
Multimedia Tools and Applications (2024) 83:26131–26158
https://doi.org/10.1007/s11042-023-16405-7

Local look-up table upsampling for accelerating image
processing

Teppei Tsubokawa1,4 · Hiroshi Tajima2,4 · Yoshihiro Maeda3 ·
Norishige Fukushima4

Received: 9 April 2022 / Revised: 29 May 2023 / Accepted: 21 July 2023 /
Published online: 28 August 2023
© The Author(s) 2023

Abstract
The resolution of cameras is increasing, and speedup of various image processing is required
to accompany this increase. A simple way of acceleration is processing the image at
low resolution and then upsampling the result. Moreover, when we can use an additional
high-resolution image as guidance formation for upsampling, we can upsample the image
processing results more accurately. We propose an approach to accelerate various image pro-
cessing by downsampling and joint upsampling. This paper utilizes per-pixel look-up tables
(LUTs), named local LUT, which are given a low-resolution input image and output pair.
Subsequently, we upsample the local LUT. We can then generate a high-resolution image
only by referring to its local LUT. In our experimental results, we evaluated the proposed
method on several image processing filters and applications: iterative bilateral filtering, �0
smoothing, local Laplacian filtering, inpainting, and haze removing. The proposed method
accelerates image processing with sufficient approximation accuracy, and the proposed out-
performs the conventional approaches in the trade-off between accuracy and efficiency. Our
code is available at https://fukushimalab.github.io/LLF/.

Keywords Joint upsample · Local LUT · Acceleration

1 Introduction

Imaging applications improve the quality of photographs using various techniques, such as
noise removal [5], outline emphasis [3], high dynamic range imaging [12], haze removing [25],

B Norishige Fukushima
fukushima@nitech.ac.jp

1 DENSO Cooporation, Showa-cho 1-1, Kariya 448-8661, Aichi, Japan

2 Canon Inc., Simomaruko 3-30-2, Ohota-ku 146-8501, Tokyo, Japan

3 Department of Electrical Engineering, Tokyo University of Science, 6-3-1, Niijuku,
Katsuhika-ku 125-8585, Tokyo, Japan

4 Department of Engineering, Nagoya Institute of Technology, Showa-ku, Gokiso-cho,
Nagoya 466-8555, Aichi, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-16405-7&domain=pdf
http://orcid.org/0000-0001-6919-637X
http://orcid.org/0000-0001-8320-6407
https://fukushimalab.github.io/LLF/

26132 Multimedia Tools and Applications (2024) 83:26131–26158

stereo matching [28, 40], free-viewpoint imaging [30], and depth map enhancement [41].
These applications uses edge-aware filters, including bilateral filtering [54], non-local means
filtering [5], discrete cosine transform (DCT) filtering [62], BM3D [11], guided image fil-
tering [26], domain transform filtering [19], adaptive manifold filtering [20], local Laplacian
filtering [45], weighted least square filtering [33], and �0 smoothing [59]. However, these
filters have high-computational costs.

Each filter has its own acceleration methods, such as bilateral filtering [1, 6–8, 12, 18, 22,
38, 39, 46–48, 60], non-local means filtering [1, 14], local Laplacian filtering [2, 49], DCT
filtering [13, 15], guided image filtering [16, 24, 44] and weighted least square filtering [43].
Each approach successively accelerates filtering; however, the computational time of these
filters also depends on image resolution. Image sizes are rapidly increasing (for example,
smartphones already have 12-Megapixel cameras). Such high-resolution images requiremore
acceleration techniques, regardless of the image size or filtering algorithm.

Some acceleration techniques were proposed for general image processing. A simple
approach is to process images at low resolution by downsampling an image, processing the
image, and upsampling the result. This solution accelerates various types of image processing
and dramatically reduces processing time; however, the approximated accuracy is also sig-
nificantly decreased. The downsampling loses significant details (such as edges) in images;
hence, the resulting images also lose the information. Therefore, upsampling must restore
the information lost during the downsampling to improve the approximation accuracy.

Sophisticated upsampling methods use a high-resolution image as a guidance signal.
Kopf et al. [31] proposed joint bilateral upsampling (JBU), which uses bilateral weights [54]
for upsampling. Liu et al. proposed joint geodesic upsampling (JGU) [37], which uses the
geodesic distance for bilateral weights instead of using the Euclidean distance. JBU and
JGU work well for smoothed output images but are unsuitable for edge-enhanced output.
Fukushima et al. [17] use non-local weight [5] for application-specific upsampling of depth
map upsampling, i.e., highly smoothed cases.

He and Sun [24] proposed guided image upsampling (GIU), which computes the
coefficients of a linear transformation—the guided image filter’s coefficient [26]—at the
downsampled domain, and then, the coefficients are upsampled. Finally, the upsampled
coefficients transform the high-resolution input image into the approximated output. GIU
can handle the linear relationship between input and output images. GIU is suitable for
enhanced images but not better than JBU in smoothed cases.

Chen et al. [9] proposed bilateral guided upsampling (BGU), which obtained the output
intensity by an affine transformation of the input intensity using the bilateral space [4]. BGU
is well-balanced in both smoothed and enhanced cases; however, its computational cost is
higher than JBU and GIU. BGU can capture a piece-wise linear relationship between input
and output images. Chen et al. [10] proposed an acceleration method of image processing
with a fully convolutional network (CNN). This approach has high approximation accuracy
with fast computational time and can be used for various image processing applications.
However, it requires enormous datasets for training and tuning the parameters.

Approximation accuracy and computational cost are essential trade-offs, and supporting
a wide range of applications is also crucial. Also, learning-based methods require enormous
learning for a general acceleration of image processing; thus, non-learning-based methods
are preferred. In this study, we propose a new upsampling method that can support a wide
range of image processing applications and is not based on machine learning. Figure 1 shows
an overview of our method. First, we apply image processing in the downsampled domain for
acceleration. Next, we generate a per-pixel look-up table (LUT) using the correspondence
between a low-resolution input image and a low-resolution output image. Finally, we convert

123

Multimedia Tools and Applications (2024) 83:26131–26158 26133

Fig. 1 Local LUT upsampling: An input image is downsampled. Subsequently, the downsampled image is
smoothed by arbitrary image processing. Next, we create per-pixel LUTs (LUT tensor) using the correspon-
dence between the subsampled input and the output images. Finally, we convert the input image into the
approximated image by referring to and upsampling the local LUT tensor

the high-resolution input image into the high-resolution output image. We call it the local
LUT upsampling (LLU).

The main contributions of this study are as follows:

• The proposed method can capture a non-linear relationship between input and output
images by LUT, covering a broad range of applications.

• We investigate various local LUT manipulation methods (building LUTs, boundary con-
ditions of LUTs, quantization, and interpolation of LUT).

• We show the connection between the proposed and conventional methods: joint bilateral
upsampling, guided image upsampling, and bilateral guided upsampling.

This paper is an extended version of our conference papers [50, 51]. In the building LUT
process, dynamic programming (DP) and winner-take-all (WTA) approaches, which are
reviewed in Sections 3.2.1 and 3.2.2, were introduced in [50]. Moreover, the 0–255 boundary
condition, which is shown in Section 3.3, was introduced in [50]. An accelerated building
LUTprocess for theWTAstrategy,which is reviewed in Section 3.2.3, was introduced in [51].

The newly proposed parts are as follows: This study generalizes the accelerated the WTA
approach to the �n norm minimization approach, which is shown in Section 3.2.3. Further-
more, we introduce an offset map for quantization in the building process. We add various
boundary conditions: min-max, replication, and linear. For LUT upsampling, previous meth-
ods [50, 51] used linear and cubic upsampling. In addition, this study also uses box andGauss
upsampling. Moreover, this study shows the relationship between the proposed method and
the conventional upsamples; JBU, GIU, and BGU. Finally, we optimize the code for our
method by using AVX/AVX2, a vectorization instruction set in CPU, which is almost ×10
faster than the conference version. These factors are newly verified in Section 5.

123

26134 Multimedia Tools and Applications (2024) 83:26131–26158

2 Acceleration by downsampling and upsampling

This section reviews accelerating methods of image processing by processing an image in
the downsampled domain and then upsampling it. Let I and J be input and output images,
respectively. Each image I, J : S �→ R is a D-dimensional R-tone gray/color image, where
S ⊂ Z

D and R ⊂ Z
{1,3} denote the spatial domain and the range domain (generally, D=2

and R=256), respectively. An image processing J=F(I) can be approximately accelerated
by downsampling and upsampling. An approximated output J̃ : S �→ R is defined by:

J̃ = F(I↓)↑, (1)

where ↓ is a image downsampling operator, and ↑ is an upsampling operator.
The image processing cost depends on the image size; thus, downsampling accelerates

the speed. We can define an acceleration ratio of A for image processing:

A = CF

CD + CU + CS
, (2)

whereCF andCS are processing costs of the full-sample and downsampled domains, respec-
tively.CD andCU are downsampling time and upsampling time, respectively. The processing
is accelerated when the total time of CD,CU , and CS is shorter than CF . CS depends on
the downsampled image size, and CD and CU depend on the downsampling and upsampling
methods. Smaller-size processing can be accelerated more, but it requires more sophisticated
upsampling for accurate approximation.

There are various upsampling [34, 64, 65] and single-image super-resolutionmethods [32,
53]. These approaches upsample a low-resolution input image to a high-resolution image.
By contrast, joint upsample methods [4, 9, 10, 17, 24, 31, 37, 61] have better performance
when we can use an additional high-resolution guidance image for upsampling.

Joint bilateral upsampling [31] and joint geodesic upsampling [37] work well for smooth
images. Depth map upsampling [17, 61] is a particular case of smooth upsampling. Guided
image upsampling [24] and bilateral guided upsampling [4, 9] can support various types of
image processing. CNN-based upsampling [10] also supports various applications.

This study develops a joint upsampling method, which supports a wide range of image
processing applications and is not based on machine learning.

3 Proposedmethod

3.1 Concept of local LUT

We typically use a LUT for all pixels in the LUT-based image intensity transformation (such
as contrast enhancement, gamma correction, and tone mapping). We call this global LUT.
The global LUT can represent any point-wise operations, and the LUT can be precomputable.
However, this approach cannot represent area-based operations like image filtering.

By contrast, our approach generates per-pixel LUTs, called local LUT. The local LUT
maps each pixel value of an input image to that of an image processing result pixel-by-pixel.
The local LUT T p ⊂ R at a pixel p ∈ S has the following relationship between an input
pixel value I p and an output value J p:

J p = T p[I p], (3)

123

Multimedia Tools and Applications (2024) 83:26131–26158 26135

where T p[·] is the LUT reference operation. When we have image processing output, we can
easily generate local LUTs and transform the input image into the image processing result by
referring to the local LUTs. However, there is a contradiction: the output image is required
for generating the output image itself. Therefore, we generate a local LUT for acceleration
in the downsampled image domain. The proposed method generates per-pixel LUTs from
the correspondence between a low-resolution input image and its processing result.

The local LUT for each pixel is created from the neighboring pairs’ relationship around
a target pixel between a low-resolution processed image and a downsampled input image.
Intensities around the neighboring region have high correlations. Moreover, the correlation
between the processing output and the input image is high. Therefore, we aggregate the
mapping relationship around neighboring pixels.

Figure 1 shows the flowchart of our method. First, we downsample the input high-
resolution image I to the input low-resolution image I↓:

I↓ = Ss(I), (4)

where Ss(·) represents the subsampling operator for the spatial domain. Subsequently, we
apply image processing for I↓ and then obtain the low-resolution output J↓. The process is
represented as follows:

J↓ = F(I↓), (5)

where F(·) is a function of arbitrary image processing.
Next, we generate a local LUT on a pixel from the correspondence between I↓ and J↓.

Let p↓ be the target pixel position in the downsampled images I↓ and J↓, respectively. The
local LUT at p↓ is defined as follows:

T p↓ = L(I↓, J↓, p↓,W p↓), (6)

where L(·) is a generating function of the local LUT reviewed in Section 3.2, and W p↓ is a
set of neighboring pixel around p↓.

Moreover, we consider quantizing the intensity to trim the LUT’s size. A quantized inten-
sity ˆIp↓ ∈ R is defined as follows:

Î p↓ = �I p↓/a	, (7)

wherea is a quantization parameter. The output of the localLUThas L = �256/a	 ∈ N levels.
We call the number of intensity candidates as the number of bins. The intensity quantization
accelerates its speed but decreases the approximation accuracy according to the quantization
parameter a.

Thus, we introduce an offset map to compensate for the degraded intensity. The offset
map has quantization errors in the downsampled input image. The offset map O p↓ ∈ R is
defined as follows:

O p↓ = I p↓ − (a Î p↓). (8)

The offset map is used to compensate for the output quantization error. For example, the
original input intensity I p↓ ∈ R is restored as follows:

I p↓ = �a Î p↓ + O p↓	. (9)

Furthermore, the offset map reconstructs the local LUT reviewed in Section 3.5.

123

26136 Multimedia Tools and Applications (2024) 83:26131–26158

3.2 Generating local LUT

We generate the local LUT for each pixel by aggregating neighborhood correspondences
between the downsampled input and the downsampled output intensities.

Figure 2 shows a scatterplot of intensity pairs between a local patch of an input image and
a processed image. The correspondence plot roughly represents the local LUT relationship,
but there are two problems: multiple output candidates and gaps. LUT requires one-on-
one mapping for each input and output intensity; however, this scatterplot has one-on-zero
or one-on-n matching. To solve these problems, we introduce three approaches: dynamic
programming, WTA, and �n approaches.

3.2.1 Dynamic programming (DP)

In the DP approach, we generate a local LUT based on an appearance frequency of the
correspondence between the input and output intensities in the neighboring pixel set, W p↓ ,
which has sampled pixels in a rectangle window centered at p↓ and its size is (2r + 1) ×
(2r + 1), r = 1, 2, 3, 4, 5, typically. In the r = 1 case, the set W p↓={ p↓+(−1,−1), p↓+
(0,−1), p↓+(1,−1), p↓+(−1,0), p↓+(0,0), p↓+(1,0), p↓+(−1,1), p↓+(0,1), p↓+(1,1)}.
We introduce a frequencymap f p↓ , which counts the number of times an intensity pair appears
between the input and output intensity in the neighboring pixel set. f p↓ is defined by

f p↓(s, t) =
∑

q↓∈W p↓

δ(Îq↓, s)δ(Ĵq↓ , t), (10)

where δ denotes the Kronecker delta function. The variables s ∈ R and t ∈ R are input
and output intensities, respectively. Subsequently, we apply DP using the frequency map as

Fig. 2 Problems with generating a local LUT: a scatterplot for correspondence between input and output
subsampled images in a local window. The scatterplot almost represents the LUT for mapping input to output.
However, there are two problems: gaps and multiple-output candidates

123

Multimedia Tools and Applications (2024) 83:26131–26158 26137

a cost function. DP determines the output intensity for all input intensity ranges. Therefore,
this approach can solve both problems (multiple candidates and gaps).

Algorithm 1 represents DP. In our DP approach, we will find a path from f p↓(0, 0)
to f p↓(L − 1, L − 1). The path increases monotonically and prefers diagonal connection,
which increases 1 both the x and y axis, e.g., from f (0, 0) to f (1, 1) and f (100, 150) to
f (101, 151). First, the frequencymap is initialized as 0. Next, we count the frequencymap in
the setW p↓, where the size is N = (2r +1)2. Then, we aggregate the frequency map through
the three types of connection: horizontal, vertical, and diagonal connection. For example, the
horizontal connection is like f (0, 0) to f (1, 0) and the vertical connection is like f (0, 0)
to f (0, 1). We compute boundary case such as f (0, ∗) or f (∗, 0), where * indicates wild
card. Then we start the main recursive loop. In the loop, we find the max value of f in the
3 connection types. We give priority to diagonal connections. Parameter P in this algorithm
represents an offsetting penalty to enforce a diagonal connection between LUT gaps. After
filling the cost function, we trace back the function to determine a LUT from f (L−1, L−1).

The value from the traceback determines the output value in a LUT.

Tp↓ [s] = DP(f p↓(s, t), s, t,P). (11)

Note that this approach ensures monotonicity in the local LUT.

3.2.2 Winner-take-all (WTA)

The second solution is the WTA approach in Algorithm 2. In this approach, we generate the
local LUT based on the appearance of frequency as described in DP, and the output value of
T p↓ is determined as the most frequent intensity in the output image for intensity s in the
input image:

Tp↓[s] = arg max
t

f p↓(s, t). (12)

This approach can solve the multiple-candidate problem; however, the problem with LUT
gaps remains. We linearly interpolate the LUT along the gap by Interpolate(·) in Algorithm
2, which is discussed in Section 3.3.

3.2.3 �n Normminimization

DP and WTA require a frequency map, i.e., a 2D histogram. The number of elements in the
map is L2, where L is the number of bins. In the no-quantization case, L = 256, we should
initialize 65536 elements in a frequency map by zero for each pixel. By contrast, the local
window size is (2r + 1)× (2r + 1), and typically r = 2, 3, 4, 5; thus, the initialization of the
frequency map is the dominant processing. Moreover, the memory access cost for a massive
array is higher than the arithmetic operation costs in current computers [23]. Thus, generating
such a large frequency map could be more efficient.

The �n norm minimization approach solves this problem. When we have multiple candi-
dates, we adopt the pixel intensity with the nearest position from the local window’s center
(instead of the maximum counts used in WTA).

Tp↓[s] = Î arg min
q↓∈W p↓

‖ p↓−q↓‖n . (13)

Algorithm 3 shows the process, where sort(W p↓,distance) indicates sorting the array of
neighboring set W p↓ in descending order by �n norm keying. In this study, we implemented

123

26138 Multimedia Tools and Applications (2024) 83:26131–26158

Algorithm 1 : DP approach.
Input: I↓, J↓, p↓, W p↓, P
Output: T p↓[s]
Initialization: N = (2r + 1)2

Initialization: L = the number of bins
Initialization: f p↓ (s, t) = 0 |∀s,t
Let q↓ be a neighborhood pixel ({q1↓, · · · , qN↓} ∈ W p↓)
for n = 1 to N do //(1) count up frequency

f p↓(Î qn↓ , Ĵ qn↓) = f p↓(Î qn↓ , Ĵ qn↓) + 1
end for
for i = 1 to L − 1 do //(2) left and bottom boundary loop

f p↓(i, 0) = f p↓(i, 0) + f p↓(i − 1, 0)
f p↓(0, i) = f p↓(0, i) + f p↓(0, i − 1)

end for
for s = 1 to L − 1 do //(3) main recursive loop

for t = 1 to L − 1 do
C1 = f p↓(s − 1, t − 1) + P
C2 = f p↓(s − 1, t)
C3 = f p↓(s, t − 1)
f p↓(s, t) = max(C1,C2,C3) + f p↓(s, t)
index(s, t) = arg max

m∈{1,2,3}
Cm

end for
end for
s = L − 1, t = L − 1
while s ≥ 0 and t ≥ 0 do //(4) trace back

T p↓[s] = t
if index(s, t) == 1 then

s = s − 1, t = t − 1
else if index(s, t) == 2 then

s = s − 1
else if index(s, t) == 3 then

t = t − 1
end if

end while

�1, �2, and �∞ norm approaches, i.e.,Manhattan, Euclidean, andChebyshev distances. The �n
norm approach can directly compute a local LUT for a pixel without counting the frequency
map. We can determine the LUT by scanning the local window at once. Moreover, we scan
pixels in the presorted order from the pixel farther from the center pixel in the local window
andoverwrite the output intensity,which has already been defined in the local LUT.Therefore,
we can determine a local LUT without comparing distances.

However, the problem with LUT gaps remains (as in the WTA approach); thus, the �n
norm approach also needs interpolation.

3.3 Interpolation and boundary conditions of local LUT

WTAand �n norm approaches can solve the problemwithmultiple candidates; however, gaps
remain. We interpolate the gaps in a local LUT by linear interpolation. Linear interpolation
needs two samples. However, there are usually no samples outside of LUT. Thus, boundary
regions require extrapolation.

In this section, we implement four extrapolation approaches to determine the boundary
conditions. For simplicity, we assume that there is no quantization, i.e., a = 1.

123

Multimedia Tools and Applications (2024) 83:26131–26158 26139

Algorithm 2 : WTA approach.
Input: I↓, J↓, p↓, W p↓
Output: T p↓[s]
Initialization: N = (2r + 1)2

Initialization: L = the number of bins
Initialization: f p↓(s, t) = 0 |∀s,t
Let q↓ be a neighborhood pixel ({q1↓, · · · , qN↓} ∈ W p↓)
for n = 1 to N do

f p↓(Î qn↓, Ĵ qn↓) = f p↓(Î qn↓, Ĵ qn↓) + 1
end for
for s = 0 to L − 1 do

T p↓[s] = arg max
t

f p↓(s, t)

end for
for s = 0 to L − 1 do

if T p↓[s] == 0 then
Interpolate(T p↓[s])

end if
end for

Algorithm 3 : �n norm approach.
Input: I↓, J↓, p↓, W p↓, n
Output: T p↓[s]
Initialization: N = (2r + 1)2

Initialization: L = the number of bins
Let q↓ be a neighborhood pixel ({q1↓, · · · , qN↓} ∈ W p↓)
for i = 1 to N do

distance[i] = ‖ pi↓ − qi↓‖n //computable in advance
end for
sort(W p↓, distance) //computable in advance

for i = 1 to N do //sorted order loop
Tp↓[Îqi↓] = Ĵqi↓ //overwrite without comparison

end for
for s = 0 to L − 1 do

if T p↓[s] == 0 then
Interpolate(T p↓[s])

end if
end for

The first method is the 0–255 boundary. We set both ends of the local LUT to 0 and 255.
Subsequently, we apply linear interpolation for the location where the output intensities are
not defined:

{
T p↓[0] = 0

T p↓[255] = 255.
(14)

The second method is the min-max boundary. We set both ends of the local LUT to the
minimum and maximum values in the local window. Next, we apply linear interpolation:

⎧
⎪⎨

⎪⎩

T p↓[0] = min
q↓∈W p↓

Jq↓

T p↓[255] = max
q↓∈W p↓

Jq↓.
(15)

123

26140 Multimedia Tools and Applications (2024) 83:26131–26158

The third method is the replication boundary. This method replicates the minimum and
maximum intensity, which are both edges of sampled points in a local LUT, in the local
window from both edges of the LUT, i.e., 0 and 255, to the edge of the sampled points.
Moreover, the minimum or maximum intensities are controlled by an offset value O:

{
T p↓[l] = T p↓[Imin

p↓] − O (l ≤ Imin
p↓ })

T p↓[l] = T p↓[Imax
p↓] + O (l ≥ Imax

p↓),
(16)

where Imin
p↓ = min

q↓∈W p↓
Iq↓, Imax

p↓ = max
q↓∈W p↓

Iq↓.

The fourth method is the linear boundary. We compute a gradient from the minimum and
maximum values of the input intensity in the local window. Next, we define both ends of the
local LUT based on this gradient. Finally, we apply linear interpolation:

{
T p↓[0] = T p↓[Imin

p↓] − d · Imin
p↓

T p↓[255] = T p↓[Imax
p↓] + d · (255 − Imax

p↓)).
(17)

The gradient of d is computed as follows:

d = T p↓[Imax
p↓] − T p↓[Imin

p↓]
Imax
p↓ − Imin

p↓
, (18)

These four methods solve the problem of LUT gaps. Figure 3 shows the gap-filled results
of a local LUT for various combinations of LUT methods and boundary conditions.

3.4 Smoothing local LUT

After solving the problems with multiple candidates and gaps in the local LUT, we smooth
the LUT by moving average filtering. The smoothed LUT T ′

p↓[l] at level l is defined as
follows:

T ′
p↓[l] = 1

|M |
∑

m∈M
T p↓[l + m], (19)

where M ⊂ Z is smoothing region, and |M | is its size.
The smoothing is an optional method. We use T instead of T ′ as the smoothed LUT from

the next section for simplicity.

3.5 Upsampling of local LUT

The generated local LUT has three-dimensional information: intensity level n and pixel
position p = (x, y). All LUT elements are subsampled. Therefore, we upsample the local
LUT in the spatial and intensity domain. The upsampling for the local LUT is defined as
follows:

T̃ = S−1
c (S−1

s (T↓)), (20)

where T̃ : S × R �→ R and T↓ : S × R �→ R are tensors, which contain local LUTs for
each pixel. S−1

c (·) and S−1
s (·) are tensor upsampling operators for the intensity and spatial

domains of the tensors, respectively. We use linear interpolation by adding the offset map

123

Multimedia Tools and Applications (2024) 83:26131–26158 26141

Fig. 3 Scatterplot of input and output values (local Laplacian filtering), and the results of each approach for
generating local LUT on p. The radius of the local window is r = 2

for intensity domain upsampling. Moreover, we use four upsampling methods for the spatial
domain: bi-linear, bi-cubic, box, and Gaussian upsampling.

We can reconstruct the output image by upsampling the tensor by (3) and referring to the
tensor by (20). However, reconstructing the full LUT tensor implies redundant computations.
We can narrow down the problem by computing the LUT values referred to the input image.

Let J̃p ∈ R be an approximated output value at p. Given an input image I p, the image is
quantized by a; Î p. We compute two spatial tensor upsampling results S−1

s , i.e., lLp ∈ R and

123

26142 Multimedia Tools and Applications (2024) 83:26131–26158

lHp ∈ R, for intensity interpolation S−1
c . The partial upsampling for a tensor T : S×R �→ R

is defined as follows:

lLp = η
∑

q↓∈� p↓
w p↓,q↓(aTq↓[Î p] + Oq↓), (21)

lHp = η
∑

q↓∈� p↓
w p↓,q↓(aTq↓[Î p + 1] + Oq↓), (22)

η = 1∑
q∈� p↓w p↓,q↓

, (23)

J̃p = round

(
I p − a Î p

a
lLp + a(Î p + 1) − I p

a
lHp

)
, (24)

where � p↓ is a position set of referred local LUTs for upsampling, Oq↓ is an offset value, w
is a spatial weight function, and η is its normalization term. The spatial weights are defined
by each method: bi-linear, bi-cubic, box, and Gauss. Bi-linear and bi-cubic methods are well
known; thus, we introduce only the box and Gauss methods in this paper. Box upsampling

weight is w p,q = 1/ | � p |. Gaussian upsampling weight is w p,q = exp(−‖ p−q‖2
2σ 2).

4 Relationship to guided image upsample, bilateral guided upsample,
and joint bilateral upsample

We review the relationship between the proposedmethod and the following conventional joint
upsampling methods: guided image upsampling [24, 26], bilateral guided upsampling [9],
and joint bilateral upsampling [31].

First, we review guided image upsampling (GIU) [24, 26]. GIU is a local linear transfor-
mation of an input image, which is defined as

J̃p = α↓↑ p I p + β↓↑ p, (25)

where α↓↑ p and β↓↑ p are upsampled coefficients for the linear transformation. The com-
puting method of these coefficients is written in [24, 26]. Equation (25) means that the
local coefficients linearly transform input intensities. The transformation is conducted by
the proposed local LUT upsampling method if we compute linear fitting or least squares for
scatterplots obtained when building LUT. After fitting, LUTs become linear transformation
functions.

Bilateral guided upsampling [9] is an extension of GIU. For simplicity, we assume that
the range kernel of the bilateral part in BGU is a box kernel, while the original study used a
Gaussian kernel. BGU divides the input image by the intensity level and then applies guided
image upsampling for each level. BGU is defined by

J̃p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α0↓↑ p I p + β0↓↑ p (l0 ≤ I p < l1)

α1↓↑ p I p + β1↓↑ p (l1 ≤ I p < l2)

· · ·
αn↓↑ p I p + βn↓↑ p (ln ≤ I p < ln+1)

, (26)

where ln = R/NBGU · n, R is the number of intensity levels, NBGU is the number of
divisions of range dimension for BGU. αn↓↑ p and βn↓↑ p are coefficients for each level n. BGU

123

Multimedia Tools and Applications (2024) 83:26131–26158 26143

is a piece-wise linear transformation for each divided level. Our method also realizes BGU
if we compute linear fitting or least square for scatterplots divided by each level.

GIU and BGU can be represented by (3). By contrast, we cannot directly represent joint
bilateral upsampling (JBU) [31] by our local LUT due to JBU’s normalization factor. The
normalization factor is changed by input pixel position p; thus, we should prepare local
LUTs per pixel position of the high-resolution image. The position adaptive LUT Tp,q↓[i] is
defined as follows:

Tp,q↓[i] = exp(
‖Iq↓−i‖2

−2σ 2)Jq↓
∑

r∈� p
exp(‖I r↓−i‖2

−2σ 2)
. (27)

If we switch the local LUT per high-resolution pixel position p, we can represent JBU by
local LUT. However, the size of the local LUT is huge. The size will be | I | times the
original, where | I | is the input image size.

5 Experimental results

Weevaluated the proposedmethodon three image processingfilters and two image processing
applications: iterative bilateral filtering (IBF) [54], �0 smoothing (�0) [59], local Laplacian
filtering (LLF) [45], haze removing (HR) [25], and additionally inpainting [52].

First, we analyzed the effect of changing the proposed method’s parameters and set-
tings. Next, we compared the proposed method of the local LUT upsampling (LLU) with
the conventional upsampling methods: cubic upsampling (CU), joint bilateral upsampling
(JBU) [31], guided image upsampling (GIU) [24], and bilateral guided upsampling (BGU) [9]
by approximation accuracy and computational time. We used the peak-signal-to-noise ratio
(PSNR) for accuracy evaluation and regarded the naïve filtering results as the ground-truth
results. We used two datasets, the high-resolution high-precision images dataset (HRHP)
and the Transform Recipes dataset (T-Recipes) [21]. HRHP has seven high-resolution tes-
timages1: artificial (3072× 2048), bridge (2749× 4049), building (7216× 5412), cathedral
(2000 × 3008), deer (4043 × 2641), fireworks (3136 × 2352), flower (2268 × 1512), and
tree (6088 × 4550). T-Recipes includes 143 images with different resolutions, e.g., from
1408×896 to 5760×3840. HRHP dataset is used to verify the parameter and various options
in the proposed method, and T-Recipes dataset is used for comparing various upsampling
methods.

The following parameters were used in image processing applications. For iterative bilat-
eral filtering, iteration = 10, σs = 10, σc = 20, r = 3σs . For �0 smoothing, λ = 0.005 and
κ = 1.5. For local Laplacian filtering, α = 0.5, β = 0.5, σr = 0.3. For haze remove, r = 15,
rmin = 4, ε = 0.6, and haze ratio = 0.1.

We implemented the proposed method and competitive methods2 written in C++ with
OpenMP parallelization and AVX vectorization. For downsampling, we used the nearest-
neighbor downsampling after applying Gaussian filtering. For this downsampling, we used
OpenCV with Intel IPP for operations with the cv::INTER_NN option. Experiments were
performed on Intel Core i7 7700K (4.2GHz 4 cores / 8 threads), and the codewas compiled by
Visual Studio 2022. We used r = 2 for the local patch to generate the local LUT. Moreover,
we set M = 7 for LUT smoothing.

1 http://www.imagecompression.info/test_images
2 GIU is accelerated by [55] from the conference version [51].

123

http://www.imagecompression.info/test_images

26144 Multimedia Tools and Applications (2024) 83:26131–26158

5.1 Comparison of parameters and settings

We evaluated four factors in local LUT upsampling using the HRHP dataset; (1) building
LUT methods, (2) boundary conditions, (3) LUT quantization and offset map, and (4) tensor
upsampling methods:

5.1.1 Building LUT

We evaluated the PSNR accuracy and computational time for each method of generating the
local LUT: DP, WTA, and �n norm. All results are average of seven images in the HRHP
dataset. We used the linear method for boundary conditions and 4 × 4 box upsampling for
upsampling the local LUT.We verified four sampling rate settings: {1/4, 1/16, 1/64, 1/256}.
The 1/4 subsampling rate indicates the width and height of images, which are downscaled
by 1/2 (for example, 1/16 means 1/4 × 1/4).

Table 1 shows PSNR for each filter. PSNR accuracy is almost identical without DP, and
WTA and �2 norm approaches have a slightly higher PSNR.

Table 2 shows the computational time for each method of generating the local LUT only.
�n norm approach is obviously faster than the othermethods. Therefore, the �n norm approach
has the highest performance in terms of accuracy and speed among the compared methods.
�∞ is slightly faster due to its cache efficiency that is near raster-scan order. However, the
difference among �n norm approaches is ignorable.

5.1.2 LUT boundary condition

Table 3 shows PSNR of various image processing methods for each boundary condition. The
sampling rate is 1/4, and the �2 norm minimization approach is used. The replication method

Table 1 Averaged PSNR accuracy [dB] for each local LUTgenerating and image processing (iterative bilateral
filtering, �0 smoothing, and local Laplacian filtering)

Sampling rate DP WTA �1 �2 �∞

iterative bilateral filtering

1/256 26.504 28.860 28.864 28.864 28.860

1/64 27.262 33.037 33.030 33.033 33.022

1/16 27.820 32.517 32.511 32.512 32.510

1/4 28.913 39.167 39.162 39.166 39.146

ell_0 smoothing

1/256 30.302 32.407 32.411 32.412 32.406

1/64 31.357 33.692 33.690 33.691 33.685

1/16 32.824 35.772 35.769 35.771 35.761

1/4 35.024 38.987 38.986 38.990 38.974

local Laplacian filtering

1/256 31.282 32.020 31.997 31.999 31.995

1/64 32.745 33.521 33.532 33.533 33.527

1/16 35.766 38.144 38.169 38.173 38.151

1/4 39.535 42.098 42.090 42.103 42.045

123

Multimedia Tools and Applications (2024) 83:26131–26158 26145

Table 2 Averaged computational time [ms/Mpix] for each method of generating the local LUT

Sampling rate DP WTA �1 �2 �∞

1/256 328.7 143.7 25.2 25.3 24.9

1/64 1209.9 417.2 29.1 29.1 29.0

1/16 4811.3 3846.4 40.6 41.3 40.6

1/4 19201.5 4684.1 80.6 81.0 80.2

The computational time is normalized by 1-Megapixel. The time does not include image processing, such as
iterative bilateral filtering, �0 smoothing, and local Laplacian filtering

is better for flatter images, such as IBF and L0. For sharper images, such as LLF and Haze,
the 0–255 method is better. The linear method is a well-balanced method.

5.1.3 Quantization and offset map

We evaluated the effectiveness of quantization and the offset map. We changed the quanti-
zation level as follows: {16, 32, 64, 128, 256}.

Figure 4 shows PSNRw.r.t. time by changing the quantization level with/without the offset
map. The sampling rate is 1/4 (upsampling level is 4). PSNR is the average of seven images
in HRHP dataset. The computational time is normalized by 1-Megapixel size.

Figure 4 (a) includes iterative bilateral filtering results for PSNR, and its computational
time includes only upsampling, i.e., excluding an acceleration target of image processing and
downsampling processing. The quantization accelerates processing time, and we can obtain
a better trade-off in upsampling with the offset map than without the offset map.

Figure 4(b) shows the total image processing time, which includes downsampling,
upsampling, and image processing of iterative bilateral filtering. The image processing is
cost-consuming; therefore, CU � CS in (2). Note that the full-size processing time of itera-
tive bilateral filtering is about 100 seconds. LUT quantization acceleratesCU shown in Fig. 4
(a), but the effect is ignorable in this case. In this case, no quantization is the best solution.

Figure 4(c) and (d) showmore fast processing ofCS : domain transformfiltering (DTF) [19]
and weighted mode filtering (WMF) [42]. The plots include the time of image processing
of DTF or WMF. Note that the full-size processing time of DTF is 310 ms, and its WMF
is 340 ms. DTF is one of the fast edge-preserving filtering, and weighted mode filtering is
one of the histogram-based filters. In Fig. 4(c), we can control the performance trade-off by
quantization levels and downsampling rate. In Fig. 4(d), we can accelerate processing more
than (c) by quantization because WMF is the histogram-based filtering. The computational
order of the histogram-based filtering depends on the intensity levels; thus, the quantization

Table 3 PSNR accuracy for each boundary condition and image processing (PSNR [dB]/rank): Iterative
bilateral filtering (IBF); local Laplacian filtering (LLF); �0 smoothing (�0); and Haze remove (Haze)

Boundary IBF LLF L0 Haze

Min-Max 38.31/2 38.12/3 35.63/1 37.2/3

0-255 38.03/4 39.62/1 35.36/4 37.64/1

Replication 38.32/1 38.1/4 35.63/1 37.2/3

Linear 38.32/1 39.38/2 35.56/3 37.57/2

123

26146 Multimedia Tools and Applications (2024) 83:26131–26158

accelerates the processing time. The time of most image processing depends only on the
image’s spatial domain, and the usual upsampling accelerates the processing time by the
spatial factor. In contrast, the proposed method can accelerate processing by both spatial and
range domain factors.

5.1.4 Tensor upsampling

Next, we evaluated PSNR and computational time for each method of upsampling the local
LUT. We used the �2 norm approach to build the local LUT and the linear method for the
boundary condition. Table 4 shows PSNR for each method. Gauss64, which is 8 × 8 Gauss
upsampling, has a higher PSNR than the other methods.

Table 5 shows the computational time for each upsampling method for the local LUT.
Moreover, we include the time of the baseline methods. The time is normalized per 1-
Megapixel image size (1024×1024). The computational time for eachupsampling (i.e., linear,
cubic, box, and Gauss) of the local LUT depends on the convolution size for upsampling.
Thus, we denote 2 × 2, 4 × 4, and 8 × 8 convolution for upsampling as LLU4, LLU16, and
LLU64, respectively. Linear and Box4 have the 2 × 2 kernel. Box16, Gauss16, and Cubic
have the 4 × 4 kernel. Gauss64 has the 8 × 8 kernel. Larger size upsampling has higher
upsampling quality than the smaller ones but has lower time performance.

Approximation accuracy deference between box 4× 4 convolution and Gauss 16× 16 is
not considerable, so small size upsampling of the box 4 × 4 tends to be a better trade-off.

Fig. 4 Performance trade-off of local lut upsampling between time and accuracy of PSNR w.r.t. quantization
level. x2 w/o means x2 upsampling without offset map, and x4 w means x4 upsampling with offset map. The
computational time is normalized by 1-Megapixel. The unit of the x-axis for (b) is second, and the others are
milliseconds

123

Multimedia Tools and Applications (2024) 83:26131–26158 26147

Table 4 PSNR accuracy [dB] for each method of upsampling the local LUT (iterative bilateral filtering, �0
smoothing, and local Laplacian filtering)

Sampling rate Linear Box4 Box16 Gauss16 Cubic Gauss64

iterative bilateral filtering

1/256 28.54 28.60 28.86 28.80 28.61 28.96

1/64 32.65 32.73 33.03 32.96 32.69 33.26

1/16 32.24 32.29 32.56 32.43 32.27 32.78

/4 38.82 38.85 39.17 39.12 38.96 39.33

�0 smoothing

1/256 32.12 32.18 32.40 32.36 32.18 32.53

1/64 33.45 33.50 33.69 33.64 33.49 33.81

1/16 35.54 35.58 35.77 35.72 35.58 35.91

1/4 38.77 38.79 38.99 38.97 38.86 39.15

local Laplacian filtering

1/256 31.80 31.85 32.00 31.94 31.75 32.13

1/64 33.31 33.36 33.53 33.49 33.33 33.67

1/16 37.92 37.94 38.17 38.16 38.02 38.26

1/4 41.88 41.88 42.10 42.13 41.98 42.28

5.2 Comparison with other upsampling

Next, we compared the proposed upsampling with conventional methods. In conventional
upsampling methods, we used σs = 10 and σc = 20 for JBU, ε = (5 × 0.0001 × 255)2

for GIU. The number of divisions in the spatial domain of the bilateral grid was 3, and the
number of divisions in the range domain was 8 for BGU. We used 256 bins for the proposed
method, which indicates no quantization for the intensity domain. These parameters were
adopted because their performance was good on average. In this experiment, we use both
HRHP dataset and T-Recipes dataset.

Figure 5 shows PSNR of each acceleration method for iterative bilateral filtering, �0
smoothing, and local Laplacian filtering on HRHP dataset. The proposed LLU had higher
PSNR accuracy than other acceleration methods.

Figure 6 shows the computational time of each acceleration method on HRHP dataset.
The horizontal line of the graph shows the computational time of naïve implementation. The

Table 5 The computational time [ms/Mpix] for each method

Sampling rate LLU4 LLU16 LLU64 CU JBU GIU BGU

1/256 2.88 6.24 25.29 1.12 7.62 16.99 16.77

1/64 5.46 8.97 29.07 1.13 7.72 17.05 20.25

1/16 15.07 19.55 41.31 1.23 8.31 17.94 32.85

1/4 51.38 55.37 80.96 1.73 11.76 22.66 81.75

123

26148 Multimedia Tools and Applications (2024) 83:26131–26158

Fig. 5 Approximation accuracy of PSNR for each acceleration method with changing subsampling rate for
spatial domain on HRHP dataset (generating method: �2 norm; interpolating method: linear)

computational time is an average of 10 trials. Note that the vertical axis of this graph is
logarithmic. CU is the simplest and fastest method, but its accuracy performance is not high.

Figure 7 shows the trade-off between PSNR and the computational time by changing the
subsampling rate for the spatial domain from1/4 to 1/256 onHRHPdataset. The results show
that LLU has the best trade-off performance among the competitive acceleration methods.

Tables 6, 7, 8 show the accuracy results on T-Recipes dataset. The evaluation metrics
are PSNR, SSIM [56], and gradient magnitude similarity deviation GMSD [58]. All results
are average of resulting 143 images in the dataset. The downsampled processing results are
generated from the full sampling result of image processing by downsampling. The proposed
LLU is always the best in the PSNR results (Tab. 6). On the other hand, the SSIM results
(Tab. 7) show that the proposed method is still better in the overall results. However, the
smoothing evaluation (iterative bilateral filtering and �0 smoothing) shows that JBU is often
better in some cases. This is because SSIM prefers smoother images. Although SSIM is a
universal metric for image distortion, current image quality metrics have shown that GMSD
is closer to human subjectivity than SSIM; thus, we next evaluate GMSD. The GMSD results
(Tab. 8) show that the proposed LLU is always the best result.

Figure 8 shows the visual comparison of each image processing and acceleration method.
The proposed method has visually similar to the naïve output for each image processing
application.

5.3 Subjective evaluation

We also performed a subjective evaluation for image quality assessment (IQA).We evaluated
4 image processing methods (IBF, �0, LLF, HR) that were expanded with 5 up-sampling
methods (CU, JBU, GIU, BGU, and proposed LLU). IBF and �0 are smoothing processings,

Fig. 6 Computational time for naïve implementation and each accelerationmethodwith changing subsampling
rate for spatial domain on HRHP dataset (generating method: �2 norm; interpolating method: linear.)

123

Multimedia Tools and Applications (2024) 83:26131–26158 26149

Fig. 7 Changing subsampling rate performance in PSNR w.r.t. the computational time of each acceleration
method on HRHP dataset (generating method: �2 norm; boundary condition: linear)

Table 6 Accuracy comparison (PSNR [dB]) with the other upsampling methods for each sampling rate on
T-Recipes dataset

ratio CU JBU GIU BGU LLU

iterative bilateral filtering

1/4 42.60 45.71 41.27 43.83 49.17

1/16 37.58 43.47 38.29 40.75 44.68

1/64 33.69 40.19 35.62 37.84 40.24

1/256 30.39 36.18 33.30 35.51 36.58

�0 smoothing

1/4 43.81 44.60 41.46 43.05 45.83

1/16 38.03 41.19 38.28 40.19 42.16

1/64 33.56 38.32 35.70 37.81 39.21

1/256 29.94 35.87 33.51 35.81 36.78

local Laplacian filtering

1/4 29.28 26.08 36.19 37.31 39.62

1/16 23.74 24.71 33.41 34.76 36.72

1/64 20.49 23.76 31.01 32.40 34.10

1/256 18.18 22.97 28.69 30.01 31.52

haze remove

1/4 37.09 34.37 47.22 49.52 49.78

1/16 31.35 32.81 43.30 45.18 46.45

1/64 27.84 31.57 38.80 41.02 42.63

1/256 25.25 30.36 34.82 37.71 38.84

average

1/4 38.19 37.69 41.53 43.43 46.10

1/16 32.66 35.54 38.32 40.22 42.50

1/64 28.89 33.46 35.28 37.27 39.05

1/256 25.94 31.34 32.58 34.76 35.93

All 31.42 34.51 36.93 38.92 40.89

Bold font is the best result, and underling is the second best. Higher values are better

123

26150 Multimedia Tools and Applications (2024) 83:26131–26158

Table 7 Accuracy comparison (SSIM)with the other upsamplingmethods for each sampling rate onT-Recipes
dataset. Bold font is the best result, and underling is the second best. Higher values are better

ratio CU JBU GIU BGU LLU

iterative bilateral filtering

1/4 0.9865 0.9934 0.9874 0.9895 0.9961

1/16 0.9627 0.9883 0.9756 0.9780 0.9914

1/64 0.9379 0.9822 0.9584 0.9599 0.9821

1/256 0.9193 0.9722 0.9336 0.9380 0.9641

L0 smoothing

1/4 0.9867 0.9924 0.9851 0.9841 0.9935

1/16 0.9597 0.9834 0.9710 0.9726 0.9853

1/64 0.9282 0.9735 0.9540 0.9601 0.9741

1/256 0.9052 0.9638 0.9364 0.9470 0.9619

local Laplacian filtering

1/4 0.8643 0.7574 0.9795 0.9778 0.9869

1/16 0.6799 0.6819 0.9616 0.9650 0.9753

1/64 0.5324 0.6602 0.9399 0.9492 0.9610

1/256 0.4470 0.6631 0.9144 0.9276 0.9443

haze remove

1/4 0.9388 0.9095 0.9895 0.9966 0.9973

1/16 0.8504 0.8846 0.9831 0.9936 0.9962

1/64 0.7801 0.8783 0.9740 0.9884 0.9943

1/256 0.7405 0.8790 0.9603 0.9810 0.9904

average

1/4 0.9441 0.9132 0.9854 0.9870 0.9935

1/16 0.8632 0.8846 0.9728 0.9773 0.9870

1/64 0.7946 0.8736 0.9566 0.9644 0.9779

1/256 0.7530 0.8695 0.9362 0.9484 0.9652

All 0.8387 0.8892 0.9563 0.9693 0.9780

and LLF andHR are detail enhancement processing.We have 5magnification levels: 1/1, 1/4,
1/16, 1/64, and 1/256. Since there are 5 different input images for each image processing, a
total of 420 images were tested: 5×4×5×4 = 400 images for distorted image; processings
× upsamplings × images × levels, and 4 × 5 = 20 images for 1/1 magnification, i.e., just
copies of the images; processings × images. The evaluating 5 images were selected from
the tested images of objective evaluations. However, since the subjective evaluation is also
affected by the size of the images, the images were cropped to 1024 × 1024 to match the
resolution. Note that 3 image data were changed only for the haze removal since the image
does not contain haze (Fig. 9).

The experimental procedure was to display the non-degraded and degraded images on the
left and right and perform a binary evaluation to see if the left and right images matched
or not. The showing image pair is randomly selected for each subject. This procedure was

123

Multimedia Tools and Applications (2024) 83:26131–26158 26151

Table 8 Accuracy comparison (GMSD) with the other upsampling methods for each sampling rate on T-
Recipes dataset. Bold font is the best result, and underling is the second best. Lower values are better

ratio CU JBU GIU BGU LLU

iterative bilateral filtering

1/4 0.00532 0.00285 0.00751 0.00291 0.00189

1/16 0.01426 0.00559 0.01380 0.00558 0.00434

1/64 0.02507 0.00902 0.02128 0.00996 0.00772

1/256 0.03759 0.01503 0.03030 0.01515 0.01298

�0 smoothing

1/4 0.00466 0.00252 0.00707 0.00357 0.00202

1/16 0.01397 0.00640 0.01330 0.00659 0.00487

1/64 0.02606 0.01126 0.02107 0.01042 0.00887

1/256 0.04019 0.01712 0.02956 0.01470 0.01374

local Laplacian filtering

1/4 0.01920 0.03003 0.00866 0.00513 0.00257

1/16 0.05191 0.04806 0.01629 0.00976 0.00590

1/64 0.07928 0.06086 0.02575 0.01646 0.01088

1/256 0.10188 0.07190 0.03730 0.02581 0.01779

haze remove

1/4 0.00799 0.01094 0.00681 0.00201 0.00086

1/16 0.02587 0.02001 0.01179 0.00438 0.00233

1/64 0.04435 0.02768 0.01919 0.00854 0.00498

1/256 0.06167 0.03525 0.02877 0.01409 0.00954

average

1/4 0.0093 0.0116 0.0075 0.0034 0.0018

1/16 0.0265 0.0200 0.0138 0.0066 0.0044

1/64 0.0437 0.0272 0.0218 0.0113 0.0081

1/256 0.0603 0.0348 0.0315 0.0174 0.0135

All 0.0350 0.0234 0.0187 0.0096 0.0070

repeated for 420 images. The display was EIZO CS 270 (27inch 2560× 1440 / IPS), and the
viewing distance was 0.5 m. The number of subjects was 11, not including the authors. The
evaluation time per subject was approximately 2 hours. This time it included breaks to rest
the eyes.

The average value of whether the images matched or not for each subject was used as
the evaluation method, called the identification ratio. The binary evaluation is called just
noticeable difference (JND). JND was used because it is difficult to evaluate the multi-
gradation of very close images (e.g., Mean opinion score (MOS)). JND is also used in the
recent IQA, such as learned perceptual image patch similarity (LPIPS) [66]. In this evaluation,
a good agreement, i.e., 100%, indicates no degradation and high quality, while 0% indicates
a clear degradation. The experimental flow has the same protocol of the research [27] for
IQA for visually near-lossless image coding.

123

26152 Multimedia Tools and Applications (2024) 83:26131–26158

Fig. 8 Quality comparison of five imaging operators. Topline: iterative bilateral filtering. Second line: �0
smoothing. Third line: local Laplacian filtering. The fourth line: inpainting. The fifth line: haze removal. The
values of PSNR are shown in (PSNR). We used the �2 norm method for building the local LUT, the linear
method for boundary conditions, and 4 × 4 box upsampling for upsampling the local LUT tensor

Figure 10 shows the results of the subjective IQA. The all averaging results (ALL) show
that the proposed method is the highest performance. Next, a breakdown of each process
is given separately for smoothing (IBF and �0) and detail enhancement (LLF and HR). For
smoothing cases, JBU and LLU have good performance. The IBF results indicate that JBU
is the best since both image processing and upsampling use bilateral filtering weight. This is
a special case. In the �0 case, the proposed method with a small downscaling factor (1/4) is

123

Multimedia Tools and Applications (2024) 83:26131–26158 26153

Fig. 9 Images for subjective image quality assessment. From top to bottom: source images, iterative bilateral
filtering, �0 smoothing, local Laplacian filtering, and haze removing. For haze removing, 3 images are changed
since there is no haze in the images

the best. GIF, BGU, and LLU for detail enhancement cases have good performance. In the
LLF case, LLU has the highest performance, while JBU has a low performance since JBU
has smooth images. The HR results are more remarkable.

Experimental results showed that the proposed method performed well not only in objec-
tive evaluation but also in subjective evaluation.

6 Conclusion

In this paper,we proposed an accelerationmethod for image processing by image upsampling.
The local LUT upsampling has higher approximation accuracy than conventionalmethods. In
addition, the local LUT upsampling accelerates ×100 faster than the naïve implementation.
Moreover, the proposed method can output more accurate results with the �n norm approach

123

26154 Multimedia Tools and Applications (2024) 83:26131–26158

Fig. 10 Subjective IQA results for each image processing and upsampling. y-axis is the identification ratio,
and higher is better. IBF and �0 are smoothing images, and LLF and HR are detail-enhanced images. ALL is
the average of each image processing: IBF, �0, LLF, and HR

with upsampling for generating the local LUT. The following conclusions were reached
regarding the parameters of the proposed method.

• Building LUT: �2 minimization
• Building LUT parameters: r = 2 and M = 7
• LUT boundary condition: Linear
• Sampling rate: trade-off factor between accracy and speed.

123

Multimedia Tools and Applications (2024) 83:26131–26158 26155

• Quantization: trade-off factor between accracy and speed.
• Tensor upsampling: trade-off factor between accracy and speed.

The limitation of the proposed method is color transformation. We apply the proposed
method for each color channel individually because the proposed method is intended for
grayscale processing. However, the proposed method does not work well when image pro-
cessing includes color-twisting processing. In addition, this method is limited to image
processing, which outputs images because it is a method to obtain approximated images.
Speeding up methods that include decomposition results such as frequency transform, prin-
cipal component analysis, and singular value decomposition in image processing [13, 15, 29,
35, 36, 48, 57, 63] is also a future challenge.

Acknowledgements This work was supported by JSPS KAKENHI Grant Number (18K19813, 21K17768,
21H03465) and Environment Research and Technology Development Fund (JPMEERF20222M01) of the
Environmental Restoration and Conservation Agency of Japan. We would like to thank Editage for English
language editing.

Declarations
The authors have no conflicts of interest directly relevant to the content of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adams A, Baek J, Davis MA (2010) Fast high-dimensional filtering using the permutohedral lattice.
Comput Graph Forum 29(2):753–762

2. Aubry M, Paris S, Hasinoff SW, Kautz J, Durand F (2014) Fast local laplacian filters: Theory and appli-
cations. ACM Trans Graph 33(5)

3. Bae S, Paris S, Durand F (2006) Two-scale tone management for photographic look. ACM Trans Graph
637–645

4. Barron JT, Adams A, Shih Y, Hernandez C (2015) Fast bilateral-space stereo for synthetic defocus. In:
Proc. Computer Vision and Pattern Recognition (CVPR)

5. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: Proc. Computer
Vision and Pattern Recognition (CVPR)

6. Chaudhury KN (2011) Constant-time filtering using shiftable kernels. IEEE Signal Process Lett
18(11):651–654

7. Chaudhury KN (2013) Acceleration of the shiftable o(1) algorithm for bilateral filtering and nonlocal
means. IEEE Trans Image Process 22(4):1291–1300

8. Chaudhury KN, Sage D, Unser M (2011) Fast o(1) bilateral filtering using trigonometric range kernels.
IEEE Trans Image Process 20(12):3376–3382

9. Chen J, Adams A, Wadhwa N, Hasinoff SW (2016) Bilateral guided upsampling. ACM Trans Graph
35(6)

10. Chen Q, Xu J, Koltun V (2017) Fast image processing with fully-convolutional networks. In: Proc.
International Conference on Computer Vision (ICCV) pp 2497–2506

11. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain
collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

12. Durand F, Dorsey J (2002) Fast bilateral filtering for the display of high-dynamic-range images. ACM
Trans Grap 21(3):257–266

123

http://creativecommons.org/licenses/by/4.0/

26156 Multimedia Tools and Applications (2024) 83:26131–26158

13. Fujita S, Fukushima N, Kimura M, Ishibashi Y (2015) Randomized redundant dct: Efficient denoising by
using random subsampling of dct patches. In: Proc. ACM SIGGRAPH Asia Technical Briefs

14. Fukushima N, Fujita S, Ishibashi Y (2015) Switching dual kernels for separable edge-preserving filtering.
In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

15. Fukushima N, Kawasaki Y, Maeda Y (2019) Accelerating redundant dct filtering for deblurring and
denoising. In: IEEE International Conference on Image Processing (ICIP)

16. Fukushima N, Sugimoto K, Kamata S (2018) Guided image filtering with arbitrary window function. In:
Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

17. Fukushima N, Takeuchi K, Kojima A (2016) Self-similarity matching with predictive linear upsampling
for depth map. In: Proc. 3DTV-Conference

18. Fukushima N, Tsubokawa T, Maeda Y (2019) Vector addressing for non-sequential sampling in fir image
filtering. In: IEEE International Conference on Image Processing (ICIP)

19. Gastal ESL, Oliveira MM (2011) Domain transform for edge-aware image and video processing. ACM
Trans Graph 30(4)

20. Gastal ESL, Oliveira MM (2012) Adaptive manifolds for real–time high–dimensional filtering. ACM
Trans Graph 31(4)

21. Gharbi M, Shih Y, Chaurasia G, Ragan-Kelley J, Paris S, Durand F (2015) Transform recipes for effi-
cient cloud photo enhancement. ACM Trans Graph 34(6):228–122812. https://doi.org/10.1145/2816795.
2818127

22. Ghosh S, Nair P, Chaudhury KN (2018) Optimized fourier bilateral filtering. IEEE Signal Process Lett
25(10):1555–1559

23. Hennessy JL, Patterson DA (2017) Computer Architecture, Sixth Edition: A Quantitative Approach, 6th
edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA

24. He K, Sun J (2015) Fast guided filter. CoRR. abs/1505.00996
25. He K, Sun J, Tang X (2009) Single image haze removal using dark channel prior. In: Proc. Computer

Vision and Pattern Recognition (CVPR)
26. He K, Sun J, Tang X (2010) Guided image filtering. In: Proc. European Conference on Computer Vision

(ECCV)
27. Honda S, Maeda Y, Fukushima N (2023) Dataset of subjective assessment for near-lossless image coding

based on just noticeable difference. In: Proceedings of International Conference on Quality ofMultimedia
Experience (QoMEX)

28. Hosni A, Rhemann C, Bleyer M, Rother C, Gelautz M (2013) Fast cost-volume filtering for visual
correspondence and beyond. IEEE Trans Pattern Anal Mach Intell 35(2):504–511

29. Ishikawa K, Oishi S, Fukushima N (2023) Principal component analysis for accelerating color bilateral
filtering. In: Proceedings of International Workshop on Advanced Imaging Technology (IWAIT), vol.
12592, pp 125921. https://doi.org/10.1117/12.2666984. SPIE

30. Kodera N, Fukushima N, Ishibashi Y (2013) Filter based alpha matting for depth image based rendering.
In: Proc. IEEE Visual Communications and Image Processing (VCIP)

31. Kopf J, Cohen MF, Lischinski D, Uyttendaele M (2007) Joint bilateral upsampling. ACM Trans Graph
26(3)

32. Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z,
Shi W (2017) Photo–realistic single image super-resolution using a generative adversarial network. In:
Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

33. LevinA,LischinskiD,WeissY (2004)Colorization using optimization.ACMTransGraph 23(3):689–694
34. Li X, OrchardMT (2001) New edge-directed interpolation. IEEE Trans Image Process 10(10):1521–1527
35. Lin Y, Ling BW-K, Xu N, Zhou X (2022) Two dimensional quaternion valued singular spectrum analysis

with application to image denoising. J Frankl Inst 359(8):3808–3830. https://doi.org/10.1016/j.jfranklin.
2022.03.036

36. Lin Y, Ling BW-K, Hu L, Zheng Y, Xu N, Zhou X, Wang X (2021) Hyperspectral image enhancement
by two dimensional quaternion valued singular spectrum analysis for object recognition. Remote Sens
13(3). https://doi.org/10.3390/rs13030405

37. Liu M-Y, Tuzel O, Taguchi Y (2013) Joint geodesic upsampling of depth images. In: Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR)

38. Maeda Y, Fukushima N, Matsuo H (2018) Taxonomy of vectorization patterns of programming for fir
image filters using kernel subsampling and new one. Appl Sci 8(8):1235

39. Maeda Y, Fukushima N, Matsuo H (2018) Effective implementation of edge–preserving filtering on cpu
microarchitectures. Appl Sci 8(10)

40. MatsuoT, Fujita S, FukushimaN, IshibashiY (2015) Efficient edge-awareness propagation via single-map
filtering for edge-preserving stereo matching. In: Proc. SPIE, vol. 9393

123

https://doi.org/10.1145/2816795.2818127
https://doi.org/10.1145/2816795.2818127
https://doi.org/10.1117/12.2666984
https://doi.org/10.1016/j.jfranklin.2022.03.036
https://doi.org/10.1016/j.jfranklin.2022.03.036
https://doi.org/10.3390/rs13030405

Multimedia Tools and Applications (2024) 83:26131–26158 26157

41. Matsuo T, Fukushima N, Ishibashi Y (2013) Weighted joint bilateral filter with slope depth compensation
filter for depth map refinement. In: Proc. International Conference on Computer Vision Theory and
Applications (VISAPP)

42. Min D, Lu J, Do MN (2012) Depth video enhancement based on weighted mode filtering. IEEE Trans
Image Process 21(3):1176–1190. https://doi.org/10.1109/TIP.2011.2163164

43. Min D, Choi S, Lu J, Ham B, Sohn K, Do MN (2014) Fast global image smoothing based on weighted
least squares. IEEE Trans Image Process 23(12):5638–5653

44. Murooka Y, Maeda Y, Nakamura M, Sasaki T, Fukushima N (2018) Principal component analysis for
acceleration of color guided image filtering. In: Proc. International Workshop on Frontiers of Computer
Vision (IW-FCV)

45. Paris S,Hasinoff SW,Kautz J (2011)Local laplacian filters: Edge–aware image processingwith a laplacian
pyramid. ACM Trans Graph 30(4)

46. Sugimoto K, Kamata S (2015) Compressive bilateral filtering. IEEE Trans Image Process 24(11):3357–
3369

47. Sugimoto K, Fukushima N, Kamata S (2016) Fast bilateral filter for multichannel images via soft-
assignment coding. In: Proc. Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference (APSIPA)

48. Sugimoto K, Fukushima N, Kamata S (2019) 200 fps constant-time bilateral filter using svd and tiling
strategy. In: IEEE International Conference on Image Processing (ICIP)

49. Sumiya Y, Otsuka T, Maeda Y, Fukushima N (2021) Gaussian fourier pyramid for local laplacian filter.
IEEE Signal Processing Letters

50. Tajima H, Fukushima N, Maeda Y, Tsubokawa T (2019) Local lut upsampling for acceleration of edge-
preserving filtering. In: Proc. International Conference on Computer Vision Theory and Applications
(VISAPP)

51. Tajima H, Tsubokawa T, Maeda Y, Fukushima N (2020) Fast local lut upsampling. In: Proc. International
Conference on Computer Vision Theory and Applications (VISAPP)

52. Telea A (2004) An image inpainting technique based on the fast marchingmethod. J Graph Tools 9(1):23–
34

53. Timofte R, Agustsson E, Van Gool L, Yang M-H, Zhang L (2017) Ntire 2017 challenge on single image
super-resolution:Methods and results. In: Proc. IEEEConference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW)

54. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proc. International Con-
ference on Computer Vision (ICCV), pp 839–846

55. Tsubokawa T, Nakamura M, Maeda Y, Fukushima N (2019) Tiling parallelization of guided image filter-
ing. In: Proc. International Workshop on Frontiers of Computer Vision (IW-FCV)

56. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to
structural similarity. IEEE Trans Image Process 13(4):600–612

57. Xu Y, Liu B, Liu J, Riemenschneider S (2006) Two-dimensional empirical mode decomposition by finite
elements. Proc Ro Soc A 462(2074):3081–3096. https://doi.org/10.1098/rspa.2006.1700

58. Xue W, Zhang L, Mou X, Bovik AC (2014) Gradient magnitude similarity deviation: A highly efficient
perceptual image quality index. IEEE Trans Image Process 23(2):684–695. https://doi.org/10.1109/TIP.
2013.2293423

59. Xu L, Lu C, Xu Y, Jia J (2011) Image smoothing via l0 gradient minimization. ACM Trans Graph 30(6)
60. YangQ, TanKH,Ahuja N (2009) Real–time o (1) bilateral filtering. In: Proc. Computer Vision and Pattern

Recognition (CVPR) pp 557–564
61. Yang Q, Yang R, Davis J, Nister D (2007) Spatial-depth super resolution for range images. In: Proc. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR)
62. Yu G, Sapiro G (2011) Dct image denoising: A simple and effective image denoising algorithm. Image

Processing On Line 1:1
63. Zabalza J, Ren J, Zheng J, Han J, Zhao H, Li S, Marshall S (2015) Novel two-dimensional singular

spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE
Trans Geosci Remote Sens 53(8):4418–4433. https://doi.org/10.1109/TGRS.2015.2398468

64. ZeydeR,EladM,ProtterM(2010)On single image scale-upusing sparse-representations. In: International
Conference on Curves and Surfaces. Springer

65. Zhang L, Wu X (2006) An edge-guided image interpolation algorithm via directional filtering and data
fusion. IEEE Trans Image Process 15(8):2226–2238

66. Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018) The unreasonable effectiveness of deep
features as a perceptual metric. In: Proceedings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp 586–595. https://doi.org/10.1109/CVPR.2018.00068

123

https://doi.org/10.1109/TIP.2011.2163164
https://doi.org/10.1098/rspa.2006.1700
https://doi.org/10.1109/TIP.2013.2293423
https://doi.org/10.1109/TIP.2013.2293423
https://doi.org/10.1109/TGRS.2015.2398468
https://doi.org/10.1109/CVPR.2018.00068

26158 Multimedia Tools and Applications (2024) 83:26131–26158

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Local look-up table upsampling for accelerating image processing
	Abstract
	1 Introduction
	2 Acceleration by downsampling and upsampling
	3 Proposed method
	3.1 Concept of local LUT
	3.2 Generating local LUT
	3.2.1 Dynamic programming (DP)
	3.2.2 Winner-take-all (WTA)
	3.2.3 elln Norm minimization

	3.3 Interpolation and boundary conditions of local LUT
	3.4 Smoothing local LUT
	3.5 Upsampling of local LUT

	4 Relationship to guided image upsample, bilateral guided upsample, and joint bilateral upsample
	5 Experimental results
	5.1 Comparison of parameters and settings
	5.1.1 Building LUT
	5.1.2 LUT boundary condition
	5.1.3 Quantization and offset map
	5.1.4 Tensor upsampling

	5.2 Comparison with other upsampling
	5.3 Subjective evaluation

	6 Conclusion
	Acknowledgements
	References

