
pseudo-word /"n2naU/ is converted into /"n@naU/ before it is input to each model.

According to the phonology based on J.C. Wells [31], we set the actual pronunciations of
Bouba,Maluma,Kiki, and Takete as /"bubA/, /"mAlUmA/, /"kiki/, /"tAkEt@/, respectively. The
distribution of these pronunciations on the phonetic space as well as those of the 400 pseudo-
words in the phoneme experiment, and the corresponding phonetic pointiness scores for these
pseudo-words calculated by the expressive model is visualized in Fig. 9. In this figure, the
256-dimensional phonetic space is converted into a two-dimensional space using t-distributed
Stochastic Neighbor Embedding (t-SNE) [30] for the visualization. From the figure, we can
see that words locate close to each other (e.g., /"suDu/ and /"sunu/) as we have expected.
Besides, it is also in line with our intention that pseudo-words having similar pronunciation
to Bouba orMaluma have low scores and pseudo-words having similar pronunciation to Kiki
or Takete have high scores.

7 https://pypi.org/project/eng-to-ipa/
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Table 3 Results of the two experiments. Each combined model uses the corresponding referential model and
the asterisked expressive model in each experiment

Model Vocabulary Accuracy ↑ (Number of questions)
Phoneme (186) Length (183)

Referential FruitsVegs 0.409 0.459

Animals 0.456 0.470

FruitsVegs+Animals 0.580 0.497

Expressive BK 0.591 0.514

MT 0.604 0.541

BMKT 0.652* 0.541*

Combined FruitsVegs 0.665 (a=0.144) 0.541 (a=0.000)

Animals 0.657 (a=0.038) 0.557 (a=0.266)

FruitsVegs+Animals 0.691 (a=0.280) 0.585 (a=0.692)

4.6 Results and discussions

4.6.1 Overall results

The results of the two experiments are shown in Table 3. The table shows macro average
accuracies (MacroAcc) for the phoneme experiment and accuracies for the length experiment
of the three proposed models. Combined models are composed of corresponding referential
models and the best (asterisked) expressive models in each of the experiments.

Overall, the proposed models perform better in the phoneme experiment than in the length
experiment. This is because the question setting of the phoneme experiment is much easier
to be answered than the length experiment. Since the chance rate of the metrics is 0.5, the
results indicate that the expressivemodel and the combinedmodel perform always better than
random choice. The referential model, on the other hand, appears to be struggling in almost
all contexts. In addition, in both experiments, the expressive model always performs better
than the referential model. These suggest that human perception towards phonetic pointiness
can be explained better by the expressive sense (human intuition) than the referential sense
(reference to existing words).

Regarding the referential model, we can see that the vocabulary used in it affects the
performance very much. The vocabulary size of each sub-dataset is 34 (FruitsVegs), 111
(Animals), and 145 (FruitsVegs+Animals). Considering this, in both experiments, it appears
that a larger vocabulary improves the performance. Because humans have a much larger
vocabulary than all of the sub-datasets used in the experiments, these results indicate that the
referential model may approximate human perception better if the vocabulary increases.

Regarding the expressive model, we can see that the choice ofWr andWp affects the per-
formance. In both experiments, we can observe that only using Maluma and Takete performs
better than only using Bouba and Kiki, and also that using all of Bouba, Maluma, Kiki, and
Takete makes the performance much better. This means that, for English speakers, the pair
of Maluma and Takete is a better example of pointy/round association than Bouba and Kiki,
in terms of concordance with human perception. Also, the result suggests the possibility of
the existence of more effective pronunciation pairs that should be included in Wr and Wp .
Based on the fact that the expressive model fits with human perception well, such a more
effective pair would increase the accuracy if integrated into the expressive model. Hence, by
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Table 4 Detailed results of the phoneme experiment arranged by categories and types of questions

Category Type (Number of questions) Accuracy and MacroAcc ↑
Referential Expressive Combined
(FruitsVegs+Animals) (BMKT) (a = 0.280)

All Vowels+Consonants (186) 0.580 0.652 0.691

Vowels (106) 0.585 0.642 0.670

Consonants (80) 0.575 0.663 0.713

Perfect Vowels+Consonants (24) 0.500 0.879 0.879

Vowel (14) 0.500 0.857 0.857

Consonants (10) 0.500 0.900 0.900

Strong Vowels+Consonants (57) 0.614 0.685 0.736

Vowel (28) 0.607 0.714 0.714

Consonants (29) 0.621 0.655 0.759

Weak Vowels+Consonants (105) 0.577 0.586 0.622

Vowel (64) 0.594 0.563 0.609

Consonants (41) 0.561 0.610 0.634

observing the behavior of this expressive model testing with different combinations of Wr

and Wp , it would be interesting to discover which pronunciation pair is the most effective.
Lastly, as we have expected, the combined model performs much better than the original

two models, giving the highest MacroAcc of 0.691 for the phoneme experiment and the
highest accuracy of 0.585 for the length experiment. By observing its weight a, we can
grasp how much the referential and the expressive features, respectively, are important for
each experiment. In the phoneme experiment, the optimal weight a always ranges near 0,
representing that the expressive sense is always more important than the referential sense.
Interestingly, in the length experiment, the optimal weight a of the best model that uses
FruitsVegs+Animals is 0.692. This is a contrasting result from the phoneme experiment,
implying the larger importance of the referential information. The pseudo-words used in the
length experiment have a wider phonetic variety than those used in the phoneme experiment,
where the format of pseudo-words is strictly restricted to CVCV. From this point of view, we
assume that the similarity of the phonetic distribution between pseudo-words and existing
words may have become closer in the length experiment, which may have resulted in such a
high value of the optimal weight a.

4.6.2 Results by question type

Next, we discuss the types of questions. The detailed results of the phoneme experiment are
shown in Table 4. The table shows MacroAccs given by the best models of Table 3 arranged
by categories (All, Perfect, Strong, and Weak; details have been described in Sec. 4.2) and
types of questions (within two pseudo-words, whether vowels differ or consonants differ).

First, in all models, there seems to be no remarkable difference between strengths towards
questions in which vowels differ or consonants differ. On the other hand, for categories, we
can see that the referential model has strengths mainly in the Strong and Weak categories,
while the expressivemodel is significantly strong in thePerfect category. ThePerfect category
should contain obvious questions similar to “Bouba vs. Kiki,” which can be a reason for such
high performance of the expressive model, since it has prior knowledge of the Bouba-Kiki
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effect. The referential model, on the other hand, does not have such a prior, and just tries to
guess answers only from the knowledge of the names and shapes of fruits, vegetables, and
animals. Considering this, the results of the referential model suggest that the pronunciations
of such existing English words do certainly represent their shape information, since the
model correctly guessed many questions in the Strong andWeak categories. However, since
it cannot perform well on the Perfect category, the information embedded in existing words
is not obvious enough to explain the Bouba-Kiki effect by itself. This can also be one of the
reasons why the combined model achieved better performance than the other two models.

The table also shows that the combined model performs the best in every category, giving
the highest MacroAcc of 0.691, 0.879, 0.736, and 0.622 in each category. Especially in
the Strong and Weak categories, we can observe a great improvement of performance from
the rest of the two models. The possible reason is already mentioned in the last paragraph.
Focusing on the performance itself, supposing that humans answer the same questions, the
expectation of their accuracy should theoretically be 1.000, 0.800, and 0.600 for the Perfect,
Strong, and Weak categories, respectively. Comparing these accuracies with the combined
model indicates that it performs very well. These results suggest the applicability of the
combined model to other tasks such as estimation and analysis of the phonetic pointiness,
which will be discussed further in Section 5.

Next, the detailed results of the length experiment are shown in Table 5. The table shows
accuracies given by the best models of Table 3 arranged by categories (Perfect, Strong,
and Weak) and types of questions (questions in the format of CVC, CVCV, CVCVC, and
CVCVCV).

In terms of categories, we can see a similar tendency to Table 4. Besides, regarding
pronunciation length, we can also confirm that the referential model has strengths in the
CVC format questions, whereas the expressive model has weaknesses. This suggests that
the pronunciation of existing words in the CVC format represents their shape information
more than words in other formats. For example, a “Pig” has a relatively round shape and
its pronunciation /"pIg/ might also evoke a round impression, while a “Fish” has a pointier
shape and its pronunciation /"fIS/ also evokes a pointier impression. We believe that our
model successfully handled such implicit features of the natural language.

Moreover, we can see that the expressive model has strength in the CVCVCV format
questions. This is probably because we used prior knowledge of Maluma and Takete when
constructing the expressive model. These two words are known as contrasting examples of
two CVCVCV words with which the Bouba-Kiki effect can be observed. This must have
worked effectively for the model to guess human answers correctly.

Finally, also in the length experiment, the combined model achieves higher accuracies
than the other two models throughout almost all categories and types of questions. How-
ever, it is still struggling to achieve high performance, as the question setting is much more
complicated than the phoneme experiment. When the detail is focused, the model performs
especially badly on the CVCVCV format questions, giving a neutral accuracy of 0.500 in
the All category. This can be the weakness of the current combined model. This weakness
is likely to be caused by its combination scheme. Therefore, implementing a more sophisti-
cated combination scheme would effectively solve this problem. For example, because the
current model fixes its weight a for any kind of input pronunciation, adjusting a dynamically
depending on the input might improve the performance.
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Table 5 Detailed results of the length experiment arranged by categories and types of questions

Category Type (Number of questions) Accuracy ↑
Referential Expressive Combined
(FruitsVegs+Animals) (BMKT) (a = 0.692)

All All questions (183) 0.497 0.541 0.585

CVC (46) 0.652 0.478 0.609

CVCV (48) 0.500 0.521 0.604

CVCVC (43) 0.465 0.558 0.628

CVCVCV (46) 0.370 0.609 0.500

Perfect All questions (15) 0.267 0.600 0.467

CVC (3) 0.667 0.333 0.667

CVCV (3) 0.333 1.000 0.667

CVCVC (5) 0.000 0.600 0.200

CVCVCV (4) 0.250 0.500 0.500

Strong All questions (50) 0.540 0.520 0.640

CVC (21) 0.524 0.476 0.524

CVCV (7) 0.857 0.571 0.857

CVCVC (12) 0.417 0.500 0.667

CVCVCV (10) 0.500 0.600 0.700

Weak All questions (118) 0.508 0.542 0.576

CVC (22) 0.773 0.500 0.682

CVCV (38) 0.447 0.474 0.553

CVCVC (26) 0.577 0.577 0.692

CVCVCV (32) 0.344 0.625 0.438

5 Applications

This section discusses the applicability of the proposed models by focusing on two possible
use-cases. Section 5.1 explores the usefulness of the models when naming commercial prod-
ucts. Section 5.2 explores a deeper aspect of the Bouba-Kiki effect by observing the behavior
of the models towards a set of certain input pronunciations.

5.1 Product naming

Oneof the applications of this researchwould be assisting people to give names to commercial
products. The main use-case of the proposed models would be; given many candidate names,
the models can help people choose one or several names from the candidates that best match
the characteristics of the product. In this section, in order to show an example of such use-
cases, we calculate the phonetic pointiness scores by the proposed models towards certain
synonym adjectives. The calculated scores are shown in Table 6. All these four adjectives
have a meaning related to the pointiness of objects. Note that, to demonstrate the usefulness
of the proposed models for unseen words, we chose only words that are not used to train the
image generator of the referential model.

In the table, among the four adjectives related to pointiness, “Pointy” shows the highest
phonetic pointiness according to the referential model. In contrast, the scores calculated by
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Table 6 Examples of calculated phonetic pointiness scores by the proposed models for synonym words

Word Pronunciation Referential ŜRef Expressive ŜExp Combined SCmb
(FruitsVegs+Animals) (BMKT) (a = 0.280)

Sharp /"SAôp/ −1.087 −0.629 −0.757

Thorny /"TOôni/ 0.342 0.698 0.598

Spiky /"spaIki/ −1.685 1.544 0.640

Pointy /"pOInti/ 1.893 1.083 1.310

the expressive model suggest that “Spiky” sounds the pointiest. In addition, the combined
model integrates the two models and concludes that “Pointy” would sound pointier than
“Spiky” to humans.

These results imply that pure human intuition perceives “Spiky” the pointiest, while
“Pointy” is more likely to evoke existing namely pointy words than “Spiky” (e.g., pineapple
(/"paInæp@l/)). Also, since the combined model is optimized to estimate the reaction of an
average human, the optimal combined model tells that an average human would perceive
“Pointy” pointier than “Spiky.”

Imagine when we need to name a product whose characteristic is its spiky shape. From
the results above, we can see that naming “Spiky” to the product would best match its
characteristic in termsofhuman intuition. In contrast,whenwewant to consider the referential
aspect of sound symbolism, it would be better to choose “Pointy” rather than “Spiky” for
the product name as both the referential model and the optimal combined model suggest. In
any case, it can also be deduced that naming the product “Sharp” seems inappropriate for
this context.

By using the proposed models, we can estimate such human reactions without market
research, or even when we are not familiar with the target language. Since these methods
can also be applied to arbitrary pronunciations including words that do not exist, the pro-
posed models would be a helpful tool for people to name commercial products. In addition,
according to the intention of the naming, people have a choice of which model to use for
assessing the candidate names. For example, the expressive model is useful if people want to
know how pointy the names intuitively sound, and the referential model and the combined
model are useful if they want to consider the referential symbolism and assess in terms of
more general human perception.

5.2 Exploring Pronunciation between Bouba and Kiki

As the Bouba-Kiki effect states, the pronunciation of Bouba evokes a round impression and
the pronunciation of Kiki evokes a pointy impression. What about other pronunciations?
Psycholinguistics has yet to provide a definite answer to this question. In this section, we
attempt to explore what the distribution of pronunciation between Bouba and Kiki is like
by observing the behavior of the proposed combined model for pseudo-words in the CVCV
format.

First, we generate all possible C1V1C2V2 pseudo-words according to English phonol-
ogy based on J.C. Wells [31] as performed in Section 4.1. Next, we calculate the phonetic
pointiness scores for all these pseudo-words with the combined model (with the optimal
a = 0.280), and sort them by their phonetic pointiness scores. Then, in order to observe the
tendency of the distribution rather than the absolute rankings of the pseudo-words, we classify
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all pseudo-words into five groups by their phonetic pointiness scores: 0%–20%, 20%–40%,
40%–60%, 60%–80%, and 80%–100% of the data distribution. For example, if the phonetic
pointiness score of a word is equal to or greater than the first quintile (20%) but less than
the second quintile (40%) of the distribution, the word is classified into the 20%–40% group
and the word is regarded as having a relatively low phonetic pointiness. Finally, by ana-
lyzing these classified pseudo-words, we search for the most representative pseudo-words
in each distribution group. In detail, when fC1(X), fV1(X), fC2(X), and fV2(X) represent
discrete probability distributions of a phoneme variable X in each position of a pseudo-word
C1V1C2V2, we calculate a likelihood fC1(X = c1) fV1(X = v1) fC2(X = c2) fV2(X = v2)

for all possible pseudo-words c1v1c2v2. Then, we search for the top five pseudo-words that
give the maximum likelihood. Note that the occurrence of phonemes in C1, V1, C2, and V2

positions are supposed to be independent throughout the calculation.
The five most representative pseudo-words in each group are shown in Table 7. First,

as we have expected, Bouba-like pseudo-words (e.g., /"jubA/) appear in group 0%–20%
and Kiki-like pseudo-words (e.g., /"kikeI/) appear in group 80%–100%, which means that
such Bouba-like words tend to have the lowest scores, and Kiki-like words tend to have the
highest scores. Next, regarding vowels, we can see that back vowels and rounded vowels (/u/,
/U/, /o/, /O/, /A/) appear frequently in low phonetic pointiness groups, while close front
unrounded vowels (/i/, /I/, /e/, /E/) appear frequently in high phonetic pointiness groups.
Regarding consonants, sonorants (/j/, /ô/) and voiced consonants (/b/, /Z/, /z/, /D/, /v/,
/d/, /g/) appear frequently in low phonetic pointiness groups, while voiceless consonants
(/k/, /T/) appear frequently in high phonetic pointiness groups. These results all match the
existing findings of the Bouba-Kiki effect [17, 20], thus we can confirm that the proposed
combined model performs quite well in terms of the capability of handling phonemes, too.

According to this table, pseudo-words having both round phonemes (i.e., phonemes that
are often associated with round shapes) and pointy phonemes tend to be in the 40%–60%
group, which is exactly the midpoint between Bouba and Kiki (e.g., /"DoUvOI/ has a round
phoneme /oU/ and a pointy phoneme /OI/). This is reasonable since such words have both
features that can be perceived as either round or pointy.

Following this, we observed that the optimal combined model can imitate the human
reaction towards the Bouba-Kiki effect quite well. The analysis of the combined model suc-
ceeded in revealing the tendency of the pronunciation and phoneme occurrences over the
model outputs. Therefore, it would also be interesting to compare the tendency among pho-
netic impressions other than the phonetic pointiness, such as how hard/soft or how big/small
a pronunciation is perceived.

Table 7 Five most representative pseudo-words in each distribution group of phonetic pointiness

← Low (Round) High (Pointy) →
Rank 0%–20% 20%–40% 40%–60% 60%–80% 80%–100%

1 /"bubA/ /"ZUjoU/ /"DoUvOI/ /"dOIdeI/ /"kikeI/

2 /"jubA/ /"jUjoU/ /"DaUvOI/ /"dOIdaI/ /"kEkeI/

3 /"bæbA/ /"ZUzoU/ /"ôoUvOI/ /"deIdeI/ /"kikaI/

4 /"jæbA/ /"jUzoU/ /"ôaUvOI/ /"TOIdeI/ /"kOIkeI/

5 /"bAbA/ /"ZaUjoU/ /"DoUgOI/ /"deIdaI/ /"kEkai/
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6 Conclusion

In this paper, we introduced the novel concept of “phonetic pointiness” as how pointy a shape
humans are most likely to associate with a given pronunciation. Based on psycholinguistic
findings arguing types of sound symbolism, we proposed three models, a referential model,
an expressive model, and a combined model of the previous two, to calculate the phonetic
pointiness for an arbitrary pronunciation. This was the first attempt to model the phonetic
pointiness. For this, we employed computational and data-driven approaches incorporating
referential symbolism and expressive symbolism.

We evaluated the proposed models through subjective evaluation by estimating human
answers towards which of the two pronunciations sounds pointier. The results showed a
promising correlation between human perception and the phonetic pointiness calculated by
the proposed models. The combined model improved the performance compared to the sole
models, indicating that human perception can be modeled more accurately by combining the
two types of sound symbolisms.

We showed several use-cases of the proposed models, which showcased the applicability
of this research not only in informatics and engineering but also in marketing and psycholin-
guistics fields. By further utilizing and analyzing the proposed models, we believe that much
more applications can be discovered, such as analyzing cultural differences among language
speakers and revealing the word origins of natural languages.

In actual applications, users have a choice of which model to use depending on their
use-cases, since there are models for two different symbolisms and the combined model.
This is hard to achieve if the model is constructed via training with human annotations, i.e.,
supervised learning. The reason for this is that it requires task-specific human annotations
for each symbolism, which could be hard to collect because of the ambiguity of the boundary
of the two symbolisms. Therefore, this usage would be a great advantage against the current
trend of training a model under the supervision of manually annotated data.

Nevertheless, we recognize that the proposed models have some limitations. First of all,
the performance, especially of the current referential model, might not be stable enough for
some applications. It is mainly influenced by three factors: (1) the performance of the image
generator, (2) the performance of the visual pointiness calculator, and (3) the data used to
train the image generator. For the first and second factors, better and more accurate methods
should be adopted, or proposed. For the third one, other data should be considered for the
training, since the vocabulary of the emoji dataset used in this paper is quite limited. The
restriction that the data must satisfy is that each name of an object is attached to its silhouette
images. In addition, it would be better if the pronunciation of the names relates very much
to the silhouette shapes of the objects.

For the expressive model, one possible point for improvement is the phonetic space
construction. Currently, Word2vec is used to obtain the phonetic/phonological relation-
ship among phonemes. Although embeddings of Word2vec can capture such relationships
to some extent [14], there should be better approaches such as directly integrating pho-
netic/phonological priors of phonemes such as IPA chart [11] in place of the Word2vec
embeddings.

Another limitation we found for the combinedmodel, is the combination scheme. The cur-
rent scheme is simple and effective, but it would be better if the weight a were automatically
determined based on psycholinguistic findings. Moreover, because the current combined
model fixes its weight a for any kind of input pronunciation, adopting a dynamic weighting
scheme when combining scores would add more flexibility to the output of the model.
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Considering these limitations, for future work, our next step is to extend the framework of
the proposedmodels to be able to estimate phonetic impressions other than pointiness, such as
how hard/soft or how big/small a pronunciation is perceived. We believe that the framework
of the referential model, combined with other vision and language models, has the potential
to achieve this. Since the use of silhouette images of objects is not suitable for expressing such
visual impressions evoked by pronunciation, the color and texture information of the objects
should also be taken into account. Besides, by comparing the behavior of models constructed
in different languages, we could reveal the difference in people’s reactions towards phonetic
impressions in different languages and different cultural backgrounds. Furthermore, among
different phonetic impressions, itwould also be interesting to compare the behavior ofmodels,
as made in Section 5.2.

Data Availability The datasets generated during and/or analysed during the current study are available at
https://www.cs.is.i.nagoya-u.ac.jp/files/misc/matsuhirac/phoneticpointiness/.
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