
1

Block-level Double JPEG Compression Detection
for Image Forgery Localization

Vinay Verma, Deepak Singh, and Nitin Khanna

Abstract—Forged images have a ubiquitous presence in today’s
world due to ease of availability of image manipulation tools. In
this letter, we propose a deep learning-based novel approach
which utilizes the inherent relationship between DCT coefficient
histograms and corresponding quantization step sizes to distin-
guish between original and forged regions in a JPEG image,
based on the detection of single and double compressed blocks,
without fully decompressing the JPEG image. We consider a
diverse set of 1,120 quantization matrices collected in a recent
study as compared to standard 100 quantization matrices for
training, testing, and creating realistic forgeries. In particular, we
carefully design the input to DenseNet with a specific combination
of quantization step sizes and the respective histograms for a
JPEG block. Using this input to learn the compression artifacts
produces state-of-the-art results for the detection of single and
double compressed blocks of sizes 256 × 256 and gives better
results for smaller blocks of sizes 128 × 128 and 64 × 64.
Consequently, improved forgery localization performances are
obtained on realistic forged images. Also, in the case of test blocks
compressed with completely different quantization matrices as
compared to matrices used in training, the proposed method
outperforms the current state-of-the-art.

Index Terms—DenseNet, forgery localization, image forensics,
JPEG compression detection, unseen compression

I. INTRODUCTION

D IGITAL images are widely available due to maturing
imaging technology and social media is filled with a

large number of tampered digital images due to the easy
availability of a wide range of image processing tools that
do not require expertise to manipulate digital images. These
manipulations done to the images are hard to detect with the
naked eye. Once tampered, these digital images can easily
be shared to spread misinformation, such as causing severe
damages to someone’s reputation. An overview of various
tools for authentication of digital images can be explored
in [1]–[3]. Detection of the compression history of JPEG
images is of great importance since most of the digital cam-
eras and image processing tools use JPEG format to encode
digital images and image compression history may indicate
potential manipulations in a given JPEG image. A recent user
study [4] collected 127,874 digital images for two years using
a general forensic website, and found that 77.95% images were
in JPEG format, and out of this, 41.77% were compressed
using non-standard quantization matrices (Q-matrices). So, the

This material is based upon work partially supported by a grant from
the Department of Science and Technology (DST), India (Award Number
ECR/2015/000583)

Affiliation: Electrical Engineering at Indian Institute of Technology Gand-
hinagar, Palaj, Gandhinagar, Gujarat, India, 382355 (e-mail:{vinay.verma,
nitin.khanna}@iitgn.ac.in, deepak.singh@msc2016.iitgn.ac.in)

development of a method to detect manipulations (if any) in a
JPEG image, taking into account standard and non-standard Q-
matrices, is essential. In this letter, we address the problem of
detecting single and double compressed JPEG blocks/patches
(parts of an image aligned with 8×8 grid), which consequently
helps us to locate the forged regions in a given JPEG image.

There is a rich literature on methods related to detection of
double compression in JPEG images using blocking artifacts
in pixel domain and various handcrafted features of DCT
coefficients in transform domain [5]–[20]. In terms of deep
learning approaches [21]–[25], Wang et al. [21] was first to
use a one dimensional CNN with input as the histogram (range
[-5,5]) of the DCT coefficients of first 9 frequencies, resulting
in better performance than handcrafted features. Later, Barni
et al. [22] used CNN with improved performances. Classifying
images among the uncompressed, single, and double com-
pressed using CNN is addressed in [26], [27]. One drawback
of all these systems, as mentioned earlier, is to consider only
100 standard Q-matrices, while there is a possibility of a much
broader set of Q-matrices, as different camera manufacturers
or algorithms are free to use their own Q-matrices. To address
this issue, authors in [4] collected 1,170 unique Q-matrices
(including the 100 standard ones), classified single and double
compressed blocks using the histogram of de-quantized DCT
coefficients as input to a CNN. Authors in [4] experimentally
observed that appending the reshaped Q-matrix (quantization
step sizes for all the 64 frequencies together), at the last three
fully connected layers of their CNN improves the performance.

One step forward, we argue and propose a theoretically
justified way of using the quantization step sizes (q-factors)
with the corresponding histograms for each of the 64 fre-
quencies individually, which is experimentally backed-up with
improved performances. For the histogram formation, we use
quantized DCT coefficients directly extracted from JPEG bit-
stream, unlike the method in [4], which uses the de-quantized
DCT coefficients (JPEG image is first decompressed and DCT
is calculated to get the de-quantized DCT coefficients). The
process of decompression in this above procedure involves
rounding and truncation operation, which can be avoided by
directly utilizing the quantized DCT coefficients. To summa-
rize, following are the major contributions of this letter:

1) a new deep learning-based framework for detection of
single and double compressed blocks, compressed with
more diverse unique Q-matrices as compared to standard
Q-matrices used in most of the methods except [4].

2) a well-designed input, which is a specific combination
of the histograms and corresponding q-factors, that is
passed to DenseNet to learn the compression artifacts.

ar
X

iv
:2

00
3.

09
39

3v
1

 [
ee

ss
.I

V
]

 2
0

M
ar

 2
02

0

2

3) significant performance improvement for smaller size
blocks, and in the real-life image forgery detection and
localization capability.

4) better generalization capability for the test blocks com-
pressed with completely different Q-matrices.

II. PROPOSED SYSTEM

A. Background and Terminologies

JPEG compression of an RGB image involves first conver-
sion to YCbCr space. Each channel is divided into independent
non-overlapping 8× 8 blocks, shifted to signed integer range
([-128, 127]), and 2D Discrete Cosine Transform (DCT)
coefficients are calculated. A quantization matrix (Q-matrix)
of size 8 × 8 is used to quantize the corresponding DCT
coefficients. In general, two different Q-metrics, one for the
Y channel and another one for the Cb and Cr channels are
used. These quantized DCT coefficients are entropy encoded
to get the JPEG bit-stream. JPEG decompression, the process
of getting the image back in the pixel domain, involves
the reverse process, namely entropy decoding, dequantization,
inverse DCT (IDCT), rounding, and truncation.

A JPEG image directly coming from a digital camera
is single compressed (compression within camera module).
Image manipulation involves first decompression, modification
of some region of the image, and further re-saving in the
JPEG format. During the final compression, as detailed in [12],
the tampered 8 × 8 blocks become single compressed, while
the untampered blocks become double compressed. Thus, the
detection of single and double compressed blocks (patches) in
a given JPEG image helps to localize the tampered regions.

B. Design of Optimal Input

In a JPEG patch, consider the collection of DCT coefficients
at a frequency location (u, v) (u, v ∈ {1, 2, . . . 8}) to be
{F (u, v)}. For a single compressed patch, the collection

of quantized DCT coefficients is
{[

F (u, v)

Q1(u, v)

]}
, where Q1

is the Q-matrix used for the first compression, Q1(u, v) is
the quantization step size (q-factor) at (u, v), and [.] de-
notes rounding operation. Further, during decompression, de-
quantization with Q1(u, v) and during the second compres-
sion, quantization with q-factor Q2(u, v) happens. So, for dou-
ble compressed patch, neglecting rounding and truncation after
IDCT operation, the collection of quantized DCT coefficients

is
{[[

F (u, v)

Q1(u, v)

]
Q1(u, v)

Q2(u, v)

]}
, exhibits double quantization

artifacts with periodic peaks and valleys in the histograms for
all u, v ∈ {1, 2, . . . 8}. Details of these periodic artifacts have
been previously described in the literature [5], [6], [12].

Quantized DCT coefficients for a JPEG patch can be
directly obtained from the bit-stream of the JPEG file without
fully decompressing using pysteg [28]. Irrespective of patch
being single or double compressed, let {Fq(u, v)} denote
its collection of quantized DCT coefficients at a frequency
location (u, v). Histogram of quantized DCT coefficients at
(u, v) with integer bins in the range [−b, b], is defined as:
h(i) = |{Fq(u, v)|Fq(u, v) = i}|, i = [−b, b] (|.| is cardinality

of a set). Hence, histogram for a particular frequency h(u,v) ∈
Z(2b+1). For all the 64 frequencies, the histogram is denoted
as H = [h(1,1); h(1,2); h(1,3); . . . h(8,8)] ∈ Z64×(2b+1).

For a JPEG patch, it’s header always contains the informa-
tion of Q-matrix used during the final compression. We utilize
the available q-factor for each of the frequency (u, v) with
their respective histograms in a specific way and use a CNN
to learn to distinguish between single and double compressed
JPEG patches. For each frequency (u, v), corresponding q-
factor Q(u, v) are repeated (2b + 1) times and channel-wise
concatenated with the histogram h(u,v) ∈ Z2b+1 to get the
feature representation of dimension (2b + 1) × 2. For all
frequencies, final feature representation corresponds to X
having dimensions of 64 × (2b + 1) × 2. To summarize,
for a JPEG patch, define a matrix of q-factors, Q

′
as in

Equation 1, and channel-wise concatenate the H with Q
′

to
get the final feature matrix X ∈ Z64×(2b+1)×2. The rationale
behind using the q-factor in this way is explained below. In the
case of single compression, the collection of quantized DCT
coefficients {Fq(u, v)} for a frequency (u, v), are dependent
on the Q1(u, v) (q-factor at (u, v)) and is independent of
other 63 q-factors of other frequencies. While for double com-
pression {Fq(u, v)} is dependent on Q1(u, v) and Q2(u, v).
Although for a double compressed patch, we do not have the
access to first q-factor Q1(u, v), the relationship of q-factors
with the corresponding quantized DCT coefficients is captured
in the corresponding histogram. Theoretical analysis of the
relationship between the DCT coefficient’s histogram with the
q-factor can be found in [12]. The final feature representation
X is fed as input to DenseNet [29] to learn to distinguish
between single and double compressed JPEG patches.

Q
′
=

Q(1, 1) Q(1, 1) . . . Q(1, 1)
Q(1, 2) Q(1, 2) . . . Q(1, 2)

...
...

. . .
...

Q(8, 8) Q(8, 8) . . . Q(8, 8)

 ∈ Z64×(2b+1) (1)

C. Network Architecture

We utilized a variant DenseNet-121 architecture [29] for the
two-class problem addressed here. Input to the network, X, is
passed through a convolutional layer (64 kernels, 7× 7, stride
= 2), followed by a max pooling layer (3 × 3, stride = 2).
Further, the network has four dense blocks with a growth rate
of k = 32 and the number of dense layers equal to 6, 12, 24,
and 16, respectively. Each dense layer consists of BN, ReLU,
1× 1 convolution (4k kernels, stride = 1), BN, ReLU, 3× 3
convolution (k kernels, stride = 1). In a dense block, input to
a dense layer is feature maps of all previous dense layers,
and similarly, the output feature map of the current dense
layer is used as input in the upcoming dense layers. Each of
the first three dense blocks are followed by three transition
blocks consisting of BN, ReLU, 1 × 1 convolution with
compression factor 0.5, and an average pooling layer (2 × 2,
stride = 2). Weights and biases of each convolutional layer are
initialized with Xavier uniform initializer [30] and zero vector,
respectively. The output of the last dense block is passed
through a 7× 7 global average pooling layer. Finally, softmax

3

is used to obtain the class probability scores. Categorical cross-
entropy loss between the actual label and the predicted value
is used as a loss function for optimization. Network is trained
using Adam optimizer [31] with the value of β1 and β2 set
at their default values 0.9 and 0.999, respectively. Batch size
is chosen to be 64 for 40 epochs. The initial learning rate for
the first 30 epochs is set to 0.001 and then reduced to 0.0005
for the last 10 epochs.

III. EXPERIMENTS AND DISCUSSION

We have used the publicly available [32] dataset by Park et
al. [4]. Dataset consists of nearly 1.14 million 256×256 single
and double compressed JPEG patches. This is the only dataset
that considers 1120 unique Q-matrices (including standard
Q-matrices for quality factors 51 - 100) for creating single
and double compressed patches. These patches (256 × 256)
extracted from 18,946 uncompressed images, captured from
15 different camera models were taken from RAISE [33],
Dresden [34], and BOSS [35]. Single compressed blocks
were created by compressing an uncompressed block with
randomly chosen Q-matrix, while double compressed blocks
were created by re-compression with another randomly chosen
Q-matrix different from the first one. All the patches in this
dataset [4], and other images used in this letter are compressed
by quantization of only Y channel.

Training parameters consist of histogram bin range con-
trolled by b, train percentage, and patch-size, with their default
values set to b = 100, 30% , and 256×256, respectively. Due
to the time-complexity in training with 1.4 million patches,
we opted for two different train percentages, one with smaller
number of training patches, where train, validation, and test
set are 30% (171,065 patches per class), 10% (57,022 patches
per class), and 10% respectively. Using this split, model hyper-
parameters are optimized on the validation set of 10%. Another
split uses a larger training set, 90/10 train/test split, with
train and test sets as 90% (513,194 patches per class) and
10%, respectively. Test set of 10% is kept fixed across all the
experiments, and methods. During training and testing, single
and double compressed classes have patches with the same
image content but compressed different number of times.

To evaluate the performance of the systems, we use the
metrics accuracy, True Positive Rate (TPR), and True Neg-
ative Rate (TNR) defined as (tp+ tn)/(tp+ tn+ fp+ fn),
tp/(tp+ fn), and tn/(tn+ fp), respectively. Where tp and
tn denote the number of patches correctly predicted as double
compressed and single compressed respectively. While fp and
fn denotes the number of patches incorrectly predicted as
double compressed and single compressed respectively. Hence,
TPR denotes the number of patches correctly detected as
double compressed out of the total double compressed patches.
Similarly, TNR denotes the number of patches correctly de-
tected as single compressed out of the total single compressed.

A. Histogram’s Bin Variation

The range of quantized DCT coefficients is image and
frequency location dependent. Based on the initial exper-
iments, we varied the range of histogram parameter b ∈

{60, 80, 100, 120}. Results in Table I demonstrate a slight
increase in the performance with the increased bin-range.
Considering the trade-off among the accuracy, TPR, TNR, and
the training time, the value of b = 100 is fixed.

TABLE I
PERFORMANCE COMPARISON WITH DIFFERENT HISTOGRAM BIN RANGES

Bin Parameter Test Accuracy (%) TPR (%) TNR (%)
b = 60 93.51 90.49 96.52
b = 80 93.59 89.69 97.48
b = 100 93.73 90.48 96.99
b = 120 93.74 90.20 97.28

B. Comparison with State-of-the-Art Methods

The performance of the proposed approach is compared
with three methods [4], Wang et al. [21] and Barni et al. [22].
As the latest paper [4] reported the accuracies for a 90/10 split,
we have also used 90/10 split on the same dataset for a fair
comparison. Table II shows the comparative performance of
these methods. Due to the unavailability of exact 90/10 split
used in [4], for the proposed method, we used 5 different 90/10
train test random splits, and the mean test accuracy, TPR, and
TNR of these 5 iterations with a standard deviation of 0.06%,
0.20%, 0.24%, respectively, are reported. The (min, max) val-
ues of accuracies, TPR, and TNR for the proposed method are
(94.40%, 94.56%), (91.52%, 92.05%), and (96.94%, 97.48%),
respectively. Results in Table II demonstrate the improvement
in overall accuracy, ability to correctly classify single and
double compressed patches as compared to other approaches.
Using RGB blocks directly as input to the DenseNet without
the appropriate design of input, resulted in random 50%
accuracy, similar to [4], with VGG-16 [36] network.

TABLE II
PERFORMANCE OF VARIOUS APPROACHES USING 90% PATCHES FOR

TRAINING

Methods Test Accuracy (%) TPR (%) TNR (%)
Wang et al. [21] 73.05 67.74 78.37
Barni et al. [22] 83.47 77.47 89.43
Park et al. [4] 92.76 90.90 94.59

Our 94.49 91.74 97.25

C. Patch-Size Variation and Effect of Using q-factors in the
Proposed Approach

Performance of the proposed approach and approach in [4]
with three different patch-sizes are shown in Table III. Our
network with growth rate k = 32, has ∼6.9 million learn-
able parameters as compared to the optimized CNN network
provided by [4] which has ∼16.8 million learn-able parame-
ters. The results of [4] are reproduced with 100 epochs, 64
batch-size, and learning 10−5. Quantized DCT coefficients
for the patch-sizes 64 × 64 and 128 × 128 are extracted
from the top left corner of the 256× 256 patches which also
ensures the same number of training and testing patches across
all the patch-sizes. Performance in Table III emphasizes the
advantages of the proposed way of combining q-factors with
the respective histograms with overall improved performance

4

as compared to the method in [4]. The phrases “without
q-factors” and “with q-factors” signify the input X with
dimension 64× (2b+ 1) and 64× (2b+ 1)× 2, respectively.
The performance gain as compared to the method in [4] is
more significant with the smaller size patches, as the values of
accuracy, TPR, and, TNR are improved significantly. In ‘with
q-factor’ scenario as compared to ‘without q-factor’, TPR, the
number of correctly classified double compressed patches out
of total double compressed patches, improves drastically, but
TNR is marginally higher in ‘without q-factor’ case.

TABLE III
PERFORMANCE OF PROPOSED SYSTEM WITH DIFFERENT PATCH-SIZES

64× 64, 128× 128, AND 256× 256 AND EFFECT OF USING Q-FACTORS IN
THE PROPOSED APPROACH

Methods Test Accuracy (%) TPR (%) TNR (%)
Park et al. [4] (64× 64) 83.94 76.64 91.24

our (64× 64) (without q-factors) 85.19 76.26 94.12
our (64× 64) (with q-factors) 88.09 82.32 93.85

Park et al. [4] (128× 128) 87.68 82.78 92.58
our (128× 128) (without q-factors) 88.62 79.81 97.43

our (128× 128) (with q-factors) 91.26 86.84 95.68
Park et al. [4] (256× 256) 90.30 84.89 95.70

our (256× 256) (without q-factors) 91.23 85.13 97.34
our (256× 256) (with q-factors) 93.73 90.48 96.99

D. Forgery Localization: Quantitative and Visual Analysis

To quantify manipulation region detection, similar to [4],
we considered copy-move and blur manipulation type of
forgeries. 2100 TIFF images from the RAISE dataset [33] are
randomly selected. For each image, 1024× 1024 size smaller
images are randomly cropped and compressed with a randomly
chosen Q-matrix among the 1120 Q-matrices. Further, the
same 1024 × 1024 image is decompressed, and a random
region of size 544 × 544 is chosen and pasted at another
random location, and re-compressed with another randomly
chosen Q-matrix which is different from the first Q-matrix. A
similar approach is used for creating blur manipulated images
by applying a blur filter (σ = 2) to randomly chosen 544×544
patch. For ground-truth creation, two-step process is followed,
1) from any 8 × 8 block even if a single pixel is part of
the tampered area, that block is labeled as tampered (single
compressed), 2) then each 256 × 256 block with stride 32,
is labeled as tampered (single compressed) if the majority of
8 × 8 blocks inside it are tampered, otherwise untampered
(double compressed). Table IV, shows the improved results
with precision P = tp/(tp+ fp), recall R = tp/(tp+ fn),
F-measure F = 2PR/(P +R), for the detection of copy-
move forgeries and blur manipulations.

TABLE IV
COPY-MOVE AND BLUR MANIPULATION DETECTION

Methods Precision Recall F-measure
Park et al. [4] (copy-move) 0.7544 0.7871 0.7704

our (copy-move) 0.7830 0.8161 0.7992
Park et al. [4] (Blurring) 0.6929 0.8005 0.7428

our (Blurring) 0.7241 0.8322 0.7744

For visualization, starting with images from RAISE [33], six
different types of manipulations [4] were performed in Adobe
Photoshop, namely splicing, copy-move, color modification,

content-aware object removal, blur manipulation, and object
resizing, all using 1120 Q-matrices. Figure 1 shows the
results of forgery localization for splicing, copy-move, and
blur manipulation. For forgery localization in an image, the
probability of blocks being double compressed P (ŷ = 1 | X)
is shown with the stride set to 32 pixels. Models used for
quantitative and qualitative evaluations, were trained on the
same 90/10 split (randomly chosen). The accuracy, TPR, and
TNR for [4] was 92.26%, 87.19%, and 97.33%, respectively,
while for our method, accuracy, TPR, and TNR was 94.40%,
91.87%, and 96.94%, respectively.

Fig. 1. Examples of various types of forgeries and tampering localization.
Top to bottom: splicing, copy-move, blurring

TABLE V
PERFORMANCE FOR UNSEEN Q-MATRICES

Methods Test Accuracy (%) TPR (%) TNR (%)
Park et al. [4] 86.69 82.62 90.77

our 92.83 89.40 96.25

E. Analysis for Unseen Q-matrices
In a real-life scenario, 1120 Q-matrices being more than

standard Q-matrices, are still not a closed set, which implies
need for a method that is able to handle unseen Q-matrices.
In unseen Q-matrices cases, training and test patches have
completely different Q-matrices. We randomly picked 616 Q-
matrices for training and the remaining 504 for testing, and
the number of training and test patches was kept same as
in the 30/10 split. The encouraging performances in Table V
demonstrate the applicability of the proposed approach as a
universal single and double compressed block detector.

IV. CONCLUSIONS

In this letter, we have proposed a deep learning-based frame-
work that combines the histogram of quantized DCT coeffi-
cients with the corresponding q-factors and utilizes DenseNet
to extract the compression specific artifacts for classifying
JPEG blocks/patches as single or double compressed. In a
JPEG image, robust detection of single and double com-
pressed blocks helps to localize the forged region (if any).
We showed significant improvement over the current state-of-
the-art methods for the classification of JPEG blocks as single
or double compressed, resulting in improved image forgery
localization performances. For smaller block sizes, the method
performs significantly better and also generalizes for unseen
compression scenarios. The limitation of the method, similar
to existing ones, is the inability to classify patches compressed
with the same Q-matrices in first and second compression.

5

REFERENCES

[1] H. Farid, “Image Forgery Detection,” IEEE Signal Processing Magazine,
vol. 26, no. 2, pp. 16–25, March 2009.

[2] A. Piva, “An Overview on Image Forensics,” ISRN Signal Processing,
2013.

[3] M. C. Stamm, M. Wu, and K. J. R. Liu, “Information Forensics: An
Overview of the First Decade,” IEEE Access, vol. 1, pp. 167–200, 2013.

[4] J. Park, D. Cho, W. Ahn, and H.-K. Lee, “Double JPEG Detection
in Mixed JPEG Quality Factors using Deep Convolutional Neural
Network,” in The European Conference on Computer Vision (ECCV),
September 2018.

[5] J. Lukáš and J. Fridrich, “Estimation of Primary Quantization Matrix
in Double Compressed JPEG Images,” in Proceedings Digital Forensic
Research Workshop, 2003, pp. 5–8.

[6] A. C. Popescu and H. Farid, “Statistical Tools for Digital Forensics,” in
Information Hiding, vol. 3200. Springer, 2004, pp. 395–407.

[7] D. Fu, Y. Q. Shi, W. Su et al., “A Generalized Benford’s Law for
JPEG Coefficients and its Applications in Image Forensics,” in Security,
Steganography, and Watermarking of Multimedia Contents, 2007.

[8] W. Luo, Z. Qu, J. Huang, and G. Qiu, “A novel method for detecting
cropped and recompressed image block,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing - ICASSP ’07, vol. 2,
April 2007, pp. II–217–II–220.

[9] S. Ye, Q. Sun, and E. Chang, “Detecting Digital Image Forgeries by
Measuring Inconsistencies of Blocking Artifact,” in IEEE International
Conference on Multimedia and Expo, July 2007, pp. 12–15.

[10] B. Li, Y. Q. Shi, and J. Huang, “Detecting Doubly Compressed JPEG
Images by Using Mode Based First Digit Features,” in Proceedings IEEE
10th Workshop on Multimedia Signal Processing. IEEE, 2008, pp. 730–
735.

[11] W. Li, Y. Yuan, and N. Yu, “Passive detection of doctored JPEG image
via block artifact grid extraction,” Signal Processing, vol. 89, no. 9, pp.
1821–1829, 2009.

[12] Z. Lin, J. He, X. Tang, and C.-K. Tang, “Fast, automatic and fine-grained
tampered JPEG image detection via DCT coefficient analysis,” Pattern
Recognition, vol. 42, no. 11, pp. 2492–2501, 2009.

[13] H. Farid, “Exposing Digital Forgeries From JPEG Ghosts,” IEEE
Transactions on Information Forensics and Security, vol. 4, no. 1, pp.
154–160, March 2009.

[14] Y. Chen and C. Hsu, “Detecting Recompression of JPEG Images via
Periodicity Analysis of Compression Artifacts for Tampering Detection,”
IEEE Transactions on Information Forensics and Security, vol. 6, no. 2,
pp. 396–406, June 2011.

[15] T. Bianchi, A. De Rosa, and A. Piva, “Improved dct coefficient analysis
for forgery localization in jpeg images,” in 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2011, pp. 2444–2447.

[16] I. Amerini, R. Becarelli, R. Caldelli, and A. Del Mastio, “Splicing
Forgeries Localization Through the Use of First Digit Features,” in
International Workshop on Information Forensics and Security (WIFS).
IEEE, 2014, pp. 143–148.

[17] W. Wang, J. Dong, and T. Tan, “Exploring DCT Coefficient Quanti-
zation Effects for Local Tampering Detection,” IEEE Transactions on
Information Forensics and Security, vol. 9, no. 10, pp. 1653–1666, Oct
2014.

[18] A. Taimori, F. Razzazi, A. Behrad, A. Ahmadi, and M. Babaie-Zadeh,
“A Novel Forensic Image Analysis Tool for Discovering Double JPEG
Compression Clues,” Multimedia Tools and Applications, vol. 76, no. 6,
pp. 7749–7783, 2017.

[19] C. Pasquini, G. Boato, and F. Perez-Gonzalez, “Multiple JPEG Com-
pression Detection by means of Benford-Fourier Coefficients,” in Pro-
ceedings IEEE International Workshop on Information Forensics and
Security (WIFS). IEEE, 2014, pp. 113–118.

[20] S. Milani, M. Tagliasacchi, and S. Tubaro, “Discriminating Multiple
JPEG Compressions using First Digit Features,” APSIPA Transactions
on Signal and Information Processing, vol. 3, p. e19, 2014.

[21] Q. Wang and R. Zhang, “Double JPEG compression forensics based
on a convolutional neural network,” EURASIP Journal on Information
Security, no. 1, p. 23, 2016.

[22] M. Barni, L. Bondi, N. Bonettini, P. Bestagini, A. Costanzo, M. Maggini,
B. Tondi, and S. Tubaro, “Aligned and non-aligned double JPEG
detection using convolutional neural networks,” Journal of Visual Com-
munication and Image Representation, vol. 49, pp. 153–163, 2017.

[23] V. Verma, N. Agarwal, and N. Khanna, “DCT-domain deep convolu-
tional neural networks for multiple JPEG compression classification,”
Signal Processing: Image Communication, vol. 67, pp. 22–33, 2018.

[24] B. Li, H. Luo, H. Zhang, S. Tan, and Z. Ji, “A multi-branch convolutional
neural network for detecting double JPEG compression,” arXiv preprint
arXiv:1710.05477, 2017.

[25] B. Li, H. Zhang, H. Luo, and S. Tan, “Detecting Double JPEG Compres-
sion and Its Related Anti-Forensic Operations with CNN,” Multimedia
Tools Appl., vol. 78, no. 7, p. 85778601, 2019.

[26] I. Amerini, T. Uricchio, L. Ballan, and R. Caldelli, “Localization
of JPEG Double Compression Through Multi-domain Convolutional
Neural Networks,” in IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), July 2017, pp. 1865–1871.

[27] X. Zeng, G. Feng, and X. Zhang, “Detection of Double JPEG Com-
pression Using Modified DenseNet Model,” Multimedia Tools and
Applications, vol. 78, no. 7, p. 81838196, 2019.

[28] “Steganography and Steganalysis in Python,” http://www.ifs.schaathun.
net/pysteg/.

[29] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger, “Densely
Connected Convolutional Networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017, pp. 2261–2269.

[30] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, ser.
Proceedings of Machine Learning Research, vol. 9. PMLR, 13–15
May 2010, pp. 249–256.

[31] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[32] “Double JPEG Detection,” https://sites.google.com/view/jspark/home/
djpeg.

[33] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato, “RAISE: A
Raw Images Dataset for Digital Image Forensics,” in Proceedings of the
6th ACM Multimedia Systems Conference, ser. MMSys 15. Association
for Computing Machinery, 2015, p. 219224.

[34] T. Gloe and R. Böhme, “The Dresden Image Database for Benchmarking
Digital Image Forensics,” Journal of Digital Forensic Practice, vol. 3,
no. 2-4, pp. 150–159, 2010.

[35] P. Bas, T. Filler, and T. Pevnỳ, ““Break Our Steganographic System”:
The Ins and Outs of Organizing BOSS,” in International Workshop on
Information Hiding. Springer Berlin Heidelberg, 2011, pp. 59–70.

[36] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

http://arxiv.org/abs/1710.05477
http://www.ifs.schaathun.net/pysteg/
http://www.ifs.schaathun.net/pysteg/
http://arxiv.org/abs/1412.6980
https://sites.google.com/view/jspark/home/djpeg
https://sites.google.com/view/jspark/home/djpeg
http://arxiv.org/abs/1409.1556

	I Introduction
	II Proposed System
	II-A Background and Terminologies
	II-B Design of Optimal Input
	II-C Network Architecture

	III Experiments and Discussion
	III-A Histogram's Bin Variation
	III-B Comparison with State-of-the-Art Methods
	III-C Patch-Size Variation and Effect of Using q-factors in the Proposed Approach
	III-D Forgery Localization: Quantitative and Visual Analysis
	III-E Analysis for Unseen Q-matrices

	IV Conclusions
	References

