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Abstract
Numerous medical studies have shown that Alzheimer’s disease (AD) was present decades 
before the clinical diagnosis of dementia. As a result of the development of these stud-
ies with the discovery of many ideal biomarkers of symptoms of Alzheimer’s disease, it 
became clear that early diagnosis requires a high-performance computational tool to han-
dle such large amounts of data, as early diagnosis of Alzheimer’s disease provides us with a 
healthy opportunity to benefit from treatment. The main objective of this paper is to estab-
lish a complete framework that is based on deep learning approaches and convolutional 
neural networks (CNN). Four stages of AD, such as (I) preprocessing and data preparation, 
(II) data augmentation, (III) cross-validation, and (IV) classification and feature extraction 
based on deep learning for medical image classification, are implemented. In these stages, 
two methods are implemented. The first method uses a simple CNN architecture. In the 
second method, the VGG16 model is the pre-trained model that is trained on the ImageNet 
dataset but applies the same model to the different datasets. We apply transfer learning, 
meaning, and fine-tuning to take advantage of the pre-trained models. Seven performance 
metrics are used to evaluate and compare the two methods. Compared to the most recent 
effort, the proposed method is proficient of analyzing AD, moreover, entails less labeled 
training samples and minimal domain prior knowledge. A significant performance gain on 
classification of all diagnosis groups was achieved in our experiments. The experimental 
findings demonstrate that the suggested designs are appropriate for basic structures with 
minimal computational complexity, overfitting, memory consumption, and temporal regu-
lation. Besides, they achieve a promising accuracy, 99.95% and 99.99% for the proposed 
CNN model in the classification of the AD stage. The VGG16 pre-trained model is fine-
tuned and achieved an accuracy of 97.44% for AD stage classifications.
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1  Introduction

Alzheimer’s disease (AD) is the result of the degeneration of healthy brain cells and results in 
a continuous decline in memory, mental, and intellectual abilities. It is the most common cause 
of dementia, which affects mental and social skills. This impairs daily functioning in normal 
life and deteriorates further over time [22]. This phenomenon appears because of the death of 
nerve cells, the formation of amyloid plaques and neurofibrillary tangles, and the atrophy of 
the tissue throughout the brain, which becomes worse progressively [22, 35]. According to 
statistics from the World Health Organization, in 2021, around 55 million people worldwide 
will suffer from dementia, with the number expected to climb to 78 million in 2030 and 139 
million in 2050, more than two times the number of dementia patients in 2021 [12].

Most people over 65 years of age have a high risk of getting dementia, whereas only 
3% of young people have young-onset dementia that may be caused by different diseases 
[39]. Late treatment leads to damage to brain cells that are connected with the ability to 
think and memorize, which causes loss of brain function, a decrease in mental skills, lan-
guage problems, and a decrease in the ability to construct logical thoughts. Starting with 
the gradual deterioration of nerve cells, the condition advances to an acute stage of demen-
tia that leaves patients unable to carry out fundamental daily activities [36]. So, diagnosing 
AD in its early stages is very important because it progresses over time. AD is diagnosed 
through two methods: (1) when the patient has symptoms, and (2) by using neuroimaging 
techniques. AD shows up before any symptoms appear. This stage is referred to as “pre-
clinical AD,” during which no symptoms are noticeable by either the affected individual 
or those in their vicinity [13]. This stage of Alzheimer’s disease can last for years, if not 
decades. Modern imaging technologies are capable of identifying amyloid beta deposits, a 
protein that is a hallmark of AD, regardless of whether any symptoms are perceptible [5]. 
The capacity to detect these early deposits could be particularly useful in clinical trials and 
in the future if novel AD treatments are developed.

Imaging techniques are the most prevalent approach for detecting AD because they 
allow for a non-invasive internal examination of the body. The history of AD treatment 
formerly faced a difficult period when the disease could only be discovered after death. But 
these days, medical imaging tools now play a significant role in the diagnosis and treat-
ment of AD [33]. There are multiple neuroimaging techniques that have an essential role in 
the diagnosis of brain abnormalities, such as magnetic resonance imaging (MRI), positron 
emission tomography (PET), functional magnetic resonance imaging (fMRI), and com-
puted tomography (CT). Although the most useful dataset for diagnosing AD is images, 
there are also handwritten and drawing task data sets that can be used in the diagnosis of 
patients with AD [11]. In our previous work [7], we showed the difference between them 
in detail. MRI and PET scanning are the most common imaging modalities that researchers 
use to diagnose AD. In this study, we combined MRI modalities that show brain structure 
and functionality with non-invasive techniques that help physicians and researchers detect 
Alzheimer’s disease [7].

Nowadays, researchers are interested in machine learning in different fields, which has 
the ability to learn and improve algorithms and predict the solution to any problem. Where 
[11], proposed diagnosis AD based on machine learning techniques. They apply multi clas-
sifier architecture on handwritten and drawing task data like random forest, logistic regres-
sion, K-Nearest Neighbor, support vector machine, Gaussian Naive Bayes and Linear Dis-
criminant Analysis. Deep learning (DL) is a subset of machine learning that has to support 
the best classification in many fields with the best performance, such as computer vision, 
diagnosis, and natural language processing [28].
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Deep neural networks can identify small and complicated changes in brain structure 
using data, analyze the progression of AD, and provide reliable outcomes for the diagnosis 
of the disease [41]. DL has more than a few different types, such as convolutional neural 
networks (CNN), autoencoders, recurrent neural networks, and deep belief networks. CNN 
is the most well-known of the numerous deep learning models that are specifically built to 
deal with two-dimensional image data, although they can also be utilised with one-dimen-
sional and three-dimensional data. The deep neural network needs a large dataset to train 
the model with the best performance [17]. In this paper, a methodology for diagnosing AD 
is proposed to achieve an accurate diagnosis and save the lives of many people. The pro-
posed model works on the diagnosis of the MRI image to classify AD. This methodology 
aims to achieve high performance. Based on the issues raised above, we proposed a deep 
learning (DL) model to diagnose AD.

The objective of this paper is to present an end-to-end framework based on convolu-
tional neural networks (CNN) that encompasses detailed steps, beginning with image 
acquisition and culminating in AD classification. The proposed machine learning applica-
tion, supported by digital image processing, classifies scanned MRI images and predicts 
the presence and degree of Alzheimer’s disease. The proposed framework achieves the 
following:

The following is a summary of the current paper’s contributions:

•	 To balance our data collection, methods for data expansion have been implemented.
•	 To guarantee the unity of the given image, an image processing technique involving the 

transformation of images to a specific size is introduced.
•	 To Equilibrium the used dataset, data augmentation techniques have been implemented.
•	 During the categorization step, two models of the diagnosis are presented using the first 

method offered. The first proposed method used CNN architectures built from scratch. 
While the second method, the VGG16 model, is a pre-trained model that was trained 
on the ImageNet dataset but is applied to different datasets using transfer learning, 
meaning, and fine-tuning.

•	 To validate the proposed two approaches, a comparison and evaluation have been dis-
cussed and introduced based on the seven important performance metrics.

The rest of this paper is organized as follows: Section 2 presents different related works 
in this field. Section 3 shows the proposed algorithm and methodology. Experiments and 
results are shown in Section 4. Section 5 shows a discussion. Finally, this paper is con-
cluded in Section 6.

2 � Related work

Many studies in the realm of Alzheimer’s disease diagnosis have recently been published. 
Several studies based on various datasets used various tools and approaches to aid in the 
categorization of AD. Table 1 shows the most recent methodologies in the classification 
of AD, datasets that are used, image types, number of images, and the performance of the 
techniques. According to recent research on the diagnosis of AD, there are two approaches 
used in training and classifying the model: traditional techniques and deep neural networks. 
[15, 21, 25] used traditional techniques to classify Alzheimer’s disease, whereas [1-3, 22, 
41] used deep neural networks techniques.
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AbdulAzeem et al. [1] proposed a CNN model that consists of three convolution layers 
and applies a max-pooling layer after every convolution layer for binary classification of 
AD. The Adam optimizer is used in the optimization process and uses the SoftMax activa-
tion function at the classify layer. They apply three experiments to show the effectiveness 
of the augmentation techniques on training datasets with different image sizes. Images are 
resized into two-scales (128, 128) and (64, 64). With both sizes, the model is trained with 
and without dropout to see how the dropout affects accuracy. The result shows the best accu-
racy when the image size is (128, 128) and without applying dropout. Cross-validation is 
done by splitting data into this range from 0.1 to 0.5. As the batch size increases, the training 
accuracy increases, but if the batch size increases to more than 64, the accuracy decreases. 
The accuracy of their proposed model achieves 95.6% accuracy for binary classification.

Al-Khuzaie et al. [3] proposed a CNN model named “Alzheimer Network” (AlzNet) for 
the binary classification of AD and CN. The AlzNet model is made up of five convolution 
layers, each with a ReLU activation function, and a max-pooling layer with a kernel size of 2 
* 2. Their model was trained and tested on OASIS datasets that contained 15,200 images with 
a size of 200 × 200. The Adadelta optimizer was used to optimize the model with a ratio of 
0.2 dropouts to overcome the overfitting problem. The model was trained with different num-
bers of dense units in the hidden layer to achieve the best performance, which was achieved at 
121 units. The model achieves 97.99% training accuracy and 99.53% testing accuracy.

Al-Adhaileh et al. [2] suggested two pre-trained CNN models (AlexNet and Resnet50) 
to determine the best model for the diagnosis of AD. Their model was trained and tested 
on the Kaggle Alzheimer’s dataset that was divided into 4 classes: MildDemented, Mod-
erateDemented, NonDemented, and VeryMildDemented. The size of the input image is 
224 × 224. The first proposed model is AlexNet, which has 34 layers and 5 max-pooling 
with size 4 × 4. They split the data into a 20% testing set and an 80% training set. The sec-
ond model is ResNet50, which consists of 177 layers, 5 max-pooling with a size of 5 × 3, 
and an RMSprop optimizer. In both models, they used the ReLU activation function and 
the SoftMax function in the last layer to classify four classes. With 94.53% and 58.07% 
accuracy, respectively, the AlexNet model outperforms the ResNet50 model.

Antony et al. [6] suggested two models, VGG16 and VGG19, for the diagnosis of AD. 
Their model was trained on the 780-image ADNI dataset. The skull was stripped and 
augmented at the preprocessing stage before training the model. The input image size is 
224 × 224. In VGG16 models, they used the sigmoid activation function in the last layer to 
classify two classes. In VGG19 models, they used the SoftMax activation function in the 
last layer to classify two classes. Where VGG16 has 64 and 128 kernel sizes, and VGG19 
has 64, 128, and 256 kernel sizes. The accuracy in both models was insufficient; VGG-16 
achieved 81% and VGG-19 achieved 84%.

Liu et al. [23] proposed a novel model for the classification of AD. Initially, a CNN model 
was developed from scratch, consisting of three convolutional layers, three pooling layers, and 
two fully connected layers, with SoftMax as the activation function in the last layer. Addition-
ally, AlexNet and GoogLeNet models were also utilized, but with transfer learning applied to 
overcome overfitting issues and improve classification accuracy. However, the models did not 
yield significantly high classification accuracy. It should be noted that during transfer learn-
ing, both the AlexNet and GoogleNet models utilize 5-fold cross-validation and 500 training 
iterations. The classification accuracy rates achieved by the CNN model, AlexNet model, and 
GoogleNet model are 78.02%, 91.4%, and 93.02%, respectively. Since GoogleNet has more 
convolutions and deeper layers than AlexNet, it achieves a higher classification accuracy rate.

Savaş et al. [32] used different CNN models to classify the 2182 image objects that were 
taken from the ADNI database. The study gave a detailed framework for comparing the 



3773Multimedia Tools and Applications (2024) 83:3767–3799	

1 3

performance of 29 models that had already been trained on the images. Preprocessing was 
applied to images by first converting the image format, cleaning the data, and splitting the 
images. After applying preprocessing techniques, image input is given to the models. Dur-
ing the test stage, the EfficientNetB0 model achieved the highest accuracy rate of 92.98%. 
In the comparative evaluation stage, the confusion matrix indicated that the EfficientNetB2 
and EfficientNetB3 models achieved the highest precision, sensitivity, and specificity val-
ues for the Alzheimer’s disease class, respectively, with rates of 94.42% and 97.28%. The 
study’s results demonstrated that EfficientNet models performed remarkably well among 
the pre-trained models and achieved the highest classification performance.

3 � The proposed methodology

As shown in Section 2, different studies have come up with different ways to diagnose AD. 
However, some studies didn’t get the best results, while others got good results but had to 
use a more complicated and time-consuming model. So, in this paper, we try to improve 
the model and performance of the process of making a diagnosis while using as little com-
puting power and memory as possible. The objectives of this article are to: (1) diagnose 
AD with the best performance possible; (2) enhance the accuracy of our proposed previ-
ous model in [14] by updating the model; (3) build a new CNN model; (4) compare two 
proposed models in training and testing with different performance metrics; and (5) discuss 
the effectiveness of the different optimizers on the same model and compare them accord-
ing to diagnosis performance. In this study, the proposed schema of AD classification, as 
shown in Fig. 1, consists of four stages: the first stage is data preparation (data acquisition 
and preprocessing images), the second stage is data augmentation, the third stage is cross-
validation, and the fourth stage is classification and feature extraction.

3.1 � Dataset for the study

The dataset evaluated in this research is from the Kaggle Alzheimer’s classification dataset 
[4]. The dataset has scans for testing and training, which consist of 1279 and 5121 scans, 
respectively. This data is divided into 717 MildDemented, 2560 NonDemented, 52 Mod-
erateDemented, and 1792 VeryMildDemented. The dimension of the image is 176  ×  208 
and the format is jpg. In this study, we distinguish between two classes: mild-demented 
and non-demented. Dataset available on: https://​www.​kaggle.​com/​datas​ets/​touri​st55/​alzhe​
imers-​datas​et-4-​class-​of-​images.

3.2 � Data preparation

3.2.1 � Data acquisition

The acquisition of input images is the initial step required for any medical image pro-
cessing system. Images characterize the inner parts of the human body that can be cap-
tured using various imaging modalities with different procedures, as shown in Fig.  2. 
Neuroimaging techniques include (1) MRI, (2) PET, (3) fMRI, and (4) CT [34]. The 
choice of these modalities is based on the researcher’s decision and the target task Data-
sets can be obtained from a variety of sources, including hospitals, clinics, radiology 
facilities, and online platforms [40].

https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images
https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images
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3.2.2 � Image preprocessing

Images are preprocessed in two steps: first, the image is transformed, and then it is nor-
malized. The transformation process involves resizing the input image from 176  ×  208 to 
64 ×  64. Resizing the image is a critical process in model training, as the model trains 
faster when the image size is smaller. After resizing the image, normalization is applied to 

Fig. 1   Proposed Framework
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each of them. We normalize the image. Normalization is the process of scaling each pixel 
in the image from a specific range (0 to 255) to a value between 0 and 1 [18]. After doing 
both the transformation and normalization, the new images are stored in a pickle file.

3.2.3 � Image augmentation

The data augmentation process improves the imbalance problem. In the proposed model, 
to overcome the possible over-fitting problem in the training CNN models and to com-
bine possible image discrepancies, augmented images were generated from the original 
slices by six operations: rotation, translation, gamma correction, random noise addition, 
scaling, and random affine transformation. At this stage, the dataset size is increased by 
using the augmentation technique. By sufficiently shifting the brain’s position, it is pos-
sible to achieve this goal and stop a model from memorizing the brain’s location. The 
classic MRI protocol includes the following operations:

•	 Rotation: rotation of an image without cropping because the cropped image may not 
contain the whole tumor; images have been rotated at 15 angles.

•	 Mirroring: are right- or left-mirrored.
•	 Flipping: Images are up-down flipped.

Fig. 2   Different Imaging Techniques for AD Diagnosis [7]



3776	 Multimedia Tools and Applications (2024) 83:3767–3799

1 3

We apply augmentation techniques with the following settings: rotation at 15 degrees, 
width shift with a range of 0.1, height shift with a range of 0.1, shearing with a range of 
0.2, zooming with a range of 0.2, and applying horizontal flip. We balanced the dataset 
to increase the accuracy of classification by augmenting images and copying some of 
the images randomly to balance classes. After augmenting the dataset, MildDemented 
has 2519 images, and NonDemented has 2561 images. The augmented data were added 
to enhance the original training dataset to allow for a sufficiently large sample size. As 
shown in Fig. 3, this method increases the training and validation groups of MR images 
for axial.

3.3 � Cross‑Validation

Cross-validation is a common technique used to evaluate the performance of deep learn-
ing models. It involves dividing the available dataset into two or more subsets: one for 
training the model and the other(s) for evaluating its performance. The most common 
type of cross-validation used in deep learning is k-fold cross-validation [29]. In k-fold 
cross-validation, the dataset is divided into k subsets, or “folds” of approximately equal 
size. The model is then trained k times, each time using a different fold as the validation 
set and the remaining folds as the training set [8]. The results from each of the K-fold 

Fig. 3   Samples for applying augmentation techniques. Where (a) is original image that has disease, (b) 
after applying augmentation techniques
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models are then averaged to obtain a final estimate of the model’s performance. Cross-
validation is necessary in deep learning for several reasons [37]:

•	 Performance evaluation: Cross-validation provides a more accurate estimate of the 
model’s performance on unseen data than simply evaluating the model on a single 
holdout validation set. By averaging the performance across multiple validation sets, 
cross-validation reduces the variance of the performance metric and provides a more 
representative estimate of the model’s performance.

•	 Hyperparameter tuning: Deep learning models have many hyperparameters that need 
to be tuned to achieve optimal performance. Cross-validation allows us to systemati-
cally test different hyperparameter configurations and select the one that produces 
the best performance on unseen data.

•	 Overfitting prevention: Deep learning models are prone to overfitting, which occurs 
when the model performs well on the training data but poorly on the validation or 
test data. Cross-validation can help detect overfitting by evaluating the model’s per-
formance on multiple validation sets and averaging the results.

•	 Data efficiency: In some cases, the dataset may be limited in size. Cross-validation 
allows us to maximize the use of the available data by using all the available data for 
training and validation instead of reserving a large portion for testing.

Our dataset is composed of two main parts: the first folder contains training data, 
and the second contains testing data. We perform cross-validation in many forms to 
detect the best performance and classification. First, we split the training dataset into 
80% training and 20% validation sets. Second, we split the training dataset into 70% 
training and 30% validation sets. The main objective of this process is to train the model 
with a different ratio of the training and testing sets and achieve the best performance 
for the diagnosis of AD.

3.4 � Feature extraction and classification by deep learning

Neural network techniques have recently been popular in medical image classification, 
computer vision, healthcare, and speech recognition, with the best performance. It is 
a form of artificial neural network that has neurons that transmit the signal to another 
neuron, whose output is determined by a non-linear function of the sum of its inputs 
[24]. Neural network techniques are based on certain complex algorithms that can 
extract high-level characteristics from data and use those features to classify and solve 
problems. DL has various algorithms such as CNN, Autoencoder (AE), Deep Belief 
Network (DBN), Restricted Boltzmann Network (RBN), Deep Neural Network (DNN), 
Recurrent Neural Network (RNN), etc. [7, 9].

CNN considers this the most popular deep neural network architecture. One of the most 
essential features of CNN is its ability to handle enormous datasets and achieve good clas-
sification performance. CNN has several pre-trained models that are trained on the Ima-
geNet dataset [19], such as VGG16, LeNet, GoogLeNet, ResNet, and AlexNet [31]. In this 
paper, we used the CNN technique, which is used mainly in object detection and image 
processing. CNN consists of several layers; each layer has a specific task to help the model 
extract the feature, such as the convolution layer, max-pooling layer, and fully connected 
layer. We will discuss it in detail in the next section.
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3.4.1 � Feature extraction

Feature extraction is one of the most important concepts in deep learning, especially for 
computer vision. In deep learning, a neural network learns to extract relevant features or 
patterns from raw input data, such as images, audio, or text, in order to perform a spe-
cific task, such as classification, regression, or generation [38]. The purpose of feature 
extraction is to transform the raw data into a set of features that can be used as inputs 
to a machine learning model, which then learns to classify or predict new data based on 
these features [16]. Feature extraction is typically performed using pre-trained deep neural 
networks, such as convolutional neural networks (CNNs) for images. These networks are 
trained on large datasets to learn high-level representations of the raw data, which can then 
be used to extract features from new data.

Deep learning models can learn to automatically extract relevant features from raw data, 
but feature extraction can still be useful in some cases, particularly when the dataset is 
small, or the features are known to be important [20]. Feature extraction: Feature extrac-
tion involves transforming the input data into a set of features. This can be done using 
techniques such as principal component analysis (PCA), wavelet analysis, or convolutional 
neural networks (CNNs), depending on the nature of the data.

3.4.2 � Convolution layer

The main part of CNN is the convolution layer, which extracts feature maps by bypassing 
the kernel at a specific size. This kernel is applied to the input image by sliding the filter 
across the image and multiplying element by element, to produce a different feature and 
passing it to the next layer. In the neural network, there are several hidden layers, each of 
which extracts a specific feature. The first layer usually extracts the basic features, like the 
edges of the images. Then, the output feature is input for the next layer, which extracts 
more complex features such as corners. By going to deep layers, it extracts the more com-
plex features, such as objects and faces.

The activation function is used to help the neural network learn complex problems and 
determine which neuron should be activated or not. The main purpose of the activation 
function is to transform the input into a non-linear output node to allow it to learn complex 
tasks. This activation function is added to all hidden layers, and they all have the same 
activation function. However, the output layer uses a different activation function depend-
ing on the classification type. We have used several types of activation functions, which we 
summarize in Table 2.

3.4.3 � Pooling layer

After extracting features with the convolution layer, we have a large number of parameters 
that require more computation power. To reduce the computational power required to pro-
cess the data, pooling layers are used to reduce the dimensions of feature maps. As a result, 
the number of parameters to learn and the amount of processing in the network are both 
reduced. Pooling layers have two types: max pooling and average pooling. Max pooling is 
done by sliding a filter over each feature map that is extracted by the convolution layer and 
selecting the maximum value above this filter. Average pooling is the same concept as max 
pooling, but it calculates the average of the values above the filter. Thus, the output is a fea-
ture map calculated as in Eq. (1) and Eq. (2).
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Where W is the width of the feature map, H is the height of the feature map, F is the 
size of the filter, P is the value of padding if not equal to zero, and S is the stride value.

(1)Output of Width =
W − F + 2P

S
+ 1

(2)Output of Height =
H − F + 2P

S
+ 1

Table 2   Summarization of the activation function, where x refers to input of activation function
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3.4.4 � Fully connected layer

Every neuron in the fully connected layer is linked to every neuron in the next layer. It 
converts a multi-dimensional feature map to a vector with one dimension. The final few 
layers in most typical DL models are fully connected layers that compile the data retrieved 
by the preceding layers to generate the final output. In the last layer, the number of neurons 
depends on the type of classification, which is either binary or multi-classification. For 
binary classification, the neuron in the last layer has two neurons, but for multiclassifica-
tion, the number of neurons equals the number of classes.

3.5 � The proposed architecture

We have proposed two architectures to compare them and choose the one that achieves the 
best performance. Each model has the same input images with the same size of (64 × 64). 
The first model is trained from scratch, whereas the second is a pre-trained VGG16 model. 
These models extract features and classify them automatically, not manually, as is done in 
machine learning. In the next subsection, a detailed description of each of them is provided.

3.5.1 � The First Proposed CNN architecture

Figure  4 and Table  3 show the summary of the first proposed CNN model. Our model 
was trained on the preprocessed images with a size of 64 × 64. We are splitting our trained 
data into two cross-validations: (1) 20% testing and 80% training; and (2) 30% testing and 
70% training. It consists of three convolution layers with a (3,3) kernel size, a ReLU acti-
vation function, and padding of type “same.” After each convolution layer, we add a 2D 
max-pooling layer of different sizes (3,3) and (2,2) as shown in Table 3. Flatten is used 
to convert all of the feature map’s 2D dimension arrays to a single vector. We used differ-
ent dropout ratios of 0.2 and 0.5 to show the effectiveness of the dropout in the proposed 
model. The last layer is the fully connected layer with a sigmoid activation function to clas-
sify the data into two classes. We used different training parameters. The number of epochs 
was used as 10, 15, and 20, where the batch size was 16, 32, 64, and 128.

Fig. 4   First Proposed CNN model
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Algorithm 1 depicts the steps of our proposed CNN model so that you can understand how 
it works. The inputs to the model are datasets. Before training the proposed model, the input 
image must be preprocessed; the first process is the transformation, and the second resizes the 
image to a suitable size. The dataset is split into training and testing sets. We train our model 
at different values of epochs and batch sizes. Then we used Adam’s optimizer to compile the 
model. The output of the proposed model is the performance metrics (loss, accuracy, preci-
sion, recall, specificity, and f-score) and graphs. Then we apply the same steps for the second 
experiment but split the data into different ratios for the training and testing sets.

3.5.2 � The Second Pretrained VGG16 architecture

The VGG16 model is a pre-trained model that was trained on the ImageNet dataset but can 
be applied to other datasets as well. We use transfer learning and fine-tuning. In transfer 
learning, the model is trained on different small datasets, and the layer is frozen to avoid 
destroying the information. In this model, we are freezing 16 layers of convolution and pool-
ing to keep the feature extraction the same and adding a new classifier layer to be compatible 
with our dataset. Due to the first layer’s ability to extract simpler and more general features, 
we freeze the layer that extracts general features and train the layer that extracts complicated 
patterns depending on the dataset. So, we used fine-tuning, which is the approach of transfer 
learning. In fine-tuning, we do not freeze all convolution and pooling layers. The final con-
volution and pooling layer have been unfrozen. We retrained only the last layer of convolu-
tion and pooling and added three fully connected layers as shown in Table 4.

Figure 5 and Table 4 show the summary of the second proposed VGG16 model. Our 
model was trained on the preprocessed image with a size of 64  ×  64. We are splitting 
our trained data into 40% testing and 60% training. We apply the augmentation process to 
images with a 15° rotation range, a 0.1 width and height shift, a 0.2 shear, and a 0.2 zoom 
factor. The first 16 layers are frozen and retrained at the last convolution and pooling layer. 
We are adding dropout with a ratio of 0.2 to avoid the overfitting problem. The number of 
epochs and batch size were used (50, 250, and 512) and (32, and 64), respectively. Differ-
ent optimizers (Adam, SGD, Adadelta, RMSprop, and Adagrad) are applied to our model 
to show the effectiveness of each of them on the data.

Table 3   The architecture of the 
first proposed CNN

Layer Activation function Output shape Pool size

2D convolution layer ReLU 64 × 64 × 8
2D Max pooling layer – 21 × 21 × 8 (3, 3)
2D convolution layer ReLU 21 × 21 × 16
2D max-pooling layer – 10 × 10 × 16 (2,2)
2D convolution layer ReLU 10 × 10 × 32
2D max-pooling layer – 5 × 5 × 32 (2,2)
Flatten layer – 800
Dense layer ReLU 512
Dropout layer – 512
Dense layer ReLU 32
Dropout layer – 32
Dense layer Sigmoid 2
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Table 4   The architecture of the Second pre-trained VGG16 model

Layer Activation function Output shape Pool size Trainable

Input layer 64 × 64 × 3 False
2D convolution layer ReLU 64 × 64 × 64 False
2D convolution layer ReLU 64 × 64 × 64 False
2D Max pooling layer 32 × 32 × 64 (2, 2) False
2D convolution layer ReLU 32 × 32 × 128 False
2D convolution layer ReLU 32 × 32 × 128 False
2D Max pooling layer 16 × 16 × 128 (2, 2) False
2D convolution layer ReLU 16 × 16 × 256 False
2D convolution layer ReLU 16 × 16 × 256 False
2D convolution layer ReLU 16 × 16 × 256 False
2D Max pooling layer 8 × 8 × 256 (2, 2) False
2D convolution layer ReLU 8 × 8 × 512 False
2D convolution layer ReLU 8 × 8 × 512 False
2D convolution layer ReLU 8 × 8 × 512 False
2D Max pooling layer 4 × 4 × 512 (2, 2) False
2D convolution layer ReLU 4 × 4 × 512 False
2D convolution layer ReLU 4 × 4 × 512 False
2D convolution layer ReLU 4 × 4 × 512 True
2D Max pooling layer 2 × 2 × 512 (2, 2) True
2D global average pooling 512 True
Dense layer ReLU 1024 True
Dropout layer – 1024 True
Dense layer ReLU 512 True
Dropout layer – 512 True
Dense layer Sigmoid 2 True

Fig. 5   Second VGG16 model
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Algorithm 2 demonstrates the steps of the pre-trained VGG16 model with fine tuning 
and transfer learning. The inputs to the model are MR images. Before training the pro-
posed model, the input images must be preprocessed, which consists of two operations; the 
first is the transformation operation, and the second is resizing the image to a suitable size. 
The dataset is split into training and testing sets. We train our model at different values of 

Algorithm 1 Proposed CNN Model
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epochs and batch sizes. To get the best performance, we need to increase the datasets by 
using data augmentation techniques. The model compiles with different optimizers (Adam, 
Adagrad, Adadelta, SGD, and RMSprop). The output of the proposed model is the perfor-
mance metrics (loss, accuracy, precision, recall, specificity, and f-score) and graphs. Then 
we tested the proposed model to evaluate the training model.

3.6 � Performance evaluation parameters

Recent studies have used the confusion matrix to analyze a model and provide information 
about the classification performance since it is robust to categorize data relationships and any 
distribution. The confusion matrix gives valuable information for classification models based 
on different metrics [30]. First, four primary keys are used to test the classifier: true positive 
(Tp), true negative (Tn), false positive (Fp), and false negative (Fn) values. Then, based on the 

Algorithm 2 Proposed VGG16 Model
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four outcome values, the performance of the model will be calculated: accuracy (ACC), sensi-
tivity (Recall), specificity (SPC), precision (PPV), F1-score.

Accuracy, as given in eq. (3), is the number of correctly predicted to the total predicted 
number.

Sensitivity (Recall), as given in eq. (4), is the number of samples predicted to be positive 
from the total number of samples that are positive, also known as the true positive rate.

Specificity (SPC, TNR) for the true negative rate, as given in eq. (5) is the number of sam-
ples predicted as negative from the total number of samples negative.

Precision, as in Eq. (6), also called positive predictive value, represents the number of sam-
ples actually and predicted as positive from the total number of samples predicted as positive.

The harmonic means of precision and recall, known as the F1-score, is shown in eq. (7).

4 � Experiments and results

In our study, the developed system’s processing and classification used the Python program-
ming language, and the models were trained using Google Colab and a graphical processing 
unit. For the purpose of formally determining whether the first or the second model has 
a significant improvement, we conducted three experiments with three configurations. The 
first and second are for figuring out how to classify AD when splitting data with different 
ratios. In experiment 1, we split the data into 20% testing and 80% training, whereas in 
experiment 2, we split the data into 30% testing and 70% training. And both of these experi-
ments used different ratios of dropout (0.2 and 0.5) to demonstrate the efficacy of the drop-
out in the proposed model. The final layer is a fully connected layer that utilizes a sigmoid 
activation function to classify the data into two classes. We utilized various training parame-
ters. The number of epochs was 10, 15, and 20, and the batch sizes were 16, 32, 64, and 128.

The third looked at how well the VGG16 model worked with different optimizers and 
transfer learning. The initial sixteen layers are preserved, while the final convolution and 
pooling layers are retrained. To avoid the overfitting issue, we are implementing a drop-
out ratio of 0.2. There were 50, 250, and 512 epochs, and the batch sizes were 32 and 
64, respectively. Several optimizers (Adam, SGD, Adadelta, RMSprop, and Adagrad) are 
applied to our model in order to demonstrate the efficacy of each on the data.

(3)Accuracy (ACC) =
Tp + Tn

Tp + Tn + Fp + Fn

(4)Sensitivity(Recall) =
Tp

Tp + Fn

(5)Specificity (SPC) =
Tn

Tn + Fp

(6)Precision (PPV) =
Tp

Tp + Fp

(7)F1 − score =
2 ∗ Tp

2 ∗ Tp + Fp + Fn
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4.1 � Experiment 1

Table 5 shows the diagnostic performance metrics of experiment 1 on the training dataset 
(on the first proposed model) and the effect of the model with different batch sizes, number 
of epochs, and with or without dropout ratio. Batch size values are 16, 32, 64, and 128. 
The number of epoch values is 10, 15, and 20 with or without dropout. The best training 

Table 5   Training result of experiment 1

No. of 
epochs

Dropout Batch size Loss Accuracy Precision Recall AUC​ F1 specificity

10 without 16 0.0118 99.68 0.9968 0.9968 0.9999 0.9968 0.9924
32 0.0081 99.85 0.9985 0.9985 1.0000 0.9985 0.9932
64 0.0203 99.68 0.9968 0.9966 1.0000 0.9967 0.9824
128 0.1420 96.06 0.9593 0.9603 0.9912 0.9598 0.8938

0.2 16 0.0363 98.72 0.9870 0.9877 0.9988 0.9873 0.9816
32 0.0128 99.66 0.9966 0.9968 0.9999 0.9967 0.9908
64 0.0291 99.29 0.9922 0.9927 0.9997 0.9924 0.9782
128 0.0619 98.42 0.9846 0.9847 0.9983 0.9847 0.9523

0.5 16 0.0279 99.04 0.9904 0.9904 0.9991 0.9904 0.9831
32 0.0166 99.53 0.9953 0.9956 0.9999 0.9954 0.9882
64 0.0375 99.04 0.9893 0.9905 0.9992 0.9899 0.9722
128 0.1033 97.14 0.9719 0.9687 0.9940 0.9703 0.9286

15 without 16 6.5023e-05 100 1.0000 1.0000 1.0000 1.0000 0.9999
32 2.4942e-04 100 1.0000 1.0000 1.0000 1.0000 0.9997
64 0.0043 100 1.0000 1.0000 1.0000 1.0000 0.9958
128 0.0035 100 1.0000 1.0000 1.0000 1.0000 0.9966

0.2 16 1.8109e-04 100 1.0000 1.0000 1.0000 1.0000 0.9998
32 0.0069 99.78 0.9978 0.9978 0.9997 0.9978 0.9956
64 0.0098 99.78 0.9971 0.9980 1.0000 0.9976 0.9922
128 0.0182 99.68 0.9971 0.9963 0.9999 0.9967 0.9854

0.5 16 0.0304 98.97 0.9890 0.9894 0.9994 0.9892 0.9834
32 0.0394 98.67 0.9870 0.9870 0.9988 0.9870 0.9771
64 0.0204 99.36 0.9937 0.9934 0.9998 0.9935 0.9861
128 0.0397 98.82 0.9902 0.9871 0.9992 0.9886 0.9715

20 Without 16 4.0351e-05 100 1.0000 1.0000 1.0000 1.0000 1.0000
32 1.1094e-04 100 1.0000 1.0000 1.0000 1.0000 0.9999
64 2.4002e-04 100 1.0000 1.0000 1.0000 1.0000 0.9998
128 0.0096 99.95 0.9995 0.9995 1.0000 0.9995 0.9910

0.2 16 6.1363e-05 100 1.0000 1.0000 1.0000 1.0000 0.9999
32 2.2789e-04 100 1.0000 1.0000 1.0000 1.0000 0.9998
64 8.7885e-04 100 1.0000 1.0000 1.0000 1.0000 0.9992
128 0.0039 100 1.0000 1.0000 1.0000 1.0000 0.9960

0.5 16 0.0014 99.93 0.9993 0.9993 1.0000 0.9993 0.9989
32 0.0146 99.51 0.9951 0.9951 0.9996 0.9951 0.9915
64 0.0040 99.9 0.9990 0.9995 1.0000 0.9993 0.9967
128 0.0051 99.95 0.9995 0.9995 1.0000 0.9995 0.9950
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accuracy (100%) is achieved without dropout and with an increasing number of epochs and 
decreasing batch size. The best average accuracy of training results, 99.95%, is achieved at 
32 batch sizes and without applying dropout. To further demonstrate the effectiveness of 
the proposed framework, the training performance of the model is evaluated with different 
batch sizes and dropout ratios as shown in Fig. 6, each for the first and the second experi-
ment. Based on the results presented in this figure, we can observe that the best accuracy 
achieved at first experiment with 32-batch size and without using dropout.

Table 6 shows the performance metric of experiment 1 with the testing dataset (on the first 
proposed model). By comparing Table 5, the best testing accuracy is achieved at batch sizes of 
32 without applying dropout, and the number of epochs is 20. The best average accuracy of the 
testing result was achieved at 16 batch size and without applying dropout, with 0.2 ratios and 
32 batch size, and with 0.5 ratios and 32 batch size, with 99.98, 99.84, and 99.81, respectively.

4.2 � Experiment 2

Table 7 shows the performance metric of experiment 2 with the training dataset (on the first 
proposed model) and the effect of the model with different batch sizes, number of epochs, 
and with or without dropout ratio. The data was split into a 30% testing set and a 70% training 
set. Batch size values are 16, 32, 64, and 128. The number of epoch values is 10, 15, and 20 
with or without dropout. The best training accuracy (100%) is achieved without dropout and 
with an increasing number of epochs and decreasing batch size. The best average accuracy of 
training results, 99.99%, is achieved at a 32-batch size and without applying dropout.

Table 8 shows the performance metric of experiment 2 with the testing dataset (on the first 
proposed model). By comparing Table 7. The best testing accuracy is achieved at batch size 
32, with a 0.2 dropout ratio, and the number of epochs is 20. The best average accuracy of the 
testing result was achieved at 32 batch size and without applying dropout, with 0.2 ratios and 
16 batch size, and with 0.5 ratios and 16 batch size, at 99.79, 99.9, and 99.53, respectively.

4.3 � Experiment 3

Table 9 shows the performance metric of experiment 3 with the training dataset (on the 
second VGG16 proposed model) and the effect of the model with different batch sizes, 

Fig. 6   Comparison between first and second experiment, for each experiment we perform training with dif-
ferent batch size and with different dropout ratio
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number of epochs, and different optimizers such as Adam, SGD, Adadelta, RMSprop, and 
Adagrad. The data was split into a 40% testing set and a 60% training set. Batch size values 
are 32 and 64. The number of epoch values is 50, 250, and 512. Experiment 3 shows the 
Adam optimizer achieves the best accuracy of other optimizers by 97.44%. This result was 
achieved after 512 epochs and with 64 batch sizes. The RMSprop has a higher accuracy 
of 94.42% than the other. To further demonstrate the effectiveness of the proposed frame-
work, the training performance of the model is evaluated with different batch sizes and 

Table 6   Testing result of experiment 1 (Where bold text represents the best accuracy)

No. of 
epochs

Dropout Batch 
size

Loss Accuracy Precision Recall AUC​ F1 specificity

10 without 16 0.002 99.96 0.99960 0.996658 0.99999 0.99960 0.99821
32 0.00443 99.921 0.99921 0.99921 0.99978 0.99921 0.99698
64 0.01178 99.94 0.99941 0.99941 0.9999 0.99941 0.98930
128 0.11347 96.673 0.96691 0.966428 0.99486 0.96666 0.91443

0.2 16 0.0321 99.074 0.99057 0.99076 0.99918 0.99066 0.97875
32 0.00684 99.803 0.99803 0.99803 0.99977 0.99803 0.996538
64 0.00859 99.822 0.99824 0.99843 0.99998 0.99834 0.99237
128 0.04067 99.3108 0.99336 0.99374 0.99944 0.99355 0.96658

0.5 16 0.04222 98.641 0.98643 0.98643 0.99858 0.98643 0.97511
32 0.00491 99.94 0.99941 0.99941 0.99999 0.99941 0.99598
64 0.04721 97.834 0.97648 0.98016 0.99864 0.97830 0.96743
128 0.06608 97.814 0.9776 0.97881 0.99783 0.97824 0.95548

15 without 16 0.00026 100 1.0 1.0 0.9999 1.0 0.99976
32 0.00216 99.94 0.99941 0.99941 0.99999 0.99941 0.99878
64 0.0060 99.862 0.99863 0.99863 0.99999 0.99863 0.99509
128 0.0067 99.803 0.99804 0.99804 0.99994 0.99804 0.99519

0.2 16 0.00515 99.901 0.99901 0.99901 0.999602 0.99901 0.998842
32 0.0065 99.763 0.99764 0.99764 0.9999 0.99764 0.99705
64 0.01098 99.66 0.99633 0.99633 0.9999 0.99633 0.99144
128 0.01202 99.803 998,040. 0.99804 0.9999 0.99804 0.99101

0.5 16 0.00697 99.901 0.99901 0.99901 0.99994 0.99901 0.99607
32 0.0035 99.901 0.99901 0.99901 0.99979 0.99901 0.99800
64 0.01863 99.31 0.9931 0.99257 0.99977 0.9928 0.99066
128 0.0897 99 0.96841 0.96387 0.99534 0.96613 0.94322

20 Without 16 0.00041 100 1.0 1.0 1.0 1.0 0.99963
32 0.00048 100 1.0 1.0 1.0 1.0 0.99954
64 0.0006 100 1.0 1.0 1.0 1.0 0.99939
128 0.0107 99.842 0.99843 0.99824 0.99974 0.99833 0.99211

0.2 16 0.0008 99.98 0.9998 0.9998 0.99999 0.9998 0.99953
32 0.00190 99.961 0.99961 0.99961 0.9998 0.99961 0.99941
64 0.00573 99.881 0.99882 0.99882 0.999598 0.998828 0.99844
128 0.00420 99.881 0.998828 0.998828 0.9999 0.99882 0.99704

0.5 16 0.01413 99.724 0.99724 0.99724 0.998795 0.99724 0.99675
32 0.00993 99.606 0.99626 0.99587 0.99993 0.99606 0.99477
64 0.0006 99.98 0.99980 0.99980 1.0 0.99980 0.99946
128 0.00280 99.921 0.99922 0.99922 0.99999 0.99922 0.99833
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different optimizers, as shown in Fig. 7. Based on the results presented in this figure, we 
can observe that Adam optimizers achieved the best accuracy with a 64-batch size.

Table 10 shows the performance metric of experiment 3 with the testing dataset (on the 
first proposed model). By comparing Table 9. The Adam optimizer achieved the best test-
ing accuracy of 93.25% when the batch size was 64 and after 512 epochs. Also, RMSprop 
has the best value among other optimizers, achieving 92.87%.

Table 7   Performance metric for experiment 2

No. of 
epochs

Dropout Batch size Loss Accuracy Precision Recall AUC​ F1 specificity

10 without 16 0.0219 99.21 0.9922 0.9922 0.9997 0.9922 0.9863
32 0.0034 99.97 0.9997 0.9997 1.0000 0.9997 0.9968
64 0.0177 99.89 0.9989 0.9989 1.0000 0.9989 0.9837
128 0.0741 97.95 0.9798 0.9790 0.9977 0.9794 0.9444

0.2 16 0.0077 99.80 0.9980 0.9975 1.0000 0.9977 0.9948
32 0.0214 99.47 0.9950 0.9941 0.9995 0.9946 0.9854
64 0.0578 97.83 0.9789 0.9788 0.9983 0.9788 0.9612
128 0.1244 96.43 0.9630 0.9627 0.9909 0.9629 0.9154

0.5 16 0.0630 97.86 0.9791 0.9793 0.9964 0.9791 0.9672
32 0.0783 97.10 0.9722 0.9710 0.9962 0.9715 0.9514
64 0.1163 96.12 0.9610 0.9604 0.9913 0.9607 0.9263
128 0.1929 93.81 0.9363 0.9369 0.9781 0.9366 0.8660

15 without 16 9.9447e-05 100 1.0000 1.0000 1.0000 1.0000 0.9999
32 4.1816e-04 100 1.0000 1.0000 1.0000 1.0000 0.9996
64 0.0019 100 1.0000 1.0000 1.0000 1.0000 0.9982
128 0.0811 97.5 0.9749 0.9751 0.9972 0.9750 0.9384

0.2 16 2.4695e-04 100 1.0000 1.0000 1.0000 1.0000 0.9997
32 0.0052 99.89 0.9986 0.9989 1.0000 0.9987 0.9963
64 0.0115 99.75 0.9969 0.9975 1.0000 0.9972 0.9905
128 0.0134 99.83 0.9980 0.9983 1.0000 0.9981 0.9883

0.5 16 0.0416 98.59 0.9861 0.9871 0.9980 0.9866 0.9778
32 0.0132 99.58 0.9953 0.9955 0.9999 0.9954 0.9912
64 0.0150 99.77 0.9972 0.9978 0.9999 0.9975 0.9885
128 0.0484 98.79 0.9886 0.9874 0.9987 0.9880 0.9654

20 Without 16 3.2688e-05 100 1.0000 1.0000 1.0000 1.0000 0.9999
32 1.8533e-04 100 1.0000 1.0000 1.0000 1.0000 0.9998
64 2.1659e-04 100 1.0000 1.0000 1.0000 1.0000 0.9998
128 0.0080 100 1.0000 1.0000 1.0000 1.0000 0.9925

0.2 16 4.8936e-05 100 1.0000 1.0000 1.0000 1.0000 0.9999
32 5.5469e-04 100 1.0000 1.0000 1.0000 1.0000 0.9995
64 0.0019 100 1.0000 1.0000 1.0000 1.0000 0.9981
128 0.0092 99.86 0.9986 0.9986 1.0000 0.9986 0.9920

0.5 16 0.0269 99.18 0.9916 0.9916 0.9989 0.9916 0.9871
32 0.0037 99.89 0.9989 0.9989 1.0000 0.9989 0.9970
64 0.0363 99.07 0.9903 0.9894 0.9987 0.9898 0.9773
128 0.0351 98.99 0.9911 0.9908 0.9993 0.9909 0.9753



3790	 Multimedia Tools and Applications (2024) 83:3767–3799

1 3

Table 11 shows a comparison between the proposed models and the other state-of-the-
art techniques. The result showed the proposed model (an experimental one) achieved the 
best result compared with others. In Experiment 1, training was proposed for CNN from 
scratch at a 16-batch size without dropout. Moreover, Fig. 8 shows a comparison of our 
developed models with other previous models. Based on the results presented in this figure, 
we can observe that our model achieved the best performance.

Table 8   Testing result of experiment 2 (Where bold text represents the best accuracy)

No. of 
epochs

Dropout Batch 
size

Loss Accuracy Precision Recall AUC​ F1 specificity

10 without 16 0.01862 99.389 0.99391 0.99410 0.99942 0.99401 0.99089
32 0.006394 99.822 0.9982 0.99823 0.99998 0.99823 0.99535
64 0.02514 99.744 0.99746 0.99746 0.99994 0.99746 0.97767
128 0.073679 97.479 0.9744 0.97425 0.99645 0.97434 0.95224

0.2 16 0.00721 99.842 0.99842 0.99843 0.99976 0.998427 0.99659
32 0.01128 99.606 0.99606 0.99587 0.99993 0.99596 0.99342
64 0.01605 99.763 0.99731 0.99730 0.99991 0.99730 0.986364
128 0.09005 97.932 0.97932 0.97989 0.99605 0.97961 0.93144

0.5 16 0.01867 99.369 0.99345 0.99345 0.99959 0.99345 0.98899
32 0.03706 98.995 0.98989 0.98989 0.99945 0.98989 0.97305
64 0.08910 97.066 0.96951 0.97137 0.99626 0.97043 0.93550
128 0.13591 95.806 0.95785 0.95804 0.99161 0.9579 0.89567

15 without 16 0.00476 99.803 0.99803 0.99803 0.99979 0.99803 0.99774
32 0.00452 99.803 0.99803 0.99803 0.99998 0.99803 0.99691
64 0.00895 99.704 0.99707 0.99707 0.99976 0.99707 0.99461
128 0.06450 98.444 0.98457 0.9839 0.99793 0.98428 0.95107

0.2 16 0.00295 99.901 0.99901 0.99901 0.99979 0.99901 0.99859
32 0.00307 99.921 0.99921 0.99901 0.99999 0.99911 0.99799
64 0.02519 99.193 0.99161 0.9922 0.99913 0.99190 0.986543
128 0.00895 99.881 0.99882 0.99882 0.99998 0.99882 0.99241

0.5 16 0.01720 99.468 0.99425 0.9944 0.99927 0.99434 0.99277
32 0.01640 99.389 0.99371 0.9939 0.99929 0.99381 0.99300
64 0.00667 99.881 0.9988 0.99882 0.99995 0.9988 0.99542
128 0.023775 99.488 0.99492 0.99492 0.99979 0.99492 0.98196

20 Without 16 0.00276 99.82 0.99823 0.99823 0.99999 0.99823 0.99841
32 0.00649 99.76 0.99764 0.99764 0.99978 0.99764 0.99730
64 0.00427 99.763 0.99785 0.99765 0.99999 0.99775 0.99743
128 0.01281 99.803 0.99824 0.99804 0.99995 0.99814 0.98888

0.2 16 0.00061 99.98 0.99980 0.99980 0.999999 0.99980 0.99948
32 0.00526 99.76 0.99764 0.99764 0.99998 0.99764 0.99738
64 0.010065 99.66 0.99649 0.9970 0.99937 0.99677 0.99562
128 0.006545 99.881 0.99882 0.99882 0.99999 0.99882 0.99424

0.5 16 0.00888 99.763 0.99765 0.99783 0.99995 0.9977 0.996701
32 0.00375 99.842 0.99842 0.99842 0.99999 0.99842 0.998350
64 0.01257 99.566 0.995703 0.995703 0.99991 0.99570 0.99221
128 0.02144 99.704 0.99707 0.99707 0.9999 0.99707 0.98168
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5 � Discussion

With a high death rate, AD is considered one of the most common types of irreversible 
dementia worldwide, eventually causing death. Early detection of AD at early stages could 
enhance the survival opportunities of the patients and lead to better drug effects. In this study, 
we extensively examined the role of applying deep learning models with different architec-
tures in AD diagnosis. The study contributes to a new end-to-end DL-based model for dif-
ferentiating between AD and NC. Our proposed model has several stages for the diagnosis of 
AD: the first is for preparing the dataset by processing it to minimize the size of the image to 
reduce the complexity of the computational process; the second is to apply augmentation tech-
niques to overcome the overfitting problem; the third is to apply cross validation; and finally, 
we apply our proposed model that will be trained on processed data with different optimizers 
to optimize the diagnosis of AD.

Table 9   Training result for experiment 3 (Where bold text represents the best accuracy)

Optimizer No. epochs Batch size Loss Accuracy AUC​ Precision Recall F1

Adam 50 32 0.3359 84.25 0.9291 0.8422 0.8436 0.8429
64 0.3186 85.17 0.9363 0.8528 0.8522 0.8525

250 32 0.1324 94.65 0.9887 0.9472 0.9466 0.9469
64 0.1275 95.21 0.9897 0.9518 0.9523 0.9520

512 32 0.1008 95.96 0.9934 0.9600 0.9593 0.9596
64 0.0673 97.44 0.9968 0.9746 0.9749 0.9748

SGD 50 32 0.4134 80.54 0.8903 0.8046 0.8061 0.8053
64 0.4455 78.8 0.8710 0.7885 0.7898 0.7891

250 32 0.2480 88.97 0.9623 0.8882 0.8904 0.8893
64 0.3014 87.13 0.9438 0.8719 0.8727 0.8723

512 32 0.1458 94.16 0.9869 0.9412 0.9402 0.9407
64 0.1756 92.78 0.9813 0.9283 0.9271 0.9277

Adadelta 50 32 0.5921 71.12 0.7703 0.7034 0.7104 0.7061
64 0.6210 68.82 0.7355 0.6702 0.6745 0.6719

250 32 0.4745 77.85 0.8520 0.7777 0.7793 0.7782
64 0.4889 76.76 0.8434 0.7684 0.7660 0.7670

512 32 0.4281 80.21 0.8823 0.8018 0.7991 0.8002
64 0.4559 79.03 0.8655 0.7899 0.7893 0.7894

RMSprop 50 32 0.3766 83.98 0.8398 0.8403 0.8411 0.8407
64 0.3579 83.98 0.9199 0.8397 0.8405 0.8401

250 32 0.2511 90.88 0.9661 0.9074 0.9083 0.9078
64 0.2311 90.74 0.9681 0.9074 0.9086 0.9080

512 32 0.2144 92.35 0.9733 0.9235 0.9220 0.9228
64 0.1659 94.42 0.9843 0.9435 0.9438 0.9437

Adagrad 50 32 0.4522 79.19 0.8662 0.7908 0.7884 0.7894
64 0.4752 78.04 0.8523 0.7798 0.7762 0.7779

250 32 0.3312 85.72 0.9327 0.8572 0.8518 0.8543
64 0.3956 81.92 0.9007 0.8182 0.8208 0.8194

512 32 0.2238 90.55 0.9705 0.9069 0.9069 0.9068
64 0.3034 87.82 0.9440 0.8780 0.8783 0.878
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By comparing other studies with our proposed model. Liu et al. [6], built a CNN model, 
and the accuracy reached 78.02%. However, they proposed two pretrained models, AlexNet 
and GoogleNet, that achieved 91.4% and 93.02% respectively. Liu et al. [6] note that the limi-
tation of this study is that it does not achieve high accuracy, and the number of images or cases 
not mentioned in the article. Al-Khuzaie et al. [1] proposed the CNN model. Although it has 
more images than other studies, it did not achieve high accuracy compared to our proposed 
model. Whereas in the proposal by Antony et al. [2], the accuracy reached 81%. Although 
Murugan et al. [27] and Mggdadi et al. [26] used the same dataset (the Kaggle Alzheimer’s 
dataset), we used it in our proposed model. They didn’t achieve a proper performance. Mgg-
dadi et  al. [26] suggested two models, CNN and VGG16, that attained 67.5% and 70.3% 
accuracy, respectively. And Murugan et al. [27] they proposed CNN model which achieved 
95.23%.

Based on these results, no work achieved high performance on Kaggle Alzheimer’s dataset, 
we believe that our proposed VGG16 model and CNN model has better performance than 
other methods, verifying the effectiveness of CNN for AD diagnosis. Whereas our proposed 
CNN model reaches 99.98% accuracy and the accuracy of our VGG16 model reaches 97.44%. 
Our proposed architecture provided promising results. However, there are number of limita-
tions that need to be addressed in order to go forward with further clinical trials. Firstly, the 
number of cases need to be increased. Secondly, the dataset is acquired from one hospital. 
Thirdly, binary classification where there are multi classes for AD. One of the future works 
will be to investigate integrating the proposed framework into clinical workflow as a decision 
support tool and diagnosis multiclass of AD.

6 � Conclusion

This study proposed a framework for the diagnosis of AD that focused on deep learning and 
CNN architecture. Two models are proposed. First, the CNN model was trained from scratch 
with different ratios of dropout and by splitting the data into different training and testing set 

Fig. 7   Comparison for VGG16 model with different optimizers (Adam, SGD, Adadelta, RMSprop, Adag-
rad) and at different epochs and batch size
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Table 10   Testing result for experiment 3 (Where bold text represents the best accuracy)

Optimizer No. epochs Batch size Loss Accuracy AUC​ Precision Recall F1

Adam 50 32 0.3346 85.0954 0.929819 0.85124 0.85126 0.85124
64 0.304726 86.8478 0.94250 0.86891 0.86668 0.86779

250 32 0.253124 90.7068 0.9679 0.90741 0.907395 0.90739
64 0.194611 92.912 0.980285 0.92935 0.929534 0.929445

512 32 0.20051 92.715 0.97883 0.927203 0.927203 0.927203
64 0.194786 93.2467 0.981633 0.932650 0.932464 0.93255

SGD 50 32 0.48296 75.979 0.848482 0.75906 0.759715 0.759376
64 0.484968 76.373 0.85054 0.76443 0.76442 0.764426

250 32 0.259417 89.151 0.96002 0.8914 0.89182 0.891584
64 0.29935 86.709 0.94592 0.86740 0.869420 0.86841

512 32 0.208413 91.986 0.97666 0.920764 0.920204 0.920474
64 0.29935 86.709 0.94592 0.86740 0.86942 0.86840

Adadelta 50 32 0.56585 75.94 0.815319 0.74744 0.780592 0.780592
64 0.59864 75.0344 0.795573 0.74420 0.76158 0.75268

250 32 0.47929 78.0862 0.84983 0.78038 0.780036 0.78018
64 0.475055 78.8934 0.85221 0.789596 0.784502 0.787012

512 32 0.46321 78.617 0.86334 0.78667 0.78664 0.78664
64 0.467264 78.735 0.858135 0.78923 0.78645 0.78782

RMSprop 50 32 0.35539 83.697 0.92138 0.8363 0.83691 0.83659
64 0.34385 84.15 0.92557 0.84251 0.84149 0.84199

250 32 0.38105 88.718 0.94948 0.88737 0.887578 0.88746
64 0.397293 85.134 0.93812 0.85195 0.85145 0.85170

512 32 0.274246 92.577 0.969265 0.92564 0.92582 0.925733
64 0.21084 92.8726 0.979273 0.92947 0.92877 0.929121

Adagrad 50 32 0.45857 78.617 0.86309 0.79000 0.781019 0.785418
64 0.46184 79.503 0.86064 0.795362 0.79876 0.79704

250 32 0.366825 83.7763 0.917521 0.84028 0.83620 0.838197
64 0.40866 81.098 0.894409 0.81091 0.81516 0.81302

512 32 0.40866 81.098 0.8944 0.810913 0.81516 0.81302
64 0.31476 86.6903 0.93937 0.866242 0.86825 0.867233

Table 11   Comparison the proposed technique with other state-of-the-art techniques (Where bold text repre-
sents the best accuracy of our proposed model)

Research Model Accuracy

Al-Khuzaie et al. [3] CNN (AlzNet model) 97.88%
Al-Adhaileh [2] AlexNet, ResNet50 94.53%, 58.07%
Deepa et al. [10] VGG16 + AOA 92.34%
Antony et al. [6] VGG16 81%
Mggdadi et al. [26] VGG16, CNN 70.3%, 67.5%
Proposed Experimental 1 CNN (80% training set) 99.98%
Proposed Experimental 2 CNN (70% training set) 99.9%
Proposed Experimental 3 VGG16 + transfer learning 97.44%
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Fig. 8   Comparison between all experiments with the best testing and training accuracy

Table 12   Table of Abbreviations Abbreviation Definition

AD Alzheimer’s Disease
ADNI Alzheimer’s Disease Neuroimaging Initiative
AE Autoencoder
AOA Arithmetic Optimization Algorithm
CNN Convolution Neural network
CT Computed Tomography
DBN Deep Belief Network
DNN Deep Neural Network
ELU Exponential Linear Units
EMCI early mild cognitive impairment
fMRI functional Magnetic Resonance Imaging
HC Health Control
LMCI late mild cognitive impairment
MRI Magnetic Resonance Imaging
MRI Magnetic Resonance Imaging
NC Normal Controls
OASIS Outcome and Assessment Information Set
PET Positron Emission Tomography
RBN Restricted Boltzmann Network
RNN Recurrent Neural Network
RS-SVM Random Survey Support Vector Machines
SGD Stochastic gradient descent
VGG16 Visual Geometry Group
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ratios. Second, we used a pre-trained VGG16 model, applying transfer learning and fine-tun-
ing and measuring the effectiveness of different optimizers (Adam, Adagrad, Adadelta, SGD, 
RMSprop) with the model. The evaluation and comparison of the two methods implement 
seven performance metrics. The experimental results indicate that the proposed architectures 
are appropriate for simple structures with low computational complexity, memory consump-
tion, overfitting, and controllable time. The proposed models achieved very promising accu-
racies by comparing with other researchers, as we present in the result section: 99.95% and 
99.99% for the proposed CNN model in the classification of the AD stage. The VGG16 pre-
trained model is fine-tuned and has achieved an accuracy of 97.44% for AD stage classifica-
tions. In the future, we intend to apply hyperparameter optimization techniques to each model 
and perform multi-classification for AD stages.

Table of Abbreviations  Table  12 presents the used abbreviations in the current survey 
with the corresponding definitions. They are sorted in alphabetical order.
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