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Abstract—Video anomaly detection is one of the hot research topics in computer vision nowadays, as abnormal events

contain a high amount of information. Anomalies are one of the main detection targets in surveillance systems, usually

needing real-time actions. Regarding the availability of labeled data for training (i.e., there is not enough labeled data for

abnormalities), semi-supervised anomaly detection approaches have gained interest recently. This paper introduces the

researchers of the field to a new perspective and reviews the recent deep-learning based semi-supervised video anomaly

detection approaches, based on a common strategy they use for anomaly detection. Our goal is to help researchers

develop more effective video anomaly detection methods. As the selection of a right Deep Neural Network plays an

important role for several parts of this task, a quick comparative review on DNNs is prepared first. Unlike previous surveys,

DNNs are reviewed from a spatiotemporal feature extraction viewpoint, customized for video anomaly detection. This part

of the review can help researchers in this field select suitable networks for different parts of their methods. Moreover, some

of the state-of-the-art anomaly detection methods, based on their detection strategy, are critically surveyed. The review

provides a novel and deep look at existing methods and results in stating the shortcomings of these approaches, which can

be a hint for future works.

Index Terms—Video anomaly detection, Spatio-Temporal feature extraction, Deep learning, Video analysis,

Semi-supervised, Reconstruction and prediction.

✦

1 INTRODUCTION

ANOMALY Detection (AD) is one of the essential
and crucial tasks in various applications, such

as video surveillance, quality control in production
lines, security systems in data transmissions, etc.
Anomaly detection (a.k.a., abnormal event detection
or outlier detection) involves detecting patterns in
data (image, video, etc.) that do not conform to
expected behavior or the notion of normal behavior
(behavior conformed by the majority of data samples)
[1]. In video anomaly detection, the goal is to precisely
locate the anomalies (spatially and temporally) inside
frame sequences. Anomalies may be of different
types, but they generally share these assumptions:
1- Anomalies rarely take place (compared to normal
events), so they have a low probability of occurrence.
2- Patterns of anomalies are distinct from normals
(majority of the events). These assumptions are the
keys to identifying anomalies, however, detecting
anomalies is generally challenging for a number of
reasons:
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1- There is not a limited and precise definition
for abnormality. Anomaly patterns are diverse
and unrestricted and hence cannot be modeled or
predicted precisely.
2- The boundary between normals and anomalies
is not often precisely defined. Besides, it is hard to
classify the data instances near this boundary.
3- Abnormalities are highly contextual and their
definitions can change considering the time, place and
environment. For example, driving a car at a speed of
100 km/h is a normal behavior on a highway but it
cannot be considered as normal, in a residential area.
4- Anomalies are rare (but diverse) and there are not
enough labeled anomaly samples to train a model.
5- It is very difficult to define a precise boundary
(model) around normals, which can cover all normal
patterns and behaviors.
6- The most complex challenge would be intelligent
anomalies (adversarial samples) which attempt to
resemble normal patterns.

1.1 Video Anomaly Detection (VAD)

Video anomaly detection has the same definition as
mentioned above, but here we deal with videos and
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we strive to detect anomalous video events, spatially
and temporally. Hence, in video, appearance and mo-
tion are the key elements for defining anomalies and
they should be extracted effectively and analyzed
jointly. For video anomaly detection, we have the same
general anomaly detection challenges (as mentioned
above). There are some additional challenges, related
to video analyzing, such as high dimensionality of
video data, complex scenes, occlusions, high interac-
tion inside video contents, low resolution, etc.

1.2 Different video anomalies from data analysis

viewpoint

Anomalous data can be considered as one of these
three subcategories, based on how they are analyzed:
point anomalies, contextual (conditional) anomalies
or collective (group) anomalies [1]. Depending on
the condition and the context, video anomalies can
belong to each of these categories, although mostly
they should be considered as conditional anomalies,
for a more robust and generalized performance.

For point anomalies, the anomaly is defined and
recognized, by analyzing the value of one single data
instance, individually. This value can be a scalar or a
feature vector. For example, in a video, a frame can be
labeled as an anomaly, simply by detecting an unex-
pected object (appearance feature vector) or by captur-
ing a vehicle, which is moving with a speed greater
than the allowed speed (regardless of the vehicle type
or the place). For conditional anomalies, the contextual
information is required, in addition to the value. In
this case, a single factor (a variable value for instance)
is not enough to make a robust and careful decision.
For example, it is expected to see cars in the street,
but in their designated lines, not on the sidewalk. As
another example, although 100 km/h is an allowed
speed on highways, it is considered to be an abnormal
behavior on snowy slippy roads. As noted, in these
examples, the values of the features are not individ-
ually enough and they can be interpreted differently,
in different conditions (depending on the context). In
collective anomalies, groups of data instances form the
anomalies. For example, the presence of one or a few
people may be normal in the bank, but a group of one
hundred people would be considered as an anomaly.
Video anomaly can belong to any of the mentioned
categories. However, conditional anomaly, generally,
has a much more comprehensive definition, compared
to point and collective anomalies and it can cover them
both. Hence, it is more recommended to consider and
interpret video anomalies as a conditional anomaly.

1.3 Important points for an effective video

anomaly detection

Regarding the definition of video anomaly, different
types of anomalies and challenges in video anomaly
detection (VAD), the following items should be
considered, to have an effective computer vision
system for VAD.

1: Precisely defining normality (normal patterns).
2: Extracting effective and discriminative
spatiotemporal features, customized for the given
task.
3: Considering the differences and similarities in and
between normal and abnormal behaviors.
4: Considering environment information and its
variations.

It is worth mentioning that anomaly detection
approaches are divided into supervised, semi-
supervised, unsupervised and weakly supervised
methods. Semi-supervised methods have gained
more attention, because the definition of anomalies
is based on the definition of the normalities. In
semi-supervised methods, it is assumed that there
is enough labeled data to define normalities. On
the other hand, there is not enough labeled data for
anomalies (mostly because they are rare and difficult
to capture and record and also they are diverse and
it is hard to cover all anomalies). Important factors
concerning semi-supervised anomaly detection that
should be considered are:

1) Availability of enough labeled data for normalities
to cover all of the normal patterns.
2) Extracting compact and discriminative features for
normal patterns, to ensure that normal features are
very similar and close to each other and very distinct
from features of anomalies.

The formulation of the problem, in this category, is
as a one class classification (which may have multiple
normal subclasses) and to learn a model, to express
normal patterns (appearance and motion in video).

1.4 Benchmark datasets popularly used for semi-

supervised video anomaly detection

UCSD (ped1 and ped2) [2] is one of the most popular
datasets in semi-supervised video anomaly detection,
in which the normal scenes include people walking
in the walkways, while anomalies are due to the
presence of unexpected objects in the scene (such as
carts, bicycles, skate boards, etc.), different motion
patterns (skateboard riding, etc.) and walking in the
grass. The main challenge of this dataset is the low
resolution of the frames. Moreover, in a few frames, a



large number of people is observed in the scene. These
scenes are rare and compatible with the definition
of anomaly; however, these frames are considered
as normal and not annotated as an anomaly in the
dataset. Hence, it is challenging for the system to
perceive the scenes involving a large number of
people as a regular scene (since this is not a frequently
occurring scene). The Shanghai Tech dataset [3] is
a similar dataset to UCSD, from the viewpoint of
definition of anomalies and normals. However, unlike
The UCSD dataset, its resolution is high and it would
be easier for systems to recognize anomalous objects,
using appearance based features.

The CUHK Avenue dataset [4], UMN dataset [5]
and Subway dataset [6] consider the activities of
people in quite different scenarios. The Street Scene
dataset [7] is a recently proposed high resolution
dataset and, among all mentioned datasets, it is the
most challenging, since: 1) the events, inside, are
highly contextual (in addition to the appearance and
motion information, the location information of the
objects are essential in defining the anomalies). Figure
1 illustrates this point. 2) The anomalies are of various
types and they are numerous. The mentioned datasets
are compared in detail, in Table 1 and Table 2.

Fig. 1. A frame from the Street Scene dataset [7]. Anomalies in
this dataset are highly contextual. For example, the definition of
anomaly is different, in these 4 positions (4 different boxes), for
the same class of object. Best viewed in color.

1.5 Other surveys

There are a few other survey articles published con-
cerning anomaly detection. For example, Ramachan-
dra [8] surveys single-view video anomaly detection
methods, with a special consideration of the applica-
bility of methods on currently available benchmark
datasets. Kiran [9] reviews the state-of-the-art Deep
Learning (DL) based approaches for anomaly detec-
tion in videos and categorizes them based on the
criteria of detection and the type of network used.
As it reviews reconstruction-based, prediction-based

and generative models for anomaly detection, it is
similar to our work, in some parts. However, the
deep networks are studied mostly focusing on their
structures and basic concepts, but not from a feature
extraction viewpoint and their compatibility with the
anomaly detection task. Raghavendra [10] presents a
general review on DL-based anomaly detection meth-
ods and reviews their applicability in different fields
of application (not limited to video, but also other
applications such as fraud detection, medical anomaly
detection, sensor networks, etc.). This review is an
application-based categorization and mostly summa-
rizes the Deep Neural Network (DNN) types, used for
various applications. Chandola [1] reviews Machine
Learning based anomaly detection methods (conven-
tional Machine Learning (ML) approaches) based on
the different pattern recognition techniques used (such
as clustering, classification, neural networks, etc.) and
it studies them for different applications. Moreover,
this review explains the basic assumption, advantages,
computational cost, etc, for each of the techniques.
Bulusu [11] has provided a review on DL-based
anomalous instance detection methods. Its focus is
on discussing unintentional and intentional anomalies,
specifically in the context of DNNs. Shibin [12] reviews
evaluation metrics and popular evaluation schemes,
used to measure the performance of video and image
anomaly detection approaches. These surveys, as well
as a few others, have completely compared anomaly
detection methods based on the amount of supervision
(supervised, unsupervised and semi-supervised meth-
ods), discussing their advantages and disadvantages,
hence this will not be discussed in this paper. Table 3
compares existing surveys, based on the subjects they
have covered.

1.6 Contributions

In this survey:

- Deep Neural Networks are reviewed and compared,
from the point of view of spatiotemporal feature
extraction and pattern learning. This novel viewpoint
can be helpful in video anomaly detection.
- Recent DL-based semi-supervised anomaly detection
approaches are reviewed and compared, stating their
strong and weak points.
- Common aspects of all recent DL-based semi-
supervised anomaly detection approaches (especially,
their implicitly common strategy for anomaly
detection) are stated. This provides a new, global and
integrated perspective to the field.
- Most recent proposed DL-based semi-supervised
anomaly detection approaches are covered.
- Selected experiments are conducted to illustrate the
strong and weak points of some of the video anomaly
detection methods.



TABLE 1
Detailed information on benchmark video anomaly detection datasets.

Datasets Training
frames

Test frames Resolution NO. of
anomalies

Annotation Color No. of
scenes

Format

UCSD-ped1 6,800 7,200 238 x 158 54 (5 types) Pixel based-
binary mask

gray 1 tif

UCSD-ped2 2,550 2,010 360 x 240 23 (5 types) Pixel based-
binary mask

gray 1 tif

ShanghaiTech 274,515 42,883 856 x 480 130 Pixel based-
binary mask

color 13 avi

Street scene 56,847 146,410 1280 x 720 205 (17
types)

Pixel based-
bounding
box

color 1 jpg

CUHK Avenue 15,328 15,324 640 x 360 47 (5 types) Pixel based-
mask

color 1 tif

UMN 7,740 total
frames

- 240 x 320 11 (1 type) Frame based color/ gray 3 avi

Subway (Entrance) 18,000 68,535 512 x 384 66 (5 types) Frame based gray 1 avi,tif
Subway (Exit) 4,500 34,440 512 x 384 19 (3 types) Frame based gray 1 avi,tif

TABLE 2
Comparing existing benchmark VAD datasets, based on their definition of anomaly and their challenges. Different items are

separated by asterisks (*) in the table.

Datasets Anomalies (some) challenges/ special points

UCSD Non pedestrian entities in walkways (bikes,
skates, small carts, wheelchair), anomalous
pedestrian motion patterns (people walking
across the walkway or on the grass).

*Definition of anomaly for Ped2 is the same
with Ped1 *Different scales for different dis-
tances. *Object types are not always recog-
nizable (due to resolution and distance).

ShanghaiTech
Campus

Sudden motion, such as chasing and brawl-
ing, unexpected objects.

*Multiple scenes with multiple view angles.
*Complex lighting conditions.

Street scene Jaywalking, loitering, car outside lane, car u-
turn, car illegally parked, biker on sidewalk,
etc. (17 types of anomalies)

*The anomalies are highly contextual and
more challenging than other datasets *High
resolution *High number of anomaly types.
*Presence of minor camera motion in some
frames.

CUHK Avenue Throwing objects, loitering, running. *The size of people may change because
of the camera position and angle *Camera
shakes in some frames.

UMN Crowd escaping quickly from the scene. *Number of anomalies is limited (just one
anomaly type) *The video is short. *Low
resolution.

Subway Moving in a wrong direction, entering with-
out payment, loitering.

*Noisy video *There is a big timer on the
screen. *Objects at distance are not clear.

1.7 Organization of the paper

The rest of this article is organized as follows (see
Figure 2). In Section 2, deep neural networks are
reviewed from different points of view, analyzing their
applicability for several steps of video anomaly detec-
tion (this section also contains some examples used in
supervised or unsupervised anomaly detection meth-
ods, to clarify the subject). In section 3, a general look
at different anomaly detection approaches is provided
and some of the recent state-of-the-art DL based semi-
supervised anomaly detection methods are presented
and compared, based on how they formulate and ad-
dress the problem and finally, shortcomings of existing
methods are listed, which can be the subject of future
work.

2 DEEP NEURAL NETWORKS

Like most computer vision tasks, video anomaly
detection is completely reliant on effective feature
extraction. Hence, it is very important to have a good
understanding of DNNs feature extraction capabilities,
as they are the key tool for feature extraction and
pattern learning (in DL-based approaches). In this
section, a general, yet effective, look at various deep
models and their applicability for different related
sub-tasks is provided, and their compatibility with
different data types is analyzed.

Deep learning has brought great success to
various applications and research fields, especially
to computer vision applications, in analyzing high-
dimensional data. DNNs have been useful for different



TABLE 3
Comparing existing AD and VAD surveys, based on their contents and subjects covered. DNN stands for Deep Neural Network, DL
for Deep Learning, ST for Spatio-Temporal and ML for Machine Learning. Different items are separated by asterisks (*) in the table.

Reference [1] [8] [9] [10] [11] [12] Our survey

Reconstruction X X X

Prediction X X

Object centric X

Segmentation X

Memorization X

ST feature extraction X X

Datasets X X

Evaluation metrics X X X X

DNN/ ML approaches ML DNN/ML DNN DNN DNN/ML DNNs
Focused applications Intrusion

detection,
fraud
detection,
medical
anomaly
detection,
industrial
damage
detection,
image
processing,
text, sensor
networks.

Video
anomalies

Video
anomalies

Fraud
detection,
cyber
intrusion
detection,
IOT, video,
industrial
damage,
sensor, etc.

Fraud
detection,
malware
detection,
healthcare,
video
surveillance,
etc.

Image
and video
anomaly
detection

Video anoma-
lies

Topics covered *Anomaly
detection
in different
applications.
*Different
ML
approaches
for anomaly
detection.

*Distance-
based,
probabilistic
and
reconstruction-
based
anomaly
detection
approaches.

*Reconstruction
models,
predictive
models,
generative
models for
AD.

Semi-
supervised,
unsuper-
vised, hybrid
models, one
class neural
networks for
AD.

*Detection of
unintentional
anomalies,
*Detection of
intentional
anoma-
lies*Applications

*Evaluation
schemes.
*Evaluation
metrics.

*DNNs from
a feature
extraction
viewpoint.
*AD methods
based on their
ST feature
extraction
processes.
*Semi-
supervised
AD methods.

purposes and steps in computer vision applications.
More specifically, in video anomaly detection, they
have been used to:

1) Extract discriminative high-level Spatio-Temporal
features, for different types of data (such as spatial
data, sequences, etc.), by using proper architectures
(such as CNNs, RNNs, etc.)
2) Learn, model and memorize patterns and
information.
3) Formulate solutions to problems associated with
different tasks.
4) Differentiate between normal and abnormal
patterns.

Hence, it will be useful to briefly review DNNs,
considering the mentioned factors. These networks are
analyzed from different points of view such as their
architectures, feature extraction ability, compatibility
with different data types and their applicability to
different tasks.

2.1 Convolutional Neural Networks (CNN)

Convolutional neural networks are special forms of
feed-forward neural networks and are composed of
multiple convolutional and pooling layers, which are
followed by a few Fully Connected (FC) layers, at
the end of the network. Unlike the Fully Connected
Networks, the architecture of CNNs is compatible
with 2D structured inputs (such as images or any other
2D signal), which helps effectively preserve the spatial
structure of inputs. Feichtenhofer et al. [13], present
a deep insight into convolutional neural networks,
for video recognition tasks. Convolutional layers are
composed of multiple kernels, which are convolved
with the input image or mid-layer activation maps to
produce next-level activations. Convolutional layers
benefit from several advantages, as indicated below:

- The weight-sharing mechanism, in each mapping
process, has intensively reduced the numbers of
parameters.
- Convolution makes the network robust and invariant



Fig. 2. Illustration of different sections in our survey (DL: Deep Learning, AD: Anomaly Detection, ST: Spatio-Temporal). Numbers in
each block show the related section in the paper.

to translation.
- A convolutional layer attempts to identify local
patterns in the input.

In some networks such as Autoencoders, in or-
der to reconstruct an image from extracted features
in the latent space, there must be up-sampling-like
layers to increase the resolution of feature maps.
Transpose convolution, which is also referred to as
deconvolution or up-convolution, is a convolution-
based operation, which increases the resolution of its
input. Up-sampling is a similar operation to transpose-
convolution, but the main difference is that transpose
convolution has trainable kernels.

2.1.1 Characteristics of CNNs

Videos are consecutive frames that should be
processed both separately (image processing) and also
in connection to each other (considering their temporal
dependencies). Convolutional neural networks are
generally the essential elements for image processing.
This is due to some important characteristics of
CNNs, which make image processing more effective,
efficient and even less challenging. Some of these
characteristics are listed as below:

1: Reduced number of parameters: Thanks to
local connectivity and shared weights, CNNs have
much less parameters, compared to Fully Connected
Networks, and hence are easier to train.
2: Shift/Translation invariance: this means that by any
shift in input, the result does not change (because of
convolutional and pooling layers).
3: Transfer Learning: Transfer Learning possibility

is one of the strengths of CNNs, in which pre-
trained networks are used for feature extraction,
in other similar datasets. Nazare et al. [14] studies
the quality of features, extracted by pre-trained
CNNs, for anomaly detection tasks. Ionescu et al.
[15] and Aburakhia et al. [16] is a good example for
the application of pre-trained CNNs for extracting
appearance features to detect anomalies in videos.
4: Convolutional neural networks (CNNs) are suitable
for processing an input data that has an inherent
grid-like topology.
5: CNNs extract rich features at different semantic
levels.
6: Convolutional neural networks (ConvNets) are
biologically inspired.
7: By removing the FC layer from CNN, the restriction
on image size can be removed.
8: More filters capture more features but increase the
computational cost [17].

2.1.2 CNNs from a feature extraction point of view

As mentioned in the previous subsection, CNNs
render image processing (and hence video processing)
more efficient and effective, due to their ability to
exploit spatial features. Therefore they are the prime
element for spatial feature extraction from frames.
Here are some important aspects to consider regarding
CNNs from the feature extraction viewpoint:

1: Experiments show that features in the first
layers are low-level and local. For example, filters in
the first layer are edge detectors and color filters. The
edge detectors are at different angles and allow the
network to construct more complex features in the



next layers [14].
2: Layers towards the end of the network learn
high-level combinations of the features learned in the
earlier layers (see Figure 3).
3: Although the deeper layers have higher-level
features and are usually used as feature representation,
in order to have a better performance for a special
task, it is the target task which precisely defines the
layer from which the features should be extracted.
For example, in some tasks, such as iris recognition,
the recognition accuracy drops after special layers,
because the network captures only the abstract and
high-level information and it does not distinguish
much between diverse iris patterns [18].
4: The feature extraction process in a CNN is adapted
according to the class of the input image.
5: Reducing the kernel size can improve the capture
of smaller details in the picture, while missing the
global information in the frame and may result
in greater confusion. Larger kernels, on the other
hand, will lead to a global look at the image, while
missing the details [19]. This is extremely important
when there are objects at different distances from
the camera (different scales). Hence, the filter size
should be selected considering the task, dataset and
the application. Some works, such as [43], utilize
inception modules in early layers, to automatically
select the proper kernel size.
6: Each kernel is in charge of learning special features
from the image. For example, convolutional kernels
are capable of capturing features such as edge, line,
texture, shape, intensity, color, etc. [20].
7: Deeper networks extract more complex features.
8: Earlier layers in a CNN concentrate on generic
features (independent of the task), while deeper layers
extract features more specific to the problem and the
goal.

2.1.3 CNNs for spatiotemporal feature extraction

As explained before, CNNs are excellent and powerful
in feature extraction from images. When it comes to
consecutive frames (video clips or other 3D tensors),
CNNs are not, by nature, suitable for the capture
of temporal patterns [22], since they consider single
frames as input. Moreover, 2D convolutional kernels
map each receptive field (2D or 3D) to one channel
(note that, kernel depth in CNNs is equal to the num-
ber of input channels). In order to allow the network
to be aware of temporal variations, the use of a cuboid
of frames (instead of a single frame), as the input,
has been proposed. However, the first convolution
destroys the temporal structure and does not show
promising results in capturing temporal patterns [23].

2.2 3D Convolutional Networks (C3D)

In C3D, 3D kernels (with sizes smaller than the width,
height and depth of frame sequences) are applied on
consecutive frames (usually 16 frame clips) and the
output is a 3D tensor, unlike the 2D networks which
produce a one channel output for either an image
input or sequence of frames (see Figure 4). The C3D
network considers spatial information in the first few
frames and it starts to consider the temporal informa-
tion in the following frames [24].

2.2.1 Characteristics of C3Ds

The architecture of C3Ds seems to be a good choice
for spatio-temporal feature extraction. However, there
are some points about C3Ds that should be considered
for feature extraction.

1- C3D achieves better results in video analyzing
tasks (such as video classification and video retrieval),
compared to 2D CNN, as it captures both spatial and
temporal information [26].
2: C3D requires a high number of parameters, thus
it is computationally expensive and difficult to train,
which makes it prone to overfitting [27].
3- Modeling the long sequences is not addressed in
C3D, because it leads to a huge computational cost.
4- C3D cannot take advantage of Transfer Learning
effectively (unlike 2D CNNs). Although some methods
have been proposed to cover this issue partially, the
results are not as good as those obtained in 2D CNNs.

2.3 Recurrent Neural Networks (RNN)

Basic feed-forward networks (such as CNNs) accept
a fixed-sized input and produce fixed-sized outputs.
This is one of the shortcomings of the feed-forward
networks, which are therefore not applicable for some
applications, such as language translating or frame
captioning, in which the length of the input sentence
(or image) and its translation might be different. This
problem is addressed by recurrent neural networks.
Moreover, unlike a feed-forward network, in which
data pass through layers once, in RNNs, they cycle
in a loop and touch neurons several times. In this
way, RNNs not only consider the current input, but
also care about its temporal neighbors (past or future
frames). More importantly, as Recurrent Neural Net-
works feature inner loops, they allow the information
to persist [28].

2.3.1 Characteristics of RNNs

Recurrent neural networks are, by nature, compatible
with sequences [29]. Hence they are widely used
for temporal feature extraction. However, regarding
the models’ abilities and the target task, some points
should be considered regarding RNNs, as listed below:



Fig. 3. Different levels of features extracted in CNNs. In this figure, different levels of features are extracted for human face pictures.
Left: extracted low level features are generic and focusing on edges. Middle: CNN focuses on different parts of the object at mid levels.
Right: deeper layers provide a global look at objects, extracting high level features. This figure originally appeared in [21].

Fig. 4. Different structures in 2D and 3D convolutions and their
different output feature maps [25]. (a): in a 2D CNN, the output
feature map is a single channel tensor. (b): in a 3D CNN the output
is a 3D tensor.

1: As they benefit both new input data and the
previous hidden state, as the input to the network,
they are able to model sequences and to extract
temporal information.
2: Thanks to the presence of the hidden state, they
benefit from an internal memory [30].
3: This model is not limited to fixed input and output
sizes and hence is appropriate for several tasks such
as video captioning, translating, etc.
4: RNNs have difficulties learning long-term
dependencies, because of vanishing and exploding
gradients [31].

2.4 Long Short-Term Memory Units (LSTMs)

LSTM is a special type of RNN, designed to avoid
the long-term dependency problem. LSTMs are gated
memory blocks, which include 3 special gates in
their chain-like structure, and in addition to hidden
states (as is in RNNs), they have cell states. Carefully
regulated by gates, LSTM has the ability to remove
or add more information to the cell states. Gates,

in LSTM, are composed of a sigmoid layer and a
pointwise multiplication operation. Since the sigmoid
function produces outputs between zero and one, it
defines how much information should be deleted or
passed [32].

Like every type of neural network, layer size (mem-
ory units, here in LSTM) and network depth are the
hyper-parameters to choose. Generally, deeper models
show better performance in extracting richer features,
compared to shallow models, but using much deeper
models does not always guarantee a best performance,
for all types of applications and tasks.

2.4.1 Characteristics of LSTMs

LSTM has some extra advantages compared to
simple RNNs in modeling sequences (for example an
inherent memory), which makes it the first choice for
sequences, in most cases. However, other practical
points, as listed below, should be considered about
LSTMs.

1: LSTMs handle exploding and vanishing gradients
effectively, thus they are able to model longer
sequences, compared to the basic RNN structure,
although this length also depends on the nature of the
sequence data and its inner correlation [17].
2: Although LSTMs have no difficulty in modeling
long dependencies, they lead to high computational
complexity, when modeling long sequences.
3: LSTM is the basic element of temporal attention
mechanisms.
4: LSTMs have the ability to learn the context required
for making predictions in sequence data, therefore
they are widely used for forecasting tasks [33].



2.4.2 C3D versus LSTMs, in modeling temporal infor-

mation

Although both 3D convolutional networks and recur-
rent neural networks consider sequences and model
temporal information, the nature of patterns, captured
by these models, are quite different. In LSTMs, based
on the task, the network can be encouraged to select
meaningful time dependencies and forget unnecessary
items. Moreover, the network follows the evolution
between sequences. In C3Ds, the network attempts
to memorize the patterns inside the training cuboid
(frame sequences) without explicitly emphasizing the
order of the frames. Moreover, the extracted patterns
in C3Ds are more generic [24].

2.4.3 Special points regarding ConvLSTM

LSTMs in their basic form are not suitable for 2D
spatially structured data. Hence they are extended
to ConvLSTM, in which multiplications are replaced
with convolutions.

1: ConvLSTM shows great performance in extraction
of spatiotemporal features, by taking advantage of its
two main elements: i- LSTM to capture long temporal
dependency and ii- Convolution for structured spatial
information.
2: Due to convolution, ConvLSTM is capable of
capturing local spatial information and suitable for
spatiotemporal localization tasks [35].
3: In LSTM, convolutional kernel size of input-to-input
connection, defines the resolution of the feature map
produced from the input. In addition, the filter size of
hidden-to-hidden connections defines the collective
information from previous steps. Moreover, larger
transitional kernels capture faster motions, while
smaller kernels perceive slower ones [22].

2.4.4 GRU versus LSTM

The Gated Recurrent Network (GRU) is another
improved version of the standard recurrent neural
network to solve the vanishing gradient problem of
a standard RNN. It is a gated memory block similar
to LSTM, with a different number of gates (3 gates in
LSTM and 2 in GRU). Chung et al. [36] evaluate the
performance of these networks on sequence modeling.

1: GRU has a simpler architecture compared to
LSTM and its training is faster [34].
2: In theory, LSTMs can learn longer sequences than
GRUs and they perform better for longer sequences.
3: In general, the performance of GRU is comparable
to that of LSTM. However, the relative performance of
each method depends on the data and the application
[36]. 4: Unlike GRU, which exposes its full content
(seen or used content) without any control, the

amount of the memory content is controlled by the
output gate, in LSTM [36].

2.5 Autoencoders

A deep Autoencoder is an unsupervised learning
network architecture (learning from unlabeled
training samples) composed of two main sections,
encoder and decoder, which aims to map input data
to a latent space, in order to extract deep features and
then reconstruct the input using extracted features.
In other words, it attempts to learn an approximation
to the identity function, so that the output would
be similar to the input. Recently, autoencoders are
widely used in anomaly detection (especially video
anomaly detection). This is because of their ability
in unsupervised representation learning. Here are
some points regarding Autoencoders (AEs), which
should be considered by researchers, in video anomaly
detection:

1: They extract effective representations from data, in
an unsupervised approach.
2: Autoencoders are be effectively used for noise
removal [37].
3: Autoencoders are effectively used for
dimensionality reduction similar to PCA. The
difference is that PCA is restricted to a linear
map, while auto encoders can have nonlinear
encoders/decoders [38].
4: A basic Autoenoder is not suitable for image
processing, as it flattens the image to a vector
and destroys the spatial structure (this problem is
addressed by convolutional Autoencoders).
5: A Baseline (vanilla) Autoencoder is composed of
fully connected layers and hence is computationally
expensive.
6: A baseline Autoencoder is not complex enough to
learn complex information (such as image content),
and thus generally attempts to memorize and average
the data (this problem is addressed, partially, by
Variational Autoencoders).
7: The fundamental problem with Autoencoders, for
generation tasks, is that their latent space (where they
convert their inputs to), may not be continuous, or
allow easy interpolation [39].
8: It is challenging to select the best compression
degree for Autoencoders.

2.5.1 Shortcomings of deep Auto-encoders

As mentioned before, AEs are appealing tools
for anomaly detection researchers. However, they
sometimes do not produce the desired results, mostly
due to these facts:

1: They are prone to vanishing gradients.



2: They reproduce a lower-quality version of the input
image, without explicitly considering its high level
contents [40].
3: Autoencoders confront information imbalance in
each layer [3].
4: Autoencoders are unsupervised feature extractors
and are not aware of the classes of the objects inside
the image.
5- Autoencoders suffer from memorization and their
reconstructed images are blurry [41].

2.6 Variational Autoencoders (VAE)

Variational AE (VAE) is a generative variant of classical
AEs, which assumes a probability distribution (such
as a Gaussian distribution) for the source input
data and it attempts to capture the parameters of
the distribution, through an encoding-decoding
process. In VAE, not only does the network attempt to
reconstruct an image, but the network is also asked to
consider the same distribution, for generation of new
samples, as it was in the training dataset. Important
characteristics of VAEs can be listed as below:

1- VAEs produce a lower-dimensional representation
of the input data (like classical AEs).
2- By design, VAEs have continuous latent spaces,
which makes random sampling and also interpolation
easier [42].

2.7 Generative Adversarial Network (GAN)

GANs are a set of generative networks, which are able
to generate new contents. In Generative Adversarial
Networks (GANs), the aim is to produce new data
(such as images) which look real. In fact, this goal
is a min-max game between a Generator (G) and a
Discriminator (D), so that D tries to recognize real
and unreal images, while G tries to produce images
which look real. This learning architecture gives these
networks a good ability, suitable for frame processing
tasks, some of which are listed below:

1- GANs allow CNN to learn an implicit distribution
from data patterns [43].
2- GAN has a good applicability for video prediction
[3].
3- GANs are used to produce data for prediction
applications, in which not enough training data is
available [44].
4- GANs produce sharper images compared to VAEs
[45].

2.7.1 Main challenges of GANs

Despite GANs special abilities in feature extraction
and frame processing, there are some challenges,
specific to these networks, which sometimes lead to

reduction in their use. The most noticeable challenges
are:

1- They require a precise selection of hyper-
parameters.
2- They need multiple initializations [46].
3- It is difficult to train adversarial methods, such as
GANs.

2.8 U-Net

Autoencoders suffer from vanishing gradients and
lack of information symmetry in their architectures. To
tackle this problem, U-Net is proposed, which adds a
shortcut between a high-level layer and a low-level
layer with the same resolution [47]. The difference
between U-Net and AE, in architecture, is illustrated
in Figure 5.

3 ANOMALY DETECTION METHODS

In this section, anomaly detection methods are re-
viewed from two different viewpoints. First, the meth-
ods are reviewed, based on how they jointly extract
spatiotemporal features. Then, different methods are
studied, considering how they formulate the task and
approach the problem.

3.1 Methods based on Spatio-temporal (ST) fea-

ture extraction

A video is a sequence of frames, which are evolved
over time. Therefore, the two main important defining
attributes are appearance and motion, from which
video analysis is performed. Appearance is the first
attribute which attracts the attention of the analyzers.
Anomalies in videos can be due to the presence of
unknown (previously unseen) objects, which can be
defined by appearance-based features. However, this
is not the only factor for the definition or creation of
anomalies in videos. In a variety of cases, it is the
motion, which defines the anomaly. For example, an
irregular speed of a car inside a street can determine
an anomaly taking place in that scene. Similar to
appearance, motion features should be analyzed and
modeled both locally and globally, in order to gain
a better understanding of the contents of the video.
Motion patterns can be represented to the network
directly by motion-based features (such as optical
flow) or they can be captured by sequence aware
networks (such as the RNN family). The importance
of considering motion is that most of the anomalies,
in the real world, take place with moving objects.
Humans consider and analyze both appearance and
motion factors jointly and interactively, because,
generally, motion and appearance are not always
independent, but each one can also be a support



Fig. 5. Illustration of similarity and difference, in architectures, between U-Net (A) and Conv-AE (B). Figures A and B originally appeared
in [48] and [49], respectively.

to determine the other. For example, the motion
pattern of an object (let us assume a snake here)
can be a support for its recognition, in addition
to its appearance features (such as shape, color,
etc.). Various methods and models are proposed
for spatiotemporal feature extraction (considering
both motion and appearance simultaneously), which
were studied in the previous section (literature on
deep learning based models). However, from other
viewpoint (the process of jointly extracting motion
and appearance features), methods can be categorized
into the following categories:

A- Single model-Single path methods: in this
category (e.g., [50], [51], [52]), spatiotemporal features
are extracted through a single path (single branch)
process, by a single model. The most noticeable
type of model in this category is C3D, which is able
to extract rich spatiotemporal features for different
applications, especially action recognition. However, a
few important points should be considered regarding
this model, as listed below:
- There are no effective pre-trained C3D networks (like
pre-trained CNNs).
- C3Ds are difficult to train (high computational cost)
and require an enormous amount of training data [53].
- C3Ds capture local motion patterns [54].

B- Two stream methods: In these methods (e.g.,
[55], [56]), motion and appearance are modeled
separately, using two separate but usually identical
branches. Generally, the input of one of the branches
is a raw frame and this branch is in charge of
modeling appearance, through a frame reconstruction
or prediction task. In a complementary manner, the
second branch attempts to capture and model motion
patterns. This is generally achieved by receiving
an explicitly-extracted motion feature (e.g., optical
flow map) and modeling it through a reconstruction
task [57], or by getting a raw frame and learning
the associated motion patterns by predicting its
corresponding optical flow map (i.e., through an
image translation task). The two branches of the

model are usually optimized jointly, which implicitly
encourages the model to learn the features of both
types in an integrated way. To better integrate motion
and appearance, some methods such as [58], propose
to add cross-branch connections, to transfer more
information between the branches. Nguyen et al. [43]
use a similar strategy (but in a novel way), to jointly
extract Spatio-Temporal features. In their approach,
two identical but separate branches (i.e, decoders, in
this example) decode the extracted features of a frame
(produced by a common encoder), consecutively
to reconstruct the input frame, and to estimate the
optical flow. In the inference stage, they compute
the reconstruction/prediction error of each branch in
order to detect anomalies.

C- Hybrid methods: in methods of this category
(such as [17]), generally multiple networks (each
specialized in extracting specific features, such as
motion and appearance) are connected in order to
extract spatiotemporal features. As numerous research
studies have proved, CNNs are powerful in image
analysis and, on the other hand, RNN families are,
by nature, suitable for analyzing video sequences.
Hence several methods with different architectures
have connected these two types of networks to
extract suitable spatiotemporal features for anomaly
detection.

It is worth mentioning that several fusion ap-
proaches, in several levels such as pixel-level (con-
catenation before ST feature extraction), feature-level
(fusion of features before decision making), and score-
level (fusion of anomaly scores extracted from differ-
ent features) have been proposed to combine effects of
different features, for a better anomaly detection [57].

3.2 Common approach of DL-based semi-

supervised VAD methods

Various DL-based semi-supervised VAD methods
have been proposed, which use different strategies
for anomaly detection. They have approached the
problem by performing various tasks (reconstruction,



segmentation, prediction, etc.), which are not of direct
interest [59] and seem to be apparently unrelated to
the task of anomaly detection. All of these different
methods, as a self supervised task, mine different
features [60], however they all exploit the fact that
all machine learning (ML) methods generally achieve
the desired results for the data types on which they
are trained (or at least for similar enough data types).
In other words, ML methods do not guarantee that
the desired results will be produced for a test data,
which is new and different from the training set. In
the following sections, the methods are all based on
the same general approach: they train a DNN (or any
DL-based approach), on only normal data (the rule of
semi-supervised methods), to perform a specific task.
Hence, they produce the desired result for the normal
test data (that is, they detect no anomaly), since they
have been previously seen during the training. The
results would not be as desired for abnormal test data
(that is, they detect an anomaly). The main challenge
is to specify the desired scope of the task and select
training and testing data accordingly. This way, DNNs
would learn and use proper features of the video
data and thus discriminate well between normals and
anomalies at the test time. The following sections re-
view important methods using this common approach,
describing their strategies, their feature extraction pro-
cedure, and their strengths and weaknesses.

3.3 Reconstruction-based methods

In reconstruction based AD methods, it is assumed
that the models, trained by normal data, are able to re-
construct the normal test data accurately (i.e., with low
reconstruction error), while the reconstruction error
would be comparatively high for abnormal test data,
which has not been observed by the model, during the
training [62]. This methodology can be implemented
in different ways (especially, using DNNs). In various
research studies, deep Auto-encoder networks (espe-
cially Conv-AE) have been used to learn to reconstruct
normal data. AEs perform well in reconstruction of the
data, on which they have been trained. They encode
the input visual data (a single frame, or a sequence
of frames) into the latent space through an encoder
and reconstruct the input data through a decoding
pathway. For anomalies (the data samples, not seen
in training), it is expected that the reconstruction error
would be comparatively high [62]. An anomaly score
(or vice versa, a regularity score) is normally calculated
from the reconstruction error to indicate the anomalies.
Figure 6 illustrates the process of reconstruction-based
video anomaly detection.

One of the first and noticeable works in this field
is proposed by Hasan et al. [62], which uses a Conv-
AE to extract spatiotemporal features from video clips

Fig. 6. Reconstruction-based video anomaly detection, using
AEs. This figure originally appeared in [61].

and calculate the anomaly score from the reconstruc-
tion error. Although it uses a group of consecutive
frames as input, instead of a single frame, to enforce
the model to capture temporal dependencies, the 2D
convolution destroys the temporal information, after
the first convolution layer [63]. This issue has been
addressed in [17], which proposes a Conv-LSTM-AE to
learn spatiotemporal features. The model extracts the
spatial features of the frames, by a Conv-encoder, and
passes them to a LSTM encoder to track temporal vari-
ations; the output goes through a reverse (temporal
and spatial) decoder to reconstruct the frames group.
Conv-LSTM-AE has also been used in [64] for anomaly
detection. In other similar works such as [46] and [65] a
similar approach has been used for anomaly detection;
however, they model normal data by minimizing the
difference between the latent spaces of the input frame
and the reconstructed frame, in addition to minimizing
the reconstruction error of the frame itself. The work
in [66] proposed to reconstruct the optical flow map
of each frame, in order to consider the motion and
to detect the anomalies in video. Moreover, some
other researchers have proposed the concatenation
of the appearance (frame) and motion data (optical
flow), as an input, for the purpose of reconstruction.
Nguyen and Meunier [43] proposed to use two dif-
ferent branches for motion and appearance, in order
to capture the correspondence between them and to
detect the anomalies more effectively. In this way, one
branch is in charge of frame reconstruction (captur-
ing spatial dependency) and the other one attempts
to estimate the optical flow map, to capture motion
dependency, customized for the task. Different models
that have been applied for representation learning or
reconstruction-based anomaly detection are as follows:
PCA [67], classic AE [62], Conv-AE [62], Contractive-
AE [68], Conv-LSTM-AE [17], [22], Hybrid Spatio-
Temporal Autoencoder [69], Denoising AEs [70] and



VAE [71], GRU-AE [72]. Some of the other examples
in this field are [57], [73], [74], [75], [76]. Manassés et
al. [77] study the deep convolutional auto-encoders for
anomaly detection in videos.

3.4 Challenges of Auto-encoders for anomaly de-

tection

The challenges and shortcomings of Auto-encoders in
anomaly detection are:

1: AEs have a high learning capacity and a good
power of generalization. Hence, the assumption that
anomalies have a high reconstruction error is not
always true [3], [78].
2: When an AE is trained to minimize the Mean
Square Error (MSE) of frame reconstruction, the
network actually learns the average of previously seen
training data.
3: Anomalies occurring in small regions can be
neglected, because of the adding and averaging
process for the entire frame, which may produce a low
reconstruction error for anomalies in small regions
[43].

3.5 Generative models for reconstruction

Generative Adversarial Networks (GANs) and Vari-
ational AutoEncoders (VAEs) are also widely used
in reconstruction-based anomaly detection methods.
The main difference between these methods and pre-
viously introduced approaches is that these methods
consider the distribution similarity, in addition to
pixel-wise similarity (conventional reconstruction cost
in AEs). Some of the noticeable AD works, based on
GANs, include the researches conducted by Zenati et
al. [79], Kimura et al. [80], Akcay et al. [81], Akcay
et al. [82], Sabokrou et al. [83], Gherbi et al. [84]] and
Ganokratanaa et al. [85]. Zenati et al. [86] and Donahue
et al. [87] use a biGAN to map a latent space to an
image and use it for anomaly detection. Gans have
promoted the performance for various AD approaches,
especially prediction-based approaches. However, as
GANs may show instability during training, their us-
age for anomaly detection may be limited. Hence, in
order to address this problem, in addition to compar-
ing frames, extracted features are also compared to
calculate the loss [81]. Galeone et al. [88], Rani and
Sumathi [89] have, comprehensively, studied GANs
for anomaly detection. Figure 7 shows 3 state-of-the-
art GAN-based AD architectures.

3.6 Prediction-based methods

Prediction, here, means the estimation of future
frame(s), based on previously seen frames. In
prediction-based anomaly detection methods, it is

assumed that predictive models, which are trained
on normal sequences (previously seen frames), can
precisely predict the future frame(s) in normal test
sequences but their prediction error would be com-
paratively high in abnormal test sequences. Thus, in
video anomaly detection, video frames are considered
as sequences and the goal is learning the normal
patterns (appearance and motion), in consecutive nor-
mal frames and predicting the coming frame, based
on the learned patterns. The prediction error can be
easily calculated by measuring the difference between
real and predicted frames or by calculating the con-
ditional probability of a new observation based on
the previous samples [9]. Different constraints have
been used for anomaly detection, in prediction-based
frameworks, such as appearance (gradient and inten-
sity) and motion [3]. Experiments in [3] show that
predicted frames for abnormal samples are unclear
and usually with color distortion and it is claimed that
among several networks, GANs show better results for
video prediction. Wang et al. [90] report that feature
extraction, through the prediction process, has high
quality and it is more suitable for video analyzing
applications, since accurate prediction highly depends
on high quality features. It is worth mentioning that,
in prediction-based methods, the input and output are
not necessarily of the same type or size and they can
be different, in different approaches. For example, [91]
takes advantage of two cross-domain generators, in
which one learns predicting the past gradients from
appearance and the other learns the reverse, for local
anomaly detection. Prediction-based video anomaly
detection strategy has been utilized in numerous re-
search studies such as: [3], [92], [93], [94].

3.7 Prediction versus Reconstruction

A prediction-based method attempts to obtain the
most information from the most recent frames, as they
are more relevant to the future frame [22]. Hence,
predictive methods lose a lot of information about the
past and their generic (general) prediction would be
less precise. Moreover, Pathak et al. [59] declare that as
nearby frames are visually similar (considering the tex-
ture and the color), they might focus on learning low
level features instead of high level semantic features.
Reconstruction, on the other hand, attempts to learn
an obvious representation from data [22] and in fact,
it memorizes the input [9] and considers all frames
almost equally. In this way, it neglects the temporal
evaluation between frames. To address the mentioned
challenges, a composite approach has been proposed
to benefit from the advantages of both methods [72],
[96], [97]. The proposed LSTM-AE networks are com-
posed of two branches, one for reconstruction and
one for prediction. These branches have an encoder
in common but with two separate decoders. One of



Fig. 7. Different GAN-based AD methods [81]. A: AnoGAN [95], B:Efficient-GAN-Anomaly [86]. C: GANomaly [81].

the challenging aspects of both prediction based or re-
construction based methods is that even slight lighting
variations may cause a high pixel-based loss, which
can be deceptive. Moreover, these approaches gener-
ally train the model (reconstruction or prediction) from
scratch, in an unsupervised manner, and the entire
frame or only proposal patches are reconstructed or
predicted. Hence, these approaches are not aware of
the class of the objects in the frames, or in the proposal
patches. To address these challenges,researchers such
as Bergmann et al. [98] use a pre-trained network
(trained on natural images) as the encoder. Producing
the latent space in this way, helps the network lever-
age prior knowledge about the nature of the natural
images and tackle the issue to some extent.

Fig. 8. Combination of frame reconstruction and prediction for
anomaly detection in video [96].

3.8 Object-centric based methods

As mentioned before, one of the main shortcomings
of the methods based on frame reconstruction or
prediction is that they do not explicitly (and hence
effectively) consider the objects. Object centric
approaches concentrate on detected objects (detected
by state-of-the-art object detectors) and study their

appearance and motion features to make decisions.
The researach conducted by Ionescu et al. [99] is
one of the recent works on video anomaly detection
that detects objects of interest to accomplish anomaly
detection. Moreover, Doshi and Yilmaz [100] propose
an object centric approach, in which objects of
interest in each frame are detected by a pre-trained
YOLOv3 object detector and consequently, a feature
vector containing appearance, motion, and location
information is extracted to learn normal behaviors.
Unlike Ionescu et al. [99], this method considers
location information by containing a summary of
location information in its provided feature vector.
Other researchers have also detected anomalies by
detection of objects [101], [102], [103], [104]. The
advantages and challenges of object-centric based
methods are:

- The objects are explicitly considered, which is
helpful in video understanding.
- The anomalies are easily located inside the frame.
- These methods extract and consider short term
motion information.
- The performance of the method completely relies on
the object detection part.
- Information regarding the object size and he context
(such as the location information) is removed as these
methods crop and resize the detected objects.

Fig. 9. An object-centric video anomaly detection method, pro-
posed in [99].



3.9 Segmentation-based methods

Krzysztof et al. [105] perform the anomaly detection
task in a different way. The proposed idea arises from
the fact that a semantic segmentation approach can
segment the objects properly, if it has observed them
in the training phase and it would show worse results
for unseen objects. This fact can be used for image
anomaly detection. The researchers propose to synthe-
size the image from produced semantic segmentation
maps and the reconstructed images help to define and
locate the novel objects. The positive point of this
method is object type awareness, however this method
is proposed for images, not videos. Another research
[106] proposes a similar anomaly detection approach,
based on foreground segmentation and detects the
unexpected objects (i.e., objects not seen in the train-
ing samples). However, this work also does not take
actions and events into account.

Fig. 10. Anomaly detection, based on semantic segmentation
[105]. a: input frame. b: extracted semantic segmentation map.
c: resynthesized frame from segmentation map. d: difference of
input and resynthesized frame. The image in this example comes
from the Lost and Found dataset [107].

3.10 Memorization-based methods

One of the main challenges with previous methods
is that DNNs (and especially CNNs) are so power-
ful in generalization, that they may reconstruct the
abnormal frames too well. Hence, the assumption
that the reconstruction error is comparatively high for
abnormal test frames is not always true. In order to
address this problem and reduce the representation
power of DNNs, memorization-based anomaly detec-
tion methods have been proposed. These methods
use the encoding of the input frame as a query to
select the most relevant saved items, from the recorded
prototypical patterns of normal data, to reconstruct the
input frame. Consequently, the previously recorded
items are decoded and selected from memory, instead

of using the output of the encoder directly. For ex-
ample, Gong et al. [108] proposed MemAE (Memory
augmented AutoEncoder) which learns and updates
the memory contents, during training, to represent
the prototypical elements of the normal data. In the
test phase, the memory is fixed and reconstruction is
performed using items selected from the memory (see
Figure 11 and 12). Moreover, Park et al. [109] propose a
similar strategy for anomaly detection and reconstruct
or predict a video frame with a combination of items in
the memory, rather than using CNN features directly
from an encoder. In this work, items in the memory
record prototypical patterns of normal data and the
diversity of normal patterns is considered explicitly,
since the authors believe that a single prototypical
feature is not enough to represent various patterns of
normal data.

3.11 Shortcomings or challenges of previous

methods

Various DL-based semi-supervised video anomaly
detection methods were critically analysed in the
previous sections. Based on their experiments and
conclusions, some challenges and shortcomings can
be summarized as below:

1: Previous reconstruction/prediction based methods
usually reconstruct/predict the entire frame and
consider the frames and the motion with a global look.
They do not consider the objects and other details
individually. Some other methods only attempt to
focus at reconstruct or prediction of the objects, and
therefore fail to consider the context. Hence, almost all
existing methods neglect some important information
in their algorithm.
2: A considerable portion of spatiotemporal
information in frames is redundant, and is not
required in scene analyzing or video understanding.
This leads the network to divide its attention to a
variety of aspects (including these redundant parts)
and not to precisely focus on useful portions (for
example, to the objects of interest). This fact plays
an important role in video anomaly detection, since
anomalies generally occur rarely and may occupy a
small portion of a frame. This problem has not been
acceptably covered in existing methods.
3: Loss functions, which direct the network to
capture effective features, do not simultaneously and
effectively apply compactness and descriptiveness
constraints to the feature extraction process.
4: Existing methods do not effectively take the class
of the objects into account. Moreover, the relation
between class of the object of interest, its motion, and
location has not been taken into account effectively.
5: In the existing methods, if an anomaly occupies a
small portion of the frame, its effect could be lost on



Fig. 11. Illustration of the memorization-based anomaly detection [108].

Fig. 12. Diagram of the proposed MemAE [108].

TABLE 4
Comparison of different DL-based AD strategies from different viewpoints. S and ST stand for Spatial and spatiotemporal respectively.

Strategy used for AD Reconstruction Prediction Segmentation Object Centric Memorization

Object class awareness No No Yes No No
Generalization of model to anoma-
lies

Yes Yes Low Yes No

Extracted features ST ST S1 ST2 ST
Used DNNs AE, Conv-AE Conv-

LSTM-AE,
GANs,Unet

GANs AE, Conv-AE AE, Conv-AE

Aware of environment and contex-
tual information (location, time)

Implicitly Implicitly No No Implicitly

Some examples [17], [62], [66] [3], [7], [90] [105] [99], [101], [102],
[103], [104]

[108], [109]

the anomaly score of the frame. On the other hand,
even object-centric methods may also have a difficult
time detecting such small objects.
6: The currently used approach for the calculation
of the reconstruction error is not reliable. Any small
changes in all pixels (for example illumination changes
in the environment) can result in a high change in
reconstruction error.
7: Holistic models, trained on a scene, may not
perform well after a change in the scene or view point.
8: In existing methods, the fusion of different anomaly
scores (e.g., motion anomaly score, appearance
anomaly score, etc.) do not apply the effect of all
factors effectively and one factor may dominate others
and lead to underestimation of other factors.
9: DNNs trained on normals may sometimes be
generalized too well on anomalies.

4 EXPERIMENTS AND RESULTS

In the previous sections, critical review and analysis of
different methods were provided based on the results
of previous research studies. These analyses would
also be concluded logically, considering different
factors such as the architecture of the proposed
network, target function, considering results of similar
applications, etc. This section provides the results
of experiments that we conducted to clarify some
of the points which have not been considered and
discussed in the previous works. These points can
be listed as follows: effect of the number of the
foreground objects, effect of the camera distance (or
the object size), awareness of the method concerning
the class of the objects, effect of motion patterns and
illumination changes. To analyze these points, two
state-of-the-art methods were implemented, from
which we draw conclusions for these methods and



also for other methods which have similar parts or
steps in common. These experiments were conducted
from a different point of view: examining the failures
of methods in some frames. In other words, instead of
comparing the performance of different methods by
numbers, we attempt to highlight the strengths and
weaknesses of different methods so that they can be
considered and addressed in future works in order to
reduce false positives and false negatives.

First, we implemented the method proposed by
Hasan et al. [62] which uses a Conv-Autoencoder
for anomaly detection. It is worth mentioning
that Hasan et al. conducted experiments on
two different autoencoder architectures: Fully
Connected Autoencoder (FC-AE) and Convolutional
Autoencoder (Conv-AE). In addition to the
experimental results that they provided, it also can
be concluded (considering the network architecture)
that FC-AE destroys the structure of the image and it
could not show comparatively promising results for
image processing. Hence, we do not implement that
part. To train the Conv-AE, we implemented the same
architecture and used the same hyperparameters as
originally proposed (The implemented architecture is
shown in Figure 13).

After training the model on the UCSD dataset,
we performed an evaluation on its test dataset. We
calculated the reconstruction error and consequently
the regularity score for each frame as in equations
1 and 2. In these equations, s(t) and e(t) show the
regularity score and reconstruction error of the frame,
respectively. I(x,y,t), e(x,y,t) also refers to the intensity
and the reconstruction error of the pixel.

e(x, y, t) = ‖I(x, y, t)− fw(I(x, y, t))‖
2 (1)

S(t) = 1−
e(t)−minte(t)

maxte(t)
(2)

As can be seen in Figure 14, the results of the
experiments show that this method fails when the
number of foreground objects is considerably variable
in different frames. As Figure 14 shows, when the
number of the foreground objects is high, we would
have a lower regularity score (or higher reconstruction
error) for the frame. This is because each object,
more or less, has a reconstruction error and as the
number of the objects rises, the total reconstruction
error of the frame, which is the sum of the errors
of the foreground objects and the background (BG),
increases. From another point of view, as Figure 15

shows (This figure originally appeared in [62]), the
most regular frame for each scene is an image quite
similar to its BG. BG pixels are the constant and the
most frequent pixels in all images during training and
the network easily learns them. The reconstruction
error of the frame is due to the difference between
the input frame and the most regular frame (let us
assume BG here), and is thus directly affected by the
number of objects. It can be concluded that, for cases
in which the class of the objects defines the anomalies
rather than their number, objects should be analyzed
individually (as with object-centric approaches)
instead of evaluating the entire frame at once. We also
repeated the same analysis for the training samples
(Figure 16) and the experiment confirms the previous
results. That means that the reconstruction error of
the frames with high populations (even if they do not
contain any anomaly) is considerably higher than that
of the other frames (even compared to frames with
anomalies).

In most of the recent research studies, the
appearance and motion features were analyzed
separately, in separate branches. In the motion branch,
researchers reconstruct or predict the previously
extracted motion features (such as optical flow or
difference of consecutive frames) to learn the normal
motion patterns. We analyzed the effect of the number
of objects on the results of the motion branch. As
can be seen in Figure 17, the results give rise to the
previous conclusion; if the frame (or the motion map)
is analyzed globally (analyzing the entire frame, not
each object) the reconstruction error would be affected
by the number of foreground objects, rather than the
important anomaly factors.

We should make this point clear that the mentioned
shortcoming has nothing to do with formulating the
anomaly detection as a reconstruction or a prediction
problem but is due to the fact that these methods
consider the frame holistically. As object-centric
approaches analyze each object individually, they do
not face this challenge.

From another point of view, considering the frame
entirely has a strong point: Considering location.
Frame reconstruction or prediction-based methods,
mostly learn a pixel-wise model. This means that they
learn a model for each pixel separately, and pixels at
different locations expect different intensities. Before
examining the experiment results, let us have a second
look at Figure 15-b, for example. Figure 15-b shows
that the most regular frame for the Ped2 has many
dark pixels in the upper side of the walkway. This is
because during training, the network has frequently
seen dark objects in that side. From this image it is



Fig. 13. The architecture of the Conv-Autoencoder proposed in [62] for video anomaly detection.

Fig. 14. Effect of the number of the FG objects on the regularity score (UCSD-Ped1-Test003). (a) Regularity score as a function of
frame number. (b) Samples of frames in the test clip. (c) Reconstruction error map for the input frame (e(x,y,t)).

Fig. 15. (a) Synthesized regular frame for Ped1. (b) Synthesized regular frame for Ped2.

more expected (i.e., it is normal) to see dark objects
in the upper side and the presence of dark objects
in the lower part of the walkway most probably
would be detected as an anomaly. To validate this
idea, we analyzed the response of the network in
some frames of Ped2, which is shown in Figure 18. As
expected, the network considers the position of the
object in the scene and it produces higher error for
objects which are not expected in that location. This
positive feature is missed in object-centric approaches,
as they crop objects out of the frame and analyze
them individually. Thus, the location information is
either lost or not considered. This would produce
false positives and false negatives for object-centric
approaches in different datasets, especially the street
scene dataset. As can be seen in Figure 1, in the Street

scene dataset, the definition of normality (and hence
anomaly) is different for 4 different cars, considering
their locations.

Figure 19 shows the results of anomaly detection
for different sample frames. This figure shows the
input image (a), reconstructed image by the model
(b), reconstruction error map or the differences
between original and reconstructed image (diff) in (c),
and finally (d) indicates the pixels which are most
probably anomalies, by applying a threshold on the
reconstruction error map. This figure highlights a few
points: First, what is missing in existing methods (in
most reconstruction and prediction-based methods)
is that the effect of the distance of the object from
the camera is not considered. As illustrated in the



Fig. 16. Effect of the number of the foreground objects on the reconstruction error (results on Ped2). (a) Reconstruction error (loss
value) for the training frames. (b) A frame with a high number of people. (c) A frame with a low number of people.

Fig. 17. Reconstruction error for motion maps. (a) Reconstruction error (loss) of motion maps for training samples. (b) Motion map of
a frame with a high number of people. (c) Motion map of a frame with a low number of people.

figure, as the car approaches the camera, it occupies
many pixels in the frame and produces a higher
reconstruction error for the entire frame. Hence, the
anomaly score of the frame would be affected by
the factor of object distance. Another point that can
be concluded from the results is that these methods
mostly consider the intensity (or color) of the objects
instead of the class of the objects. As illustrated in
the results, the anomaly points (red points) are only
detected for the pixels which have an intensity which
differs from that of the background and the other
parts of the car are detected as normal. This can also
be concluded logically; in these methods, the model
is trained to reduce the Mean Square Error of the
pixel’s intensity (low-level features), which causes it
to focus on low-level features. On the other hand,
no information regarding the class of the objects is
provided to the model directly.

The method proposed by Hasan et al. does not
effectively consider motion, because as mentioned in
section 3.3, the first convolutional layer destroys the
temporal information. Furthermore, our experiments
do not show any considerable reconstruction error
for objects with abnormal motion (faster motion here)
such as bikers and skateboarders. Although in the
results there is a noticeable reconstruction error for
the cars, due to their different pixel intensity and their
comparatively larger size. Hence, in the second step,
we implemented the method proposed by Chong
et al. [17]. This method benefits from a temporal
autoencoder which is embedded inside the spatial
autoencoder. We implemented the same architecture,
as proposed originally [17]. This architecture is shown
in Figure 20.

The results indicate that the previous challenges in



Fig. 18. Different response of the network to the same pixel intensities at different locations. (a) Reconstruction error map (b) Input
Frame with detected anomalies in red.

Conv-AE such as the effects of distance and number
of objects, unawareness regarding the class of objects,
etc. still exist here, since this approach has similar
strategies (such as evaluating the entire frame at once,
focusing on intensity, etc.). However, as this method
adds a temporal autoencoder to the network, it can
capture motion patterns.

As illustrated in Figure 21, bikers’ bodies (unlike
other persons’ bodies) produce a higher intensity
in error maps. The proposed method explicitly
models the temporal evolution of the frames and
hence can capture motion. However, the produced
reconstruction error for the entire frame again
depends on several factors which may degrade the
effectiveness of the method. As it can be concluded
from these results and also previous ones, these
factors can be: 1) Number of foreground objects: the
number of the objects is more decisive than the effect
of the object motion. 2) Distance from the camera: the
motion effect of an object, in the reconstruction error
map, can be easily neglected if the object is located
far from the camera (i.e., for smaller objects). 3) The
results show that in single path methods (categories
A and C in section 3.1), the effect of the appearance
features may dominate the effect of motion features.

It can be expected that two-branch approaches would
produce better results in considering the effect of the
motion anomalies, as they independently consider
and analyze motion in a different branch. Figure
22 confirms the previous point. In this experiment,
we removed 9 consecutive frames (frame 9 to 17)
to synthetically generate a sudden motion between
frames 8 and 20. Through these frames, all objects
inside the scene are normal objects. In other words,
we synthetically generated an abnormal motion for
normal objects (i.e., the abnormality is simply due
to the motion factor), and this motion is much faster
than any motion in the clip. However, as Figure 22
indicates, the regularity score is not considerable.

In another experiment, in order to analyze the
effect of lighting changes in the scene we made
changes in the brightness of some test frames. For this
purpose, the pixel intensity of entire pixels in a test
frame was multiplied to 1.3, and the reconstruction
error map was extracted for the original test frame
and the newly generated frame. The results, shown
in Figure 23, indicate that by lighting changes
in the frame, the reconstruction error map varies
considerably, which effects the performance of the
method. In other words, this not only shows that the



Fig. 19. Effect of the camera distance and pixel intensity on anomaly detection (results are provided for UCSD-Ped1). (a) Input frame.
(b) Reconstructed frame. (c) Difference between input and reconstructed frame (reconstruction error map). (d) Result of anomaly
detection (anomalous pixels are indicated in red).

Fig. 20. The proposed Conv-Lstm-Autoencoder in [17]. (a) The entire architecture. (b) The temporal autoencoder.

system is vulnerable to lighting changes, but also that
the system considers low-level features instead of
focusing on high-level ones.

Experimental results in Figures 24 and 25 illustrate
the dominance of some factors such as intensity and
distance on the class of the objects (which is the reason
for the definition of the anomaly here). In Figure 24,
the top two frames are both normal frames, however
the second one would most probably be detected as an
anomaly. In Figure 25, the frame in row 4 contains an
anomaly in the far distance which results in producing
a higher regularity score compared to row 1 which
only contains normal objects.

In the final step, we carried out a test to evaluate
how effective object-centric approaches could be, in
considering the class of the object and identifying
abnormal objects. Object-centric approaches, as

discussed in section 3.8 and as observed in Figure
9, crop objects out of the frame and train a network
(usually an autoencoder) to learn normal patterns.
However, as the experiments show, reconstructing a
frame or even the appearance of objects individually,
does not necessarily lead these approaches to consider
the class of the object. This is mainly due to the fact
that training an AE for the purpose of reconstruction,
mostly focuses on the intensity (or color). What object-
centric approaches mainly contribute, is focusing
on the object, rather than other factors (such as BG
or the number of objects, etc.). In order to validate
this idea, we separately trained and evaluated two
autoencoders with, respectively, cropped images of
objects and their class-level features, which were
extracted by a pre-trained CNN. For this experiment,
two groups of images were prepared and named
‘Normals’ and ‘Abnormals’. The Normals group



Fig. 21. Results of Conv-Lstm-AE on Ped1 (Test033). (a) Regularity score of the clip. (b) Input frames. (c) Reconstruction error map
for the input frames.

Fig. 22. Regularity score for different motions. (a) Regularity score for an original test clip (ped1-test016). (b) Regularity score for the
same clip with synthesized large motion.

contains all of the cropped objects of the same
group (here, images of people) and the Abnormals
group contains cropped images of different types of
objects (such as vehicles, bicycles, bikes, etc.). The
Normals and Abnormals groups present normal
and abnormal objects, respectively. Then, using a
pre-trained VGG19, the class-level (i.e., features of the
last layer), and color-level features (i.e., features of
the first layer) were extracted for each group. Each
network was trained and evaluated separately with
images of normal objects and their class-level features.
The evaluation was caried out on both normal and
abnormal groups, the results of which are shown in
Figure 26.

Results in Figure 26 show that the networks trained
on images of the normal objects (Figure 26-a), or their
low-level features (Figure 26-b) cannot effectively
discriminate between normal and abnormal objects.
Although frame reconstruction shows better results
(in discriminating between normal and anomalies)
compared to the low-level feature reconstruction
method, it is not effective for anomaly detection.
We believe that in frame reconstruction, the network
implicitly considers some other features from the
image, in addition to pixel intensity or color. However,
the results of Figure 26-c show that training the
network on class-level features (directly providing
high-level features) helps the network effectively
discriminate between normal and abnormal objects



Fig. 23. Effect of lighting changes on the reconstruction error map. (a) Input frames. top: original frame, bottom: the same frame after
increasing the pixels intensities. (b) Reconstruction error map.

Fig. 24. Results of Conv-Lstm-AE on Ped1 (clip 016). (a) Regularity score of the clip. (b) Input frames. (c) Reconstruction error map
for the input frames.

and improves the performance. As it can be concluded
from this experiment, object-centric approaches do
not effectively consider the class of the objects for
discriminating between normal and abnormal objects.

Before summarizing the results, it is worth
mentioning that these experiments do not target
all proposed methods in the mentioned categories.
However, they show that all these methods should
consider the mentioned points (also summarized
below) to reduce the false positives and false
negatives. In summary, our experiments highlight
these points:

1) Methods which focus on low-level features (in
their loss or target functions) do not effectively
discriminate between normal and abnormal frames
which are defined based on the class of the object.
These methods are also vulnerable to illumination
changes.
2) Methods which consider and analyze the frames

entirely, instead of analyzing each object individually,
will fail when the number of the foreground objects is
considerably variable in different frames.
3) Object-Centric methods are not affected by the
number of foreground objects. However, they do
not consider the environment information (BG
information, location, etc.). Moreover, although they
focus on objects (rather than redundant information
such as BG), they are not aware of the class of the
object if they reconstruct the cropped image in order
to learn appearance patterns.
4) It is probable that in single-path methods, which
analyze appearance and motion simultaneously,
the motion information may be dominated by the
appearance. Two branch approaches, analyze the
appearance and motion separately; hence their effect
can be applied separately for the task.
5) The effect of the camera distance (or object size)
should be considered in the methods. Objects closer
to the camera usually have more effect on the frame
anomaly score.



Fig. 25. Results of Conv-Lstm-AE on Ped1 (clip 020). (a) Regularity score of the clip. (b) Input frames. (c) Reconstruction error map
for the input frames.

Fig. 26. Reconstruction error for Normal and Abnormal samples. (a) Reconstruction error for images. (b) Reconstruction error for
low-level features. (c) Reconstruction error for class-level features.

TABLE 5
Advantages and challenges of different DL-based semi-supervised AD methods.

AD strategy Strong points shortcomings

Reconstruction based Implicitly aware of the environment. *Unaware of the object class.
*The model would be generalized to abnor-
mals.

Prediction based Implicitly aware of the environment. *Unaware of the object class.
*The model would be generalized to abnor-
mals.

Object centric methods Focuses on the objects. *The performance is dependant on the object
detection step.
*Unaware of the environment.

Segmentation based Is aware of the class of the object. *Only detects the unexpected objects and is
unaware of motion features.

Memorization based Model is not generalizable to abnormals. *Produced anomaly scores would be equal for
different frames if their latent spaces are close
to each other.

5 CONCLUSION

In this survey, recent DL-based semi-supervised
video anomaly detection approaches and different



TABLE 6
Some of the state-of-the-art DL-based semi-supervised AD methods.

State of the art methods Strategy for AD DNN used in
the method

Special points

Hasan et al. [62] Reconstruction Conv-AE *The proposed model (Conv-AE) does not con-
sider temporal patterns effectively.
*Not aware of the class of the objects.
*Has difficulty detecting anomalies in small
regions.

Chong et al. [17] Reconstruction Conv-LSTM-
AE

*Considers the evolution of frames.
*Not aware of the class of the objects.

Akcay et al. [81] Reconstruction Conditional
GAN

*In addition to minimizing the distance be-
tween input and reconstructed images, dis-
tance between latent spaces is also minimized.

Ravanbakhsh [110] Reconstruction GAN *Benefits from generating optical flow images
from raw-pixel frames and vice versa for AD.

Liu et al. [3] Prediction GAN (Unet
for generator)

*Not aware of the class of the objects.

Ionescu et al. [99] Object centric AE *Focuses on the objects but does not consider
the environment.
*The performance is dependant on the perfor-
mance of the object detector.

Gong et al. [108] Memorization AE *Benefits from a memory module and hence
AE, here, is not generalizable to anomalies.

Park et al. [109] Memorization AE *Considers the diversity of normal patterns ex-
plicitly.
*AE, here, is not generalizable to anomalies.

DNNs, considering their use in anomaly detection,
are reviewed. As DNNs are the main tool for different
parts of the task (e.g., feature extraction, decision
making), the survey began with a study of DNNs.
Different DNNs are reviewed and analyzed from
different points of view, such as spatiotemporal
feature extraction, pattern learning, and compatibility
with different data types. Moreover, their applicability
for different parts of anomaly detection methods
are stated, providing some points regarding their
special attributes and challenges. Hence, researchers
can choose the most suitable DNN for different parts
of their anomaly detection method, based on their
approaches. In the final section, different anomaly
detection methods are critically reviewed. First, the
methods are categorized based on spatiotemporal
feature extraction process and then the survey
analyzed them based on the strategy they commonly
used for anomaly detection. Moreover, almost all of
the recent approaches and state-of-the-art methods in
the field is covered in this review, thereby providing
a global but comprehensive look on the field for
researchers, by describing essentials, positives points,
shortcomings and challenges of each categorization
and approach, which can be the subject of future
work. Tables 4 and 5 summarize different reviewed
anomaly detection strategies and Table 6 presents
some of the state-of-the art research in this field.

Effective detection of video anomalies (similar to
other applications requiring a good understanding of

videos) requires joint consideration of different re-
quirements, such as, extracting effective appearance
features, capturing motion and extracting effective
temporal features, separately capturing and analyzing
different moving objects in the scene (for most appli-
cations), considering the context and the environment
information, etc. However, each proposed method
has addressed only one or a few of the mentioned
requirements and almost all methods are unable to
effectively and jointly consider all of the aspects. This
issue should be addressed in future work by properly
combining existing methods, considering their capa-
bilities and the capabilities of different DNNs.
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