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A Learned Pixel-by-Pixel Lossless Image
Compression Method with 59K Parameters and

Parallel Decoding
Sinem Gümüş, Fatih Kamisli

Abstract—This paper considers lossless image compression and
presents a learned compression system that can achieve state-
of-the-art lossless compression performance but uses only 59K
parameters, which is more than 30x less than other learned
systems proposed recently in the literature. The explored system
is based on a learned pixel-by-pixel lossless image compression
method, where each pixel’s probability distribution parameters
are obtained by processing the pixel’s causal neighborhood (i.e.
previously encoded/decoded pixels) with a simple neural network
comprising 59K parameters. This causality causes the decoder to
operate sequentially, i.e. the neural network has to be evaluated
for each pixel sequentially, which increases decoding time signifi-
cantly with common GPU software and hardware. To reduce the
decoding time, parallel decoding algorithms are proposed and
implemented. The obtained lossless image compression system is
compared to traditional and learned systems in the literature in
terms of compression performance, encoding-decoding times and
computational complexity.

Index Terms—Image compression, Artificial neural networks,
Entropy coding, Gaussian mixture model

I. INTRODUCTION

Image compression is the set of algorithms to reduce the
number of bits to store or represent an image, with or without
preserving the original image data perfectly. Lossless image
compression preserves the original image data, i.e. guarantees
obtaining the original image after decoding the compressed
bitstream and is generally preferred in applications where data
loss is not desired, such as medical imaging, professional pho-
tography, satellite imaging, etc. To achieve the compression,
the statistical dependency of the pixel values along the spatial
dimension and across the color channels are typically utilized.

Traditional lossless image compression methods are either
based on prediction or integer transforms. In the prediction
based methods, compression proceeds in a raster scan order
and a pixel or block of pixels is predicted from previously
compressed pixels or blocks available at the decoder and the
prediction error is lossless coded with various methods [1], [2],
[3], [4], [5]. In the integer transform based methods, the image
is transformed into a transform domain with an invertible
integer to integer transform and the transform coefficients are
lossless coded [6]. In both methods, the spatial dependency
of pixel values is exploited and error pixels or transform
coefficients that can be more efficiently coded with simple
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entropy codes are obtained and coded to accomplish the
compression.

Recently, learned lossless image compression methods have
emerged. These methods use artificial neural networks to
model and learn the probability distributions of pixels con-
ditioned on previously coded pixels [7], [8], [9] or side
information transmitted from the encoder to the decoder [10],
[11], [12]. Methods that model and learn integer to integer
transforms with artificial neural networks were also proposed
[13].

This paper explores a learned lossless image compression
method which uses artificial neural networks to model and
learn the probability distributions of each pixel conditioned on
few previously coded left and upper neighbor pixels. In other
words, a learned auto-regressive model is used to characterize
the probability distribution of pixels. It is shown that a simple
neural network with only 59K parameters can learn such an
auto-regressive dependency very well and can achieve state-
of-the-art lossless image compression performance that is
better than other recent learned lossless image compression
systems IDF[13], L3C[10], SReC[11] and most models in
MSPSM[12]. This result is surprising since many learned
lossless compression approaches have number of parameters
in the millions (IDF[13]: 84.3M, L3C[10]: 5.0M, SReC[11]:
4.2M, MSPSM[12]: 1.9M) but can not achieve better lossless
compression than this simple system.

The successful compression performance with much less
parameters is mainly due to two factors. First, in lossless image
compression, few immediate neighbor pixels (i.e. a CNN with
small receptive field) are sufficient for good performance,
unlike lossy image compression or many computer vision
tasks. Hence, our system uses convolution layers mostly with
1x1 kernels instead of larger kernels. Second, many systems
in the literature operate in multiple scales (due to easy par-
allel computation possibility), which requires multiple neural
networks, but our system does not.

The downside of our approach is that the auto-regressive
model requires sequential processing of neighboring pixels
that are related to each other by the auto-regressive model
and a simple parallelization of the processing of all image
pixels (i.e. using convolutional neural networks) can not be
used. A naive decoding implementation which processes all
image pixels sequentially leads to impractically long decoding
times with standard GPU hardware and software. Yet, by
keeping the number of neighbor pixels related in the auto-
regressive model small (i.e the neural network’s receptive
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field), many pixel groups can be processed in parallel (i.e.
decoded independently), and more reasonable decoding times
can be achieved, which are still about an order of magnitude
longer than fully parallelizable approaches such as L3C[10],
SReC[11], MSPSM[12].

Contributions of this paper can be summarized as follows:
• State of the art lossless image compression performance

of 2.56 bpsp on the test set of Open Images dataset
• while using a neural network with only 59K parameters,

which is 30x-1000x less than the parameters of systems
in the literature.

The remainder of the paper is organized as follows. Section
II reviews related work including traditional lossless image
compression methods and recent learned lossless image com-
pression methods. Section III presents the proposed approach
and compression system. Section IV presents experimental
results with the proposed system and also comparisons with
other systems. Finally, Section V provides a summary and our
conclusions.

II. RELATED WORK

This section provides a review of related traditional lossless
image compression methods and recent learned lossless image
compression methods.

A. Traditional Lossless Image Compression Methods

Traditional lossless compression methods can be catego-
rized as pixel based prediction methods and invertible trans-
form based methods. In pixel based prediction methods, pixel
values are predicted from their surrounding pixels (left and
above) using predefined modes in the encoder. The difference
signal is obtained by subtracting the prediction pixel from the
original pixel value, and the obtained error pixel is lossless
compressed using an entropy coder [1], [2], [3], [4], [5]. Trans-
formation based image coding methods are widely used in
lossy compression. In lossless compression, the used transform
must be invertible and satisfy integer-to-integer mapping in
order to obtain the original image without loss at the decoder
side [6], [14], [15].

JPEG [1] provides a lossless operation mode which uses
a pixel based predictive coding scheme for compression. The
current pixel is predicted from the immediate neighbor pixels
to the left, up, upper-left and upper-right. There are eight
predefined prediction modes which are generated as different
linear combination of neighbor pixels using only addition
subtraction and bit-shift operations.

JPEG-LS [2] is based on the LOCO-I (Low Complexity
Lossless Compression for Images) algorithm and is similar to
lossless JPEG in terms of operation. It increases compression
performance by using an enhanced decorrelation with adaptive
prediction modes and context modelling. A nonlinear predic-
tion algorithm, the median edge detector (MED) is used, which
chooses between three estimation modes depending on edge
information from the relationship between neighboring pixels.
A context model, determined by quantized gradients of the
neighboring pixels to capture high-order dependencies, is used
with adaptive entropy coding.

FLIF (Free Lossless Image Format) [3] has one of the
best compression performances among the traditional lossless
compression systems. A reversible YCoCg color transforma-
tion [16] is applied to decorrelate color channels. An entropy
coding method called MANIAC (Meta-Adaptive Near-Zero In-
teger Arithmetic Coding) based on CABAC (Context-adaptive
binary arithmetic coding) is used [17]. This method provides a
powerful adaptive context model. Although FLIF offers strong
compression performance, it has significantly longer run times
than other traditional methods.

WebP [4], developed especially for the web, offers lossy
and lossless modes of operation. In the lossless mode, adaptive
block based prediction with thirteen modes, a color transform
and a variant of LZ77-Huffman coding is used for entropy
coding.

Another widely popular lossless image compression system
is PNG [5]. Video compression standards H.264/AVC and
HEVC also support lossless compression [18], [19]. Finally,
JPEG2000 supports lossless compression with an integer
wavelet transform based approach [6].

B. Learning Based Lossless Image Compression Methods

1) Auto-regressive generative models: Auto-regressive gen-
erative models are a class of artificial neural networks whose
main purpose is to learn the probability distribution of an
image dataset and to generate/sample new images that appear
to be in that set. For this purpose they perform auto-regressive
generation of pixels. In order to use these models in lossless
image compression, they need to be combined with an entropy
coder.

PixelRNN [7], PixelCNN [8], and MS-PixelCNN [20] are
well-known auto-regressive generative network architectures.
The probability distribution function of the entire image is
formulated as the joint probability distribution of its pixels,
which is factored with the chain rule of probability into a
product of conditional probabilities of each pixel conditioned
on all previous pixels. PixelRNN[7] models large spatial
dependencies in the image using the two-dimensional LSTM
(long-short-term memory) network structure. PixelCNN [8] of-
fers a CNN (convolutional neural network) based architecture
to speed up the training of the neural network and uses only
certain neighboring pixels with the help of masked convolution
structures. PixelCNN++ [9] proposes improvements on top of
PixelCNN. In particular, it uses a discretized logistic mixture
likelihood for the pixel probability distribution instead of the
256-way softmax function and a simpler method to learn the
relation between RGB components of a pixel [9].

Note that while the above discussed auto-regressive gen-
erative models are similar to the work in this paper in the
sense that they also model/learn dependencies in images with
auto-regressive neural networks, there are also significant
differences. First, these models were not proposed particularly
for lossless image compression but for image generation.
Second, these models comprise very large neural networks
with number of parameters in the millions (e.g. PixelCNN++:
53.7M) and their sampling times, which would correspond to
decoder operations in lossless compression, are impractically
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long taking many minutes or hours with GPUs [10]. Such
large neural networks and long sampling times render them
highly impractical for lossless compression applications. This
paper explores an auto-regressive lossless compression system
with a much simpler neural network (59K parameters) and
parallel decoding capability, which significantly reduce the
computation complexity and long decoding times compared
to the above discussed auto-regressive models while providing
state-of-the-art compression performance.

2) Parallel prior models: Due to the sequential genera-
tion/sampling requirement and long decoding times with auto-
regressive generative models, image probability models that
allow the computation of probability parameters of each pixel
in parallel were proposed [10], [11], [12]. These approaches
condition the probability of each pixel on a prior (i.e. side
information) that is obtained and transmitted by the encoder
to the decoder. This prior has typically half the resolution of
the original image to be compressed and can be processed
with convolutional neural networks (CNN), allowing simple
parallelization. The decoder processes this prior with CNN and
can produce the probability model parameters of each pixel in
parallel. Note that the transmission of the prior will take some
additional bits and thus to obtain an efficient compression
framework, this prior based compression scheme is applied in
a recursive manner on the priors, leading to hierarchical/multi-
scale compression frameworks.

In L3C [10], which is the first to propose such a framework,
a 3-scale framework is used where the priors are obtained with
CNNs at the encoder by processing the original image or the
previous prior. The last prior is sent to the decoder with a
simple entropy code. The decoder processes the received prior
with CNN to obtain the probability model parameters of each
element of the previous prior, and then decodes the previous
prior. This procedure is repeated for the preceding prior and
so on until the original image is decoded.

In super resolution based compression (SReC) [11], the
compression framework is similar to L3C and the prominent
difference is that the priors are obtained not with a CNN but
simply by average pooling, i.e. averaging every 2x2 pixels. In
MSPSM [12], again a similar framework is used where the
priors are obtained in a progressive manner simply by taking
every even/odd rows and/or columns of the image or previous
prior.

While L3C provides practical encoding/decoding times with
GPUs and compression performance higher than many tradi-
tional lossless image coders, the compression performance is
below that of the advanced traditional coder FLIF [3]. SReC
[11] improves upon L3C in terms of compression performance
and MSPSM [12] improves upon SReC.

While these methods provide practical encoding and de-
coding times with GPUs and have good compression perfor-
mance they still are based on relatively large neural networks
with high computational complexity. For example, L3C[10],
SReC[11], and MSPSM[12] have 5.0M, 4.2M and 1.9M
parameters, respectively, while the system in this paper has
only 59K parameters.

3) Integer Discrete flow based models: Integer Discrete
Flows (IDFs) are invertible deep learning based transforma-

tions for ordinal discrete data, such as images, similar to the
traditional integer wavelet transforms [6]. While such flow
based models [13], [21] provide good compression perfor-
mance and allow simple parallelization through CNN, the used
neural network architectures are quite large with number of
parameters in the orders of many millions (e.g. 84.3M in
[13]). Hence, these approaches seem inappropriate as practical
lossless image compression solutions.

III. PROPOSED METHOD

This paper explores a learned auto-regressive lossless image
compression method which uses neural networks to model the
conditional probability distribution of each pixel conditioned
on previously encoded/decoded left and upper pixels. The
remainder of this section is organized as follows. Section III-A
discuses the used conditional probability model. Section III-B
presents the used neural network architecture to learn the prob-
ability model parameters. Section III-C presents parallelization
approaches to reduce decoding times.

A. The Conditional Probability Model of Pixels

The probability mass function (PMF) of a sub-pixel1 x ∈
{r, g, b} is defined via discretizing a Gaussian Mixture Model
(GMM) as follows:

px(x; π, µ, s) =

K∑
i=1

πi[F ((x+0.5−µi)/si)−F ((x−0.5−µi)/si)]

(1)
Here F () is the cumulative distribution function (CDF) of
the standard Gaussian distribution and µi, si and πi are the
mean, standard deviation and the weight of the ith mix-
ture/component of the GMM, respectively. A pixel at location
(i,j) in the image consists of sub-pixels ri,j (red), gi,j (green)
and bi,j (blue) sub-pixels. The conditional probability of a
pixel is represented as the joint probability of these three sub-
pixel probabilities as

P (ri,j , gi,j , bi,j |Ci,j) = px(ri,j ; πr(Ci,j), µr(Ci,j), sr(Ci,j))×
px(gi,j ; πg(Ci,j), µg(Ci,j , ri,j), sg(Ci,j))×

px(bi,j ; πb(Ci,j), µb(Ci,j , ri,j , gi,j), sb(Ci,j))
(2)

where Ci,j represents the previously encoded/decoded neigh-
boring pixels that the probability model conditions on (pixels
in blue region in Figure 1). πr(Ci,j), µr(Ci,j) and sr(Ci,j)
represent the mean, standard deviation and the weight pa-
rameters for the sub-pixel ri,j (red) and are produced by the
artificial neural network processing the Ci,j pixels. As the Ci,j

pixels change, the parameters πr(Ci,j), µr(Ci,j) and sr(Ci,j)
change and thus the conditional probability of the sub-pixel
ri,j changes.

The probabilities of green and blue sub-pixels gi,j and bi,j
are determined by the mean, standard deviation and weight
parameters shown in Equation (2), which are also obtained by

1Here, we follow the convention in the related previous research and use
sub-pixel to denote each color component and pixel to denote all color
components together
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Fig. 1. Raster scan order for coding pixels. The pixel to be encoded next
(red) and the neighboring previously encoded/decoded pixels Ci,j (blue) that
its probability model conditions on.

the same artificial neural network processing the Ci,j pixels.
Notice however that the mean parameters µg(Ci,j , ri,j) and
µb(Ci,j , ri,j , gi,j) are functions of not only the Ci,j pixels
but the mean of the green sub-pixel is also a function of the
previously encoded/decoded red sub-pixel ri,j and the mean
of the blue sub-pixel is also a function of the previously en-
coded/decoded red and green sub-pixels ri,j and gi,j . In other
words, the probability of the green sub-pixel is conditioned on
both the neighboring Ci,j pixels and the red sub-pixel ri,j and
the probability of the blue sub-pixel is conditioned on both the
neighboring Ci,j pixels and the red and green sub-pixels ri,j
and gi,j , which indicates that the joint probability model of
the sub-pixels in Equation (2) models the dependency of the
sub-pixels through updating only the means in the GMM of
Equation (1). The updates of the means are performed with
the simple but efficient method of [9] as in Equations (3) and
(4).

µg(Ci,j , ri,j) = µg(Ci,j) + α(Ci,j)ri,j (3)

µb(Ci,j , ri,j , gi,j) = µb(Ci,j) + β(Ci,j)ri,j + γ(Ci,j)gi,j
(4)

Here, α(Ci,j), β(Ci,j) and γ(Ci,j) are coefficients that
multiply the red and green sub-pixels to update the means
and are also produced by the same neural network processing
the Ci,j pixels. This simple method of updating the means is
computationally efficient and is adequate to exploit the simple
dependency of the sub-pixels. It is computationally efficient
since one evaluation of the neural network processing the Ci,j

pixels produces all parameters necessary to calculate the joint
conditional probability of the sub-pixels in Equation (2). An
alternative and straight forward method would be to have three
neural networks, each taking as input the Ci,j pixels and the
previous sub-pixels but this would require three neural network
evaluations and increase the neural network complexity and
decoding time and is therefore not preferred.

B. Neural Network Architecture and Loss Function

The simple neural network used in this paper to obtain the
conditional probability model parameters is shown in Figure 2.

It has 5 convolution layers and LeakyReLU activation function
in between the convolution layers. The first convolution layer
is a masked convolutional layer and has a kernel size of 5x5
while the remaining convolutional layers have kernel size of
1x1. Hence, the receptive field of the convolutional neural
network is determined by the first layer’s kernel size and mask,
and comprise the Ci,j pixels in Figure 1 that the conditional
probability model of Equation 2 conditions on. Note that one
could have a larger receptive field Ci,j by using larger kernel
sizes in the convolutional layers. However, unlike in many
computer vision tasks or lossy image compression, a larger
receptive field is not necessary for state-of-the-art lossless
image compression performance as we show in Section IV
and the neural network in Figure 2 allows to keep the network
parameter size and computational complexity low.

Fig. 2. Neural network architecture of the proposed probability model.

For the training of the proposed neural network, stochastic
gradient descent is used and the loss function is simply the
estimate of the entropy of the pixel values given below in
Equation (5), where b indexes the images in a batch. More
details of the training procedure are given in Section IV.

L = − 1

N

∑
b,i,j

log2 P (r
(b)
i,j , g

(b)
i,j , b

(b)
i,j |Ci,j) (5)

C. Parallelization of Decoding Operations

During training or encoding, since all image pixels are
available, the entire image can be fed to the CNN in Figure
2 and all pixels can be processed in parallel to obtain their
probability distribution parameters. The masked convolution
ensures that the auto-regressive dependency on only the left
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and upper Ci,j pixels is preserved. During decoding, however,
sequential processing is required. To decode one pixel from
the bitstream, that pixel’s probability distribution parameters
need to be obtained by processing the previously decoded Ci,j

pixels with the neural network. Once this pixel is decoded from
the bitstream, it is used in the Ci,j pixels of the next pixel and
the process for decoding the next pixel is performed similarly.

During decoding, the evaluation of the neural network to
obtain the probability distribution parameters of one pixel can
be performed in two similar ways. One way is to form a
5x5 patch of pixels containing the previously decoded Ci,j

pixels as shown in Figure 1 and feed it to the convolutional
neural network in Figure 2. An alternative way is to form
a full-connected neural network using the weights of the
convolutional layers in Figure 2 and input the previously
decoded Ci,j pixels to this network. Either method will give
the same result.

Notice that the decoding process does not need to be
sequential for all pixels in the image. Many pixel groups can
be identified for which the pixels can be processed in parallel
with the neural network. All pixels for which the Ci,j have
been decoded can be processed in parallel. Since we kept the
receptive field of the neural network (i.e. Ci,j) small, a great
deal of parallelization is possible. The numbers in Figure 3
indicate the order in which the pixels are decoded by the
decoder and the pixels which have the same color can be
processed in parallel by the neural network. As an example,
consider an image with D x D resolution. For a fully sequential
decoder, each pixel is processed sequentially and it takes D2

forward passes to decode the entire image. The parallelization
method in Figure 3, which has been used in many applications
and is also called parallel wavefront decoding in the HEVC
video compression standard [22], [23], reduces number of
passes from D2 to:

T = D + (D − 1)(h+ 1) (6)

where h is an integer related to the kernel size K = 2h+ 1.

Fig. 3. Decoding order of pixels with the wavefront parallel decoding method
for kernel size 5x5.

The wavefront parallel decoding method can be further
improved by compromising the use of some of the neighboring
pixels. The diagonal parallel decoding method shown in Figure
4 can decode all pixels along a diagonal in parallel. The
number of passes reduce to

T = 2D − 1. (7)

Fig. 4. Decoding order of pixels with the diagonal parallel decoding method.

The diagonal parallel decoding method increasing paral-
lelization but compromises compression performance since
some neighbor pixels cannot be utilized in this parallelization
method. As shown in Figure 5, three pixels in the upper
diagonal (shown in green) can not be used as they are not yet
decoded and their values are simply copied from the yellow
pixel in the figure.

Fig. 5. Unavailable neighbor pixels (green pixels) for the diagonal parallel
decoding method.

Finally, note that if a parallel decoding method is to be used,
the encoder needs to be aware and its entropy coder needs to
encode the pixels in the order the parallel decoding method
will decode.

IV. EXPERIMENTAL RESULTS

This section provides experimental results including com-
pression performance results, encoding/decoding times, com-
putational complexity estimate and an ablation study.
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A. Experimental Setting

The simple neural network in our system is trained with
sub-images obtained from the Open Images training dataset
prepared by the authors of L3C [10]. The Adam optimizer [24]
is used for optimization with a batch size of 64. The learning
rate is initialized as 10−4 and updated by multiplying with
0.99 after every five training epoch. The training takes about
300 epochs and 16.5M iterations. PyTorch [25] framework is
used for both training and testing.

Our system is tested with the test dataset prepared again
by the authors of L3C [10], which includes 500 images. The
arithmetic coder in [26], which runs on the CPU, is used in
our system for encoding to and decoding from a bitstream
during the tests. Note that all neural network operations are
performed on the GPU and the arithmetic coding operations
are performed on the CPU in our tests. Test results are obtained
with a computer which has an NVIDIA GeForce RTX 2080
GPU and Intel i7-9700 CPU. Our codes are available on
Github at the link in [27].

B. Compression Results

The compression performance results for the test dataset
are given in Table I in terms of bpsp (bits per sub-pixel).
The learned pixel-by-pixel lossless image compression (LP-
PLIC) system explored in this paper obtains an average 2.56
bpsp compression performance and outperforms all engineered
codecs, including FLIF, by a significant margin. It also pro-
vides better compression performance than all learned lossless
compression methods, except MSPSM(extra). However this
system requires 9.9M parameters while our system LPPLIC
requires only 59K parameters, which is 168x less.

In summary, the explored LPPLIC system provides very
competitive compression performance with a much simpler
neural network comprising significantly less parameters, in
particular 32x to 1430x less parameters than other learned
systems in Table I.

TABLE I
COMPRESSION RESULTS

Method bpsp Number of
Parameters

Traditional
Methods

PNG 4.01 -
JPEG2000 3.06 -

WebP 3.05 -
FLIF 2.87 -

Learning
Based
Methods

L3C [10] 2.99 5.0 M
IDF [13] 2.76 84.3 M

SREC [11] 2.70 4.2 M
MSPSM(big) [12] 2.63 1.9 M

MSPSM(extra) [12] 2.49 9.9 M
LPPLIC (Our method) 2.56 63.9 K

C. Encoding and Decoding Times

During encoding, since all image pixels are available at the
encoder, all image pixels can be processed in parallel with
a single pass of the entire image through the convolutional
neural network to obtain their probability distribution parame-
ters. The masked convolution ensures that the auto-regressive

dependency on only the left and upper pixels is preserved.
From the obtained probability distribution parameters, cumu-
lative distribution function (CDF) values are calculated for all
pixels (in parallel) and are handed over to the entropy coder
together with the pixel values to be coded. Note that even if a
parallel decoding method is to be used, the encoder can still
do all operations in the same way; only the order of coding
the pixels need to be changed by the entropy coder to match
the order the decoder will need to decode. Hence, practical
encoding times can be achieved with the explored LPPLIC
system as shown in Table II.

TABLE II
ENCODING/DECODING TIMES (SEC) OF OUR METHOD LPPLIC WITH

VARIOUS DECODING METHODS VS L3C AND SREC

Resolution Sequential Wavefront Diagonal L3C[10] SReC[11]
decoding parallel parallel

decoding decoding
64x64 0.08 / 11.57 0.89 / 1.39 0.91 / 1.16 0.14 / 0.11 0.13 / 0.14
128x128 0.24 / 45.94 1.05 / 3.04 1.04 / 2.82 0.16 / 0.13 0.15 / 0.19
256x256 0.53 / 181.13 1.51 / 7.93 1.52 / 7.72 0.24 / 0.20 0.20 / 0.32
512x512 1.64 / 711.03 3.10 / 26.26 3.08 / 27.22 0.49 / 0.54 0.54 / 0.62

Note that a time overhead is observed when the image is
compressed according to the parallel decoding methods as
shown in Table II. Additional time losses occur due to pre-
processing steps being applied at the encoder to correctly
decode the image on the decoder side.

During decoding, processing of all pixels can not be done
in parallel as discussed in Section III-C. Either all pixels
are decoded sequentially or one of the two parallel decoding
methods discussed in Section III-C can be used. For all
decoding methods, the decoding times are given in Table II.
In the sequential decoding method, pixels are decoded one by
one, each requiring one pass through the neural network and
the decoding time becomes quite long, such as 711 seconds
for an 512x512 image. With the wavefront or diagonal parallel
decoding methods discussed in Section III-C, many groups
of pixels can be processed in parallel (which we achieve
by simply combining these pixels and their neighbors in the
batch dimension of tensors) and fewer passes through the
neural network are required leading to significant reduction in
the decoding times. For example, for an 512x512 image, the
decoding times reduce to 26 and 27 seconds with the wavefront
and diagonal parallel decoding methods, respectively.

Table II includes encoding and decoding times also for
L3C [10] and SReC [11] (obtained with our computer using
their shared codes) which are much smaller than those of
LPPLIC. This is due to these systems’ computations being
easily parallelizable on GPU and not requiring evaluations
with neural networks for each pixel to be encode/decoded,
as discussed in Section II-B2. Note that Table II includes
encoding and decoding times for various resolution images in
order to also present how the times change with varying res-
olution. The numbers in the table were obtained by averaging
the encoding/decoding times over ten images.

In summary, the explored LPPLIC method provides (with
our non-optimized simple implementation) encoding times
that are about 6x times longer than the fully parallelized
methods such as L3C and SReC and decoding times that are
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about 42-48x times longer. In applications where state-of-the
art compression performance and orders of magnitude less
parameters and lower neural network complexity are more
important than short encoding/decoding times, the explored
LPPLIC approach can be preferred.

D. Computational Complexity

Since the number of parameters of the neural network in
the explored LPPLIC method is much smaller than other
similar learned systems, such as L3C [10] and SReC [11],
it is also expected that the computational complexity of
compressing/decompressing images with LPPLIC is also much
smaller. To investigate this, the FLOP counter tool in [28] is
used for LPPLIC and L3C and the computational complexity
estimates for encoding/decoding a 512x512 image are given
in Table III. As expected the computational complexity of
LPPLIC is much smaller. Note that despite the longer decoding
times of LPPLIC, it requires significantly less computations.

TABLE III
MAC (MULTIPLY-ACCUMULATE) OPERATIONS ESTIMATE

FOR A 512X512 IMAGE

L3C [10] LPPLIC
Encoding 179.7 GMac 16.9 GMac
Decoding 112.3 GMac 16.9 GMac

E. Ablation Study

An ablation study is performed to present the effects of dif-
ferent hyper-parameters of the LPPLIC system and associated
neural network on compression performance and number of
parameters. The hyper-parameters of the LPPLIC system that
was used to present the compression and encoding/decoding
time results in the previous two sub-sections, which were given
in Figure 2 and are repeated in Table IV, are analyzed for
their effect on compression performance and parameter size.
In the analyses below, only the discussed hyper-parameter is
modified while the remaining ones are kept as in the Table
IV.

TABLE IV
HYPER-PARAMETERS IN THE MODEL

Hyper-parameter
Probability distribution Gaussian Mixture Model

# mixtures 3
# filters in CNN layers 128

# CNN layers 5

1) Probability distribution model: A common alternative
to the used Gaussian Mixture Model is the Logistic Mixture
Model where the logistic cumulative distribution function is
given below and µ and s are the mean and scale parameter of
the logistic distribution.

Fx(x; µ, s) =
1

1 + e−
x−µ
s

(8)

The Logistic and Gaussian probability distributions are similar
in shape, and no major difference is expected in terms of

compression results. As a result of the experiment, it was
observed that using the Gaussian distribution resulted in a
slightly better compression results as shown in Table V.

TABLE V
THE EFFECT OF DIFFERENT PROBABILITY DISTRIBUTIONS

Gaussian Logistic
bpsp 2.563 2.607

2) Number of mixtures: The number of mixtures used in
the Gaussian Mixture Model is an important parameter of
the probability distribution. It can be seen from the results
in Table VI that increasing the number of mixtures beyond 3
does not significantly improve the compression performance.
The number of trainable parameters is also given in the table.
The number of mixtures increases the number of parameters
of only the final convolutional layer and does not significantly
change the number of parameters of the overall neural net-
work. Based on these results, a mixture size of K = 3 was
used in the experimental results.

TABLE VI
THE EFFECT OF NUMBER OF MIXTURES IN GMM

Number of mixtures K=3 K=5 K=7
bpsp 2.563 2.548 2.545

# parameters 58917 62013 65109

3) Number of filters in CNN layers: In order to analyze the
number of filters in CNN layers on compression performance,
experiments with different number of filters were performed.
Based on the obtained results in Table VII, increasing the
number of filters does improve compression performance with
diminishing gains but the number of parameters of the neural
network increases more significantly (since the number of
parameters increases with the square of the number of filters as
a rough estimate.) Based on these results, C=128 filters were
used in the experimental results. Note that if the number of
parameters or computational complexity of the neural network
is highly important for an application, smaller number of
filters such as C=64 can also be used at the expense of some
reduction in compression performance.

TABLE VII
THE EFFECT OF NUMBER OF FILTERS IN CNN LAYERS

Number of filters C=64 C=128 C=192
bpsp 2.619 2.563 2.529

# parameters 17189 58917 125221

4) Number of layers in CNN: In order to analyze the
number of layers in the CNN on compression performance,
experiments with different number of layers were performed.
Based on the obtained results in Table VIII, L = 5 layers
were chosen for a reasonable balance between compression
efficiency and number of parameters.

V. CONCLUSIONS

This paper presented a learned lossless image compression
method with pixel-by-pixel processing. The probability distri-
bution of each pixel was obtained by processing a small causal
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TABLE VIII
THE EFFECT OF NUMBER OF LAYERS IN CNN

Number of CNN layers L=4 L=5 L=6
bpsp 2.572 2.563 2.543

# parameters 42405 58917 75429

neighborhood of it (i.e. few previously encoded/decoded left
and upper pixels) with a simple neural network, which
could then be used by an arithmetic encoder/decoder to
encode/decode the pixel. It was shown that a simple neural
network comprising only 59K parameters was sufficient to
obtain state of the art compression performance in this system.
Other learned lossless compression systems in the literature
achieved similar or inferior compression performance with
number of parameters that are at least 30x-1000x more.
While the pixel-by-pixel processing causes the decoder to
operate sequentially, i.e. the neural network has to be evaluated
for each pixel sequentially, which increases decoding time
significantly, parallelization methods were proposed – thanks
to the small receptive field of the used neural network –
and the decoding times were reduced to more reasonable
levels. Overall, compared to the literature, better compression
performance with a significantly smaller neural network and
computational complexity was achievable at the expense of
increased decoding times due to the decreased parallel com-
putational capabilities of the pixel by pixel processing method.
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