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Abstract
Food plays an important role in our lives that goes beyond mere sustenance. Food affects
behavior, mood, and social life. It has recently become an important focus of multimedia
and social media applications. The rapid increase of available image data and the fast evo-
lution of artificial intelligence, paired with a raised awareness of people’s nutritional habits,
have recently led to an emerging field attracting significant attention, called food computing,
aimed at performing automatic food analysis. Food computing benefits from technologies
based on modern machine learning techniques, including deep learning, deep convolutional
neural networks, and transfer learning. These technologies are broadly used to address emerg-
ing problems and challenges in food-related topics, such as food recognition, classification,
detection, estimation of calories and food quality, dietary assessment, food recommendation,
etc. However, the specific characteristics of food image data, like visual heterogeneity, make
the food classification task particularly challenging. To give an overview of the state of the
art in the field, we surveyed the most recent machine learning and deep learning technolo-
gies used for food classification with a particular focus on data aspects. We collected and
reviewedmore than 100 papers related to the usage of machine learning and deep learning for
food computing tasks. We analyze their performance on publicly available state-of-art food
data sets and their potential for usage in multimedia food-related applications for various
needs (communication, leisure, tourism, blogging, reverse engineering, etc.). In this paper,
we perform an extensive review and categorization of available data sets: to this end, we
developed and released an open web resource in which the most recent existing food data
sets are collected and mapped to the corresponding geographical regions. Although artificial
intelligence methods can be considered mature enough to be used in basic food classification
tasks, our analysis of the state-of-the-art reveals that challenges related to the application of
this technology need to be addressed. These challenges include, among others: poor repre-
sentation of regional gastronomy, incorporation of adaptive learning schemes, and reverse
engineering for automatic food creation and replication.
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1 Introduction

Background Food is an essential part of human life, not only as a biological need to sustain our
daily activities and to keep an adequate health status, but also formood balancing, leisure, and
self-satisfaction. The complex function of food has thus led to the aphorism “eating for living,
or living for eating”, indicating the different attitude towards food as need or as pleasure. The
rapid evolution ofmultimedia technologies immediately reflected this natural human attitude,
and it is nowadays common practice to immortalize dishes and meals through digital pictures
and to share convivial or individual food-related experiences, like a particularly well done
self-made dish, or a particularly yummy and well-presented restaurant meal. Just to provide
an example of how much social media are focused on food, at the time of writing this report,
the hashtag #food in Instagram appears in more than 484 million posts, while various other
associated hashtags easily reach 100 million pictures (like #foodporn, #foodie, #instafood,
etc.). At the same time, the rise in the importance of food in media communication has led
to the emergence of new professions such as “food blogger” or “food influencer”, people
who extensively use digital media to inform about recipes, dishes, restaurants for reviewing
or marketing purposes [72]. Concurrently, the recent explosion of artificial intelligence (AI)
has affected the performance and experience of multimedia systems across all domains. As a
result, various applications related to food computing are continually being designed and are
routinely used for activities associated with everyday meals. Out of the increasing interest to
support various needs and the recent availability of public data, a new computing field called
food computing concerned with automated food analysis has recently emerged [2, 93].

Problem The main challenges addressed by the field are related to the classification and
recognition of food images, that, compared to standard image classification tasks, is consid-
ered more difficult for the following reasons:

• Data variability: numerous environmental and technical factors can become nuisances
that affect the performance of food classification, such as lighting conditions, noise,
occlusions, camera angle and the quality of images. Furthermore, variations in appearance
due to different cooking styles, ingredients, and culinary cultures can complicate the
classification problem [6].

• Visual variability: Automatic classification of food from images is a fine-grained
classification problem [46], and it is affected by two significant issues: inter-class vari-
ance and intra-class variance: inter-class variance relates to food items that exhibit
visual similarities despite belonging to different categories. For instance, visually dis-
tinct food items like a salad and a pizza may share certain appearance characteristics,
such as round shapes, vibrant colors, and toppings. Intra-class variance, instead, refers
to images within the same food category that exhibit considerable visual variations
due to factors such as cooking styles, ingredients, presentation, and cultural influ-
ences. For example, pizzas with different crusts, toppings, or cooking times all fall
under the same category. Figure 1 shows some examples of inter-class and intra-class
variance.
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Fig. 1 Inter-class and intra-class variance in the Food-101 [9] data set.Top row: inter-class visual similarity.
Bottom row: high intra-class variability

This field is especially fueled by deep learning and Convolutional Neural Networks
(CNNs), which have extensively improved the accuracy of object detection, identification,
and localization from single pictures [104]. Hence, in the context of food computing,machine
learning approaches have been applied especially for: food detection [104, 105], food recog-
nition [17, 76, 101, 104, 113, 128], food segmentation [28, 30, 73, 83, 103], food-tray
analysis [2, 87, 95], food classification [2, 4, 19, 97, 102], ingredient recognition [13, 57,
85], food quality estimation [40, 51, 55], calorie counting [23, 56, 65, 99], and portion
estimation [22, 43].

Numerous efforts have been geared towards health-related targets in order to provide
nutritional guidelines to users, such as calories and nutrition estimation [3, 113], food rec-
ommendation related to specific health conditions [93], ingredients recognition for people
suffering from allergies, and many more (see Fig. 2).

Aim and contributions Recent surveys about food computing [11, 53, 64, 78, 110] mostly
target health related applications due to their enormous impact on society: they overview
the technical aspects of computer vision approaches employed for recognition and classifi-
cation. In contrast, this report surveys recent literature from a data perspective: we place
special emphasis on the data sets used in and generated by previous work. In particular, we
wish to understand data sizes, geographical coverage, and how multimedia and social media
technologies in food computing leverage these data sets. Our main contributions to the field
are:

1. We provide a critical analysis of recently published AI-based methods for automatic food
computing, with a focus on the data sets used and generated.

2. Weprovide a critical analysis of recently published data sets and investigate their coverage
in terms of represented cultural and regional environments, with the goal of geographical
and geo-referenced classification. To this end, we release a public web resource listing the
currently available data sets, andwe indicatewhich areas of theworld are still not covered.
Researchers can access our web resource at https://slowdeepfood.github.io/datasets/.

3. We discuss remaining challenges in the field from a multimedia perspective, the future of
food computing for personal and regional applications, and the challenging connections
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Fig. 2 Mobile applications for food analysis. (a) Kawano et al.’s app [50]. (b) Ingredients recognition and a
cooking recipe recommendation [69]. (c) Calories estimation [113]. (d) Real-time mobile application classi-
fication on Pizza-Styles [29]. (e) Real-time mobile application classification on the GCC-30 data set [29]

to robotics for automatic food creation. To this end, we try to indicate possible directions
for future research efforts.

Methods We survey more than 100 papers, with topics related to:

• application of machine learning and deep learning to food computing tasks, like food
detection, food recognition, and food classification tasks;

• available food image data sets for training and testing machine learning models;
• available food computing applications.

Search queries We obtained the corpus of surveyed papers through searches on popular dig-
ital libraries: Google Scholar, IEEE explorer, Springer, ACM Digital Library, and arXiv. We
used the following query, combining relevant keywords: (“Machine learning” OR “Neural
network” OR “deep learning”) AND (“Food applications” OR “Food detection” OR “Recog-
nition”OR “Food computing”)AND“Data set*”. The body of research in this area is growing
rapidly and this survey covers the period between 2010 and 2022. Descriptive statistics of
published papers according to their category and year are shown in Fig. 3, left.

Inclusion & exclusion criteria In this survey, we only consider peer-reviewed papers and
arXiv pre-prints that were published between 2010 and 2022. We excluded all papers written
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Fig. 3 Left: Categorization of the reviewed literature based on year and number of papers. This survey covers
the period from 2010 to 2022 and focuses on machine learning, deep learning approaches, applications, and
data sets in the food computing domain. Right: An overview of machine learning and deep learning pipelines.
(a) Traditional machine learning approaches require manual feature extraction. (b) Modern deep learning
approaches remove the human labeling bottleneck and automate all processes in an end-to-end framework

in languages other thenEnglish.We furthermore exclude papers that present a food computing
methodology that is not specific to a given data set.

Article organization The rest of this article is organized as follows. Section 2 presents the
machine learning (Subsection 2.1) and deep learning approaches (Subsection 2.2) applied to
food analysis. Section 3 provides a critical analysis of food data sets, and a description of
the web resource for publicly available data that we created. Finally, Section 4 highlights the
remaining challenges in food recognition and classification and suggests potential avenues
for future investigations.

2 Overview of food classification approaches

The aim of this survey is not to provide an extensive overview of all methods developed
for addressing the food classification challenges; we refer readers to the recent surveys
specifically targeting that topic. Albeit many new frameworks have been recently proposed,
Min et al. [78] provide a complete review of food computing up to 2019, mostly targeting
the use of machine learning approaches for classification of images containing food-related
content. Additional surveys [53, 64, 110] focus more on volume quantification and caloric
estimates for dietary assessment.

Here, we will provide a brief analysis of current technologies and the data sets used, and
we provide guidelines for future development and applications. In general, food classification
methods can be subdivided into twomacro categories, corresponding to two different periods
of technological advance in the field of machine learning, especially in computer vision and
image processing. We observe:

• a first period characterized by the use of traditional (i.e., “shallow”) machine learning
methods, more or less spanning the time between 2010 and 2016;

• a second period characterized by the use of deep learning and transfer learning, that started
around 2016 when CNNs began to gain popularity in the computer vision community.

Figure 3 right illustrates the two macro categories for image classifications in the food
computing domain.
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2.1 Traditional machine learning approaches

We characterize traditional machine learning as being composed of building blocks like
modeling, extracting and quantifying geometry, and designing visual and categorical features
from images. The process involves human engineering efforts and subjective analysis for
modeling and discriminating the most descriptive and significant features for a given task.
Since an exhaustive review of such methods is out of the scope of this survey, we only briefly
review the most common methods for feature composition and supervised classification in
the context of food computing. We then discuss their practical limitations.

Starting from feature design, the following popular feature-based composition methods
have been considered by the community and successfully applied in food classification tasks.

• Gabor filters [88] are linear filters that perform a directional frequency analysis around a
point of interest. They are motivated by an attempt to emulate the human visual system.
Gabor filters can be understood as band-pass filters obtained by modulating a Gaussian
kernel with a complex, sinusoidal planar wave.

• Local Binary Patterns (LBP) [15] are visual feature vectors obtained by partitioning
the image into uniform cells, and by deriving a bit-string according to the comparison
between neighboring pixels. The resulting bit-string is then used for creating a normalized
feature histogram.

• Bag of Feature (BoF, or Bag-of-visual words) [24, 37, 112] techniques aggregate features
through clustering which are then encoded to create synthetic codebooks for classifica-
tion.

• Histograms ofOrientedGradients (HOG) [70, 94] consider the occurrences of discretized
gradient orientations in portions of an image. A subsequent binning process on a uniform
grid is used to compute a histogram that can be used as a feature vector for classification.

• Scale Invariant Feature Transforms (SIFT) [70] consist of extracting key points of objects.
Candidate matching of features is then performed using the Euclidean distance between
feature vectors. Themethod benefits from efficient hashing on top of a generalisedHough
transform.

• Bag-of-Textons [24, 117] The concept of Bag-of-Textons is inspired by the Bag-of-
Wordsmodel commonlyused in natural languageprocessing. In theBag-of-Wordsmodel,
documents are represented as collections of individual words, and focusing on their
frequency of occurrence. The Bag-of-Textons model represents an image as a collection
of local texture patterns and their spatial arrangement. Bag-of-Textons has been widely
used in computer vision studies for texture analysis and image classification.

• Pairwise Rotation Invariant Co-occurrence Local Binary Pattern (PRICoLBP) [24, 90]
enhances LBP by incorporating multi-orientation, multi-scale, and multi-channel infor-
mation. Unlike LBP, which considers only a single circular neighborhood around each
pixel, PRICoLBP instead employs pairwise circular neighborhoods. Each neighborhood
consists of a pair of points at a fixed distance and angle from the center pixel.

• Speeded Up Robust Features (SURF) [47] is inspired by SIFT descriptor but is several
times faster and more robust against image transformations. It uses an integer approxi-
mation of the determinant of a Hessian blob detector [60], replacing the original scale
space [61] with the sum of the Haar wavelet response around the point of interest for
performing candidate matching.

Concerning the classification task, the following methodologies have been considered.

• K-Nearest Neighbors (KNN) [12] performs unsupervised classification by capturing the
idea of similarity (or proximity, or closeness) through distance evaluations between the
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feature vectors. A voting scheme depending on the K parameter is used to establish a
partition in feature space.

• Support Vector Machines (SVM) [37] try to compute separation hypersurfaces in the
feature space by minimizing a loss function defining the soft margin of the separation.
Various kernels are available to define the shape of the separation surface.

• Multiple Kernel Learning (MKL) [37] tries various combinations different kernels with
different parameterizations, chosen from larger kernel sets. An optimizer decides how to
choose the best kernel or combination of kernels.

• Random Forests (RF) [9, 75] construct many decision trees as building blocks and use a
majority-voting scheme for performing classification.

• Near Duplicate Image Retrieval (NDIR) refers to the task of identifying and retrieving
images that are visually similar or nearly identical to a given query image from a large
database of images. Farinella at el [24] use NDIR on UNICT-FD889 [24] to evaluate the
performance of the three image descriptors Bag-of-Textons, PRICoLBP, and SIFT.

• Fisher vectors [49, 123] use the Fisher kernel for patch aggregation. After extracting
local features using SIFT and HoG, local extracted features are then encoded into rep-
resentations such as BoF or Fisher Vectors (FV). BoF representation involves clustering
the local features and creating a histogram of the cluster assignments, representing the
frequency of different visual patterns in the image. Conversely, FV captures the statistical
properties of the local features using the mean and covariance matrix.

Most of the proposed food recognition methods mix and match various feature composi-
tion techniques with the aforementioned supervised classification methods. Table 1 provides
an overview of the various attempts together with the reported classification accuracy. We
point out here that traditional methodologies hardly reach 85% accuracy, indicating a per-
formance wall. Consequently, the obtained performance cannot be considered adequate for
many practical applications, especially for dietary assessment. Moreover, during the period
2010–2016 there was a lack of standardization in defining common benchmarks for evalu-
ating the technologies, and most papers used their own image databases. This fact makes it
difficult to carry out a consistent comparison between the various frameworks in terms of
performance.

2.2 Deep learning approaches

Like in other application domains related to image analysis, the introduction and rapid success
of deep neural networks coupled with practical training schemes dramatically affected the
food computing field.Within a few years, most researchers in the community were dedicating
their efforts towards exploiting various deep learning methods for food analysis tasks. As
a result, an increasing number of end-to-end frameworks were presented and released for
practical applications. Concurrently, various food databases were compiled and released to
provide standardized benchmarks for the proposed methodologies. In the rest of this survey,
we will try to categorize the various technologies from a data set perspective. Regarding the
proposed classification frameworks, we identified the following two macro categories:

• frameworks based on design of customized deep convolutional networks (DCNN) mix-
and-match various layers to form a hierarchy able to extract latent features to be used for
classification [62, 63, 68, 124];

• frameworks exploiting pre-trained convolutional neural networks through transfer learn-
ing [10]. Transfer learning gained significant attention in recent years for achieving
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Table 1 Traditional Machine Learning approaches applied to food classification

Study Year Feature Extraction
Techniques

Classifier Top 1 Acc: Top5Acc:

H. Haoshi [37] 2010 Bag of features, color,
texture and HOG

MKL 85.0% 62.5%

Yang [125] 2010 Pair wise local
features

SVM 78.0% –

Kong and Tan [52] 2011 Gaussian Region
Detector,SIFT color
and tamura

MultiClass SVM 84.0% –

Bosh [8] 2011 Haar Wavelet and
local and global
features

SVM 86.1% –

Matsuda and Yanai [70] 2012 HOG, SIFT, color and
texture

MKL-SVM 21.0% 45.0%

Kawano and Yanai [47] 2013 SURF and color SVM – 81.6%

Anthimopoulos [5] 2014 SIFT, color SVM 78.0% –

Kawano and Yana [49] 2014 Color and HOG Fisher Vector 65.3% –

Farinella [24] 2014 Bag of Textons,
PRICoLBP and
SIFT

NDIR 67.5% –

Bossard [9] 2014 SURF RF 50.8% –

Zhu [129] 2015 Color, texture and
SIFT

KNN 70.0% –

Christodoulidis [15] 2015 LBP and color SVM 82.9% –

Farinella [25] 2016 SIFT and Bag of
textons

SVM 75.74% 85.68%

excellent performance at comparatively little computational training cost [2, 18, 29, 42,
46, 81, 109, 122].

2.2.1 Frameworks based on customized deep CNNs

The customizedDCNNmethods have the advantage of integrating “domain knowledge”: they
try to explicitly model specific characteristics of food images for specific tasks. Therefore,
various customized deep learning architectures have been proposed for food classification.
Liu et al. [62] customized the GoogLeNet architecture [106] by modifying the convolu-
tional and pooling layers to automatically derive the food information (e.g., food type
and portion size) from images acquired with smartphones. Martinelli et al. [68] proposed
WIde-Slice Residual Networks (WISeR) by incorporating two main branches within a sin-
gle network, a residual network, and a slice network branch, and by introducing a slice
convolution block able to capture the vertical food layers. The outputs of the deep resid-
ual blocks are combined within the sliced convolution to improve the classification score for
specific food categories. Pandey et al. [86] proposed amulti-layer ensemble network (Ensem-
bleNet) for food recognition that took advantage of three CNN fine-tuned AlexNet [54],
GoogLeNet [106], and ResNet [35]. The classifiers work in an ensemble. Inspired by Adver-
sarial Erasing (AE) [120], Qiu et al. [91] proposed a hybrid adversarial network architecture
called PAR-Net. This network consists of three networks: a primary network to maintain
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the base accuracy of classifying an input image, an auxiliary network that mines discrim-
inative food regions, and a region network that classifies the resulting mined regions. For
targeting visual food recognition on mobile devices, Zhao et al. [127] present a student-
teacher architecture [36] called Joint-learning Distilled Network (JDNet). JDNet performs
simultaneous student-teacher training at different levels of abstraction by exploiting instance
activation maps at various resolutions. Jiang et al. [44] proposed a scheme calledMulti-Scale
Multi-View Feature Aggregation (MSMVFA). This scheme enables two-level fusion: first,
it combines features of different scales for each feature type, and then it aggregates features
from multiple views with varying levels of detail. This approach aims to generate a fine-
grained representation that is more resilient, discriminate, and comprehensive, leading to
improved food recognition. In order to incorporate multiple semantic features in the mod-
eling process, Liang et al. [58] proposed a multi-task learning approach, called Multi-View
AttentionNetwork (MVANet).MVANet considers themulti-view attentionmechanism [100]
to automatically adjust the weights of different semantic features in to enable the interaction
between different tasks. Similarly, Jian et al. [44, 79] exploit distinctive spatial arrangements
and common semantic patterns in food images for developing an Ingredient-Guided Cas-
caded Multi-Attention Network (IG-CMAN). IG-CMAN tries to localize image regions at
multiple scales, ranging from category-level to ingredient-level in a coarse-to-fine manner.
On the technical side, IG-CMAN uses a Spatial Transformer [41] for generating attentional
regions and combine them with Long Short Term Memory [38, 116] to sequentially dis-
cover diverse attentional regions at ingredient levels. Min et al. [80] introduced an approach
called Stacked Global-Local Attention Network (SGLANet), that simultaneously captures
both global and local features, enhancing the overall recognition performance. Min et al. [81]
proposed Progressive Region Enhancement Network (PRENet) that comprises progressive
local feature learning and region feature enhancement. In progressive local feature learning,
a training strategy is employed to acquire complementary multi-scale finer local features,
such as diverse ingredient-related information. The region feature enhancement employs
self-attention to integrate more comprehensive contexts with multiple scales into local fea-
tures, thereby improving their representation. Finally, some frameworks tried to exploit the
advantages of different CNNs by designing ensembles [86] or by considering voting schemes
like in the framework called "TastyNet" [14].

2.2.2 Frameworks based on transfer learning

Transfer learning gained significant attention in recent years for achieving excellent perfor-
mance at comparatively little computational training cost [2, 18, 29, 42, 46, 81, 109, 122].
Various food classification frameworks have exploited transfer learning by considering the
following generic CNN architectures:

• Inception [107, 108] networks, that are deep neural networks consisting of repeating
blocks where the output of a block act as an input to the next block. Each block is defined
as an Inception block. It has been used in three food classification architectures [32, 109,
121]. Specifically, Hassanejad et al. [32] fine-tuned a pre-trained Inception architecture
for classifying food images, Tahir et al. [109] used InceptionNet as feature extractor for
open-ended continual incremental learning, and finally Wibisono et al. [121] customized
InceptionNet for classification of traditional indonesian food;

• GoogleNet [106] is a type of convolutional neural network based on the Inception archi-
tecture. It utilises Inceptionmodules,which allow the network to choose betweenmultiple
convolutional filter sizes in each block. An Inception network stacks thesemodules on top
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of each other, with occasional max-pooling layers with stride 2 to halve the resolution of
the grid. It was used for transfer learning in two frameworks [63, 75]: specificallyMeyers
et al. [75] applied GoogleNet to predict which foods are present in a meal, and to lookup
the corresponding nutritional facts, while Liu et al. [63] incorporated GoogleNet in a
food recognition system employing edge computing-based service computing paradigm;

• DenseNet [39] is a type of convolutional neural network that introduced the concept
of dense connections between every layer in a feed-forward pattern, ensuring optimal
information flow throughout the network. For food classification, Tahir at el. [109] used
DenseNet as a feature extractor for open-ended continual learning;

• ResidualNetwork (ResNet) [35] architecture incorporates skip connections,which enable
the network to skip one or more layers. These connections allow the model to learn
residual functions, capturing the difference between the input and the output of a layer.
By skipping layers, the network can propagate the gradient signal more effectively during
training, addressing the problem of degradation that often occurs in deeper networks.
It has been used extensively in food classification frameworks [18, 42, 46, 109, 122].
Specifically, Tahir et al. [109] used ResNet as a feature extractor for continual learning,
Ciocca et al. [18] fine-tuned the ResNet on Food524DB for food image classification,
Jalal et al. [42] incorporated ResNet-101 to train a classifier named KenyanFTR (Kenyan
Food Type Recognizer) to classify 13 dishes in Kenya, Kaur at el. [46] used a pre-trained
ResNet-101 on FoodX-251 data set for the food classification task, and finally Won et
al. [122] utilized pre-trained ResNet-50 together with Inception-ResNet-V2 on various
food data sets (i.e., UEC Food-256 [48], Food-101 [9] and Vireo Food-172 [12]) for
fine-grained food classification;

• EfficientNet [111] is an architecture that is designed to be highly efficient and achieve
state-of-the-art performance on image classification tasks while maintaining a relatively
small model size and computational cost. The main intuition behind the EfficientNet is
the "compound scaling method" that uniformly scales all the dimensions of the network
depth, width, and resolution. It has been utilized for food classification frameworks [27,
29] by Gilal et al. [29], who used EfficientNet to train custom classification models
in the context of a framework for creating custom food classification tools for regional
gastronomy; finally, Foret et al. [27] modified EfficientNet by applying Sharpness-Aware
Minimization (SAM) and tested the modified architecture on classification of Food-101
data set.

2.2.3 Performance comparison

Table 2 compiles the accuracy of all discussed deep learning technologies for better compar-
ison of the performance of the methods described so far, organized by the benchmark data
set used. The table clearly underscores the current trend towards transfer learning on top of
high performance architectures. At the time of writing, the best accuracies are obtained using
the EfficientNet family of networks [27, 29]. EfficientNets have the advantage of providing
control over training times and lightweight models that can be deployed onmobile platforms.

In the following sections, we provide a more accurate analysis of public domain data sets
and a critical discussion to identify gaps and limitations.

3 Analysis of food data sets

Concurrently with the development of technologies for automated analysis of food images,
researchers compiled a big corpus of image databases to be used for various tasks such
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Table 2 Accuracy of deep learning architectures on publicly available data sets

Reference Data set Technique Top-1 Acc Top-5 Acc

Yanai and Kawano (2015) [124] UEC Food-100 DCNN 78.8% -

Liu (2016) [62] DCNN 76.3% 94.6%

Liu (2018) [63] GoogLeNet 77.5% 95.2%

Martinel (2018) [68] WISeR 89.58% 99.23%

Hassannejad (2016) [32] Inception V3 81.45% 97.27%

Tahir (2020) [109]

{
ResNet-50 80.25% -

DenseNet-201 81.12% -

Inception-ResNet-V2 81.54% -

Yanai and Kawano (2015) [124] UEC Food-256 DCNN 67.6% -

Liu (2016) [62] DCNN 54.7% 81.5%

Liu (2018) [63] GoogLeNet 54.5% 81.8%

Martinel (2018) [68] WISeR 83.15% 95.45%

Hassannejad (2016) [32] Inception V3 76.17% 92.58%

Zhao (2020) [127] JDNet 84% 96.2%

Tahir (2020) [109]

{
ResNet-50 66.84% -

DenseNet-201 69.23% -

Inception-ResNet-V2 74.11% 93.17%

Won (2020) [122] Inception-ResNet-V2 74.11% 93.17%

Meyers (2015) [75] Food-101 GoogLeNet 79.0% -

Liu (2016) [62] DCNN 77.4% 93.7%

Hassannejad (2016) [32] Inception V3 88.28% 96.88%

Pandey (2017) [86]

{
AlexNet 42.42% 69.46%

GoogLeNet 53.96% 80.11%

ResNet 67.59% 88.76%

EnsembleNet 72.12% 91.61%

Liu (2018) [63] GoogLeNet 77.0% 94%

Martinel (2018) [68] WISeR 90.27% 98.71%

McAllister (2018) [71] ResNet-152 +
SVM + RBF
Kernel

64.98% -

Mandal(2018) [66] SSGAN 75.34% 93.31%

Min (2019) [79] IG-CMAN 90.37% 98.42%

Qiu (2019) [91] PAR-Net 90.4% -

Jiang (2019) [44]

{
MSMVFA(SENet-154) 90.73% 98.15%

SMMVFA(DenseNet
- 161)

90.59% 98.25%

Tan (2019) [111] EfficientNet-B4 91.50% -

Foret (2020) [27] EfficientNet-L2+SAM 96.18% -

Zhao (2020) [127] JDNet 91.2% 98.8%
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Table 2 continued

Reference Data set Technique Top-1 Acc Top-5 Acc

Tahir (2020) [109]

{
ResNet-50 80.84% -

DenseNet-201 80.63% -

Inception-ResNet-V2 83.73% -

Won (2020) [122] Inception-ResNet-V2 88.84% 98.08%

Min (2021) [81] PRENet
(SENet154
+ Pre-
trained)

91.13% 98.71%

Gilal (2021) [29] EfficientNet-B4 91.91% 98.52%

Gilal (2021) [29] EfficientNet Lite-2 86.34% 96.81%

Wang (2015) [119] UPMC Food-100 Fusion(TF-IDF + Very Deep) 85.10% -

Chen and Ngo(2016) [12] VIREO Food-172 MultiTaskingCNN 82.12% 97.29%

Min (2019) [79] IG-CMAN 90.63% 98.40%

Qiu (2019)[91] PAR-Net 90.2% -

Jiang (2019) [44] MSMVFA(DenseNet-161) 90.61% 90.31%

Liang (2020) [58] MVANet 91.08% 98.86%

Won (2020) [122] Inception-ResNet-V2 91.34% 98.87%

Meyers (2015) [75] Menu-Match GoogLeNet 81.4% -

Aguilar (2018) [2] AlexNet 90% -

Min (2019) [79] ISIA Food-200 IG-CMAN 67.47% 91.75%

Qiu (2019)[91] Sushi PAR-Net 92.0% -

Chen (2017) [14] ChineseFoodNet Tastynet 81/55% -

Jiang (2019) [44] MSMVFA(DenseNet-161) 81.94% 96.94%

Liang (2020) [58] MVANet 65.58% 90.41%

Ciocca (2017) [18] Food524DB ResNet-50 V2 69.52% 89.61%

Jalal (2019) [42] KenyanFood13 ResNet101 76.74% 93.71%

Kaur (2019) [46] FoodX-251 ResNet-101 - 83%(top-3)

Min (2020) [80] ISIA Food-500 SGLANet 64.74% 89.12%

Qiu (2020) [92] Bites counting 3D ResNet-50 64.89% -

Tahir (2020) [109]

{
Pakistani Food ResNet-50 63.13% -

DenseNet-201 69,38% -

Inception-ResNet-V2 70.42% -

Wibisono (2020) [121]

{
TKF DenseNet-121 99.3% -

ResNet-50 92.1% -

Inception V3 90.1% -

NasNetMobile 97% -

Qiu (2020) [92] Bites counting 3D ResNet-50 64.89% -

W. Min (2021) [81]

{
Food2K PRENet(ResNet-50) 83.03% 97.21%

PRENet(ResNet-101) 83.75% 97.33%
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Table 2 continued

Reference Data set Technique Top-1 Acc Top-5 Acc

Gilal (2021) [29]

{
Pizza-Styles

{
EfficientNet B-4 94.29% -

EfficientNet Lite-2 87.86% -

GCC-30

{
EfficientNet B-4 95.33% -

EfficientNet Lite-2 90.67% -

as training artificial intelligence models or to serve as public benchmarks for comparing
various methods. The proliferation of public image databases benefited from the growth of
the internet, the capillary availability of modern smart devices and the digital revolution [82].
In general, available data sources can be categorized into three main key types such as
catering websites, social media, and cameras. In recent years, the availability of huge online
food data collections has contributed to the explosion of websites for sharing recipes and
food information, such as Yummly,1 Meishijie,2 and Allrecipes.3

As an example, Yummly’s website contains info related to eleven cuisines of different
countries and more than two million recipes with ingredients and nutrition. Figure 4(a) and
(b), show some examples from Yummly. Each recipe includes cuisine category, dish name,
food image, a list of ingredients, and nutritional information.

Furthermore, some recipe websites provide rich social information, such as comments and
ratings, which can be helpful for tasks such as recipe recommendation [114] and prediction
of recipe rating [126]. In addition to recipe sharing websites, social media such as Facebook,
Flicker, Twitter, Instagram, YouTube and Foursquare are also considerable food-related data
sources. For instance, Culotta [20] investigatedwhether linguistic patterns in Twitter correlate
with health-related statistics. Abbar, Mejova and Weber [1] merged Twitter demographic
details and food names to model the value-diabetes correlation. Besides to textual data,
latest research [74, 84] has used huge collections of food images from social media for
the investigation of food perception and eating behaviors. Given the popularity of cameras
embedded in smartphones and wearable devices [118], collecting food images directly off
cameras has also become common. For example, researchers have started capturing food
images for visual food comprehension in restaurants or canteens [17, 21]. In addition to
food images, Damen et al. [21] used a head-mounted GoPro camera for collecting videos of
cooking sessions.

In any case, given the extremely high online availability, a huge number of food data collec-
tions have been compiled and made available to the public. In Table 3 we provide a collection
of the food databases published over the last decade, together with the corresponding ref-
erences, statistical information, the task for which they were compiled, and the provenance
of the food specialties considered. Most of the available databases were used for training
and testing automatic classification of food and the recognition of dishes inside scenes or
trays (N=20). This is mainly driven by the increasing success of deep CNNs. More recently,
image databases with additional metadata were compiled for addressing more application-
oriented tasks, like calorie estimation for dietary purposes (N=3), recipe retrieval (N=2), or

1 https://www.yummly.com/
2 https://m.meishij.net/
3 https://www.allrecipes.com/
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Fig. 4 (a) and (b) show some recipes with nutrition and ingredients taken from Yummly, (c) recipes are taken
from Meishijie and (d) recipes are taken from Allrecipes websites respectively

understanding the nutritional content (N=2). In the following, wewill provide amore detailed
analysis of the public databases by focusing on two aspects: the relationship between data
complexity and performance, and the geographical distribution.

3.1 Complexity analysis

We performed a statistical analysis of the most popular food databases according to their
size and accuracy. Our analysis targets food classification tasks and we consider the methods
reported in Table 2.

Figure 5 provides a direct comparison of classification methods on the most popular
databases, namely UEC Food-100 [70], UEC Food-256 [49], VIREO Food-172 [12], and
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Table 3 Publicly available food data sets

Data set Name Year Images/#Classes Task Type

UEC Food-100 [70] 2012 9,060/100 Recognition Japanese Food.

UEC Food-256 [48] 2014 31,397/256 Recognition Japanese Food.

Food-101 [9] 2014 101,000/101 Recognition Misc.

UNICT-FD889 [24] 2015 3,583/889 Near Duplicate Image
Retrieval (NDIR)

Misc.

UPMC Food-101 [119] 2015 90,840/101 Recognition Misc.

Menu-Match [7] 2015 646/41 Logging food and
calories estimation

Misc.

FooDD[89] 2015 3000/20 calories estimation Misc.

UNIMIB2015 [16] 2015 2000/15 Recognition Misc.

UNIMIB2016 [17] 2016 1027/73 Recognition Misc.

Vireo Food-172 [12] 2016 110,241/172 Ingredient
Recognition

Chinese Food.

ECUSTFD [59] 2017 2,978/19 Calories Estimation Foods and Fruits.

ChineseFoodNet [14] 2017 180,000/208 Recognition Chinese Food.

Food524DB [18] 2017 247636/524 Recognition Combination of
existing food data
sets.

Cookpad [31] 2017 1,642,540/∼1100 Recipe Information Japanese Food.

Recipe1M [98] 2017 800K/1M Image to recipe
retrieval

Misc.

Malaysian Food [104] 2018 3300/11 Recognition Malaysian Food.

Yummly-66K [77] 2018 66,615/10 Cross-region food
analysis

Misc.

KenyanFood13 [42] 2019 8,174/13 Food Classification Kenyan Food.

FoodX-251 [46] 2019 158,846/251 Fine-grained Food
Classification

Misc.

Recipe 1M+ [67] 2019 13M+/13M Image-recipe retrieval Misc.

Sushi-50 [91] 2020 3,963/50 Recognition Misc.

ISIA Food-200 [79] 2019 200,000/200 Recognition Misc.

ISIA Food-500 [80] 2020 399,726/500 Recognition Misc.

TKF [121] 2020 1644/34 Traditional food
classification

Indonesian Cultural
Food.

pic2kcal [96] 2020 308000/70000 Retrieving nutritional
information

Misc.

Pakistani Food [109] 2020 4928/100 Classification Pakistani

Nutrition5k [115] 2021 5K/250 Understanding the
nutritional

USA/Google
cafeterias

Food2K [81] 2021 1,036,564/2,000 Recoginition Misc.

Food1K [33] 2021 50,0000/1,000 Recognition Misc.

GCC-30 [29] 2021 6000/30 Classification Middle Eastern
Cuisines.

Pizza-Styles [29] 2021 2800/14 Classification Italian Pizza Styles.
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Fig. 5 Top-1 classification accuracy on the most popular databases:histogram plot for comparing performance
of classification methods

ETH Food-101 [9]. We note that for those data sets perfect classification has not yet been
achieved: at the time of thiswriting, the best Top-1 accuracies are: 89.58% [68] forUECFood-
100, 83.15% [68] for UEC Food-256, 91.34% [122] for VIREO Food-172, and 96.18% [27]
for ETH Food-101.

We then performed an analysis of the relationship between data set complexity and
accuracy: Figure 6 shows two bubbleplots and one scatterplot for comparing the database
complexity and the attained accuracy. From these plots we conclude that databases contain-
ing more food categories, like UNICT-F0889 [24] or ISIA Food 200 [79] and 500 [80] are
still challenging for classification methods. For the first case (UNICT-F0889), an additional
source of complexity is the low ratio between the number of images and the number of cat-
egories (around four images per category). Since future applications will need models that
scale with ever growing databases, it is paramount that practitioners should start considering
iterative and continual learning approaches.

There is also a clear need to provide technologies that incorporate a continually growing
number of categories and to address the challenges in fine-grained classification resulting
from this growth. To this end, one promising framework in that direction was recently pre-
sented by He et al. [34]. They propose a method based on clustering and exemplar selection
for storing the most representative data belonging to each learned food category, and they
demonstrated their method on a reduced version of Food-2K [81].

Finally, Fig. 7 represents a plot illustrating the two groups identified in the food datasets
analysis: moderate and high complexity data sets.
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Fig. 6 Complexity analysis: data set comparison of accuracy performance with respect to the number of
categories and number of images. Top: bubble plots indicating the accuracy compared to the number of
classes (left), and the number of images. Bottom: scatter plot in semi-logarithmic scale comparing the number
of classes and number of images

Fig. 7 Dataset complexity clusters: scatter plot in semi-logarithmic scale comparing the number of classes
and number of images, with clusters grouping moderate and high complexity data sets
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• Moderate complexity data sets: data sets fall under the moderate complexity category
ranging from 646 to around 10K images, historically used for training the models based
on traditional schemes and deep learning architectures to perform food classification.

• High complexity data sets: datasets fall under the high complexity category ranging from
approximately 10K to millions of images, more adequate to train higher complexity deep
learning models.

Themoderate complexity datasets can be trained relatively faster using traditionalmachine
learning algorithms due to small data set sizes, while the high complexity datasets require
more time due to the increased complexity of deep learning algorithms and the larger dataset
sizes.

3.2 Geographic and gastronomic analysis

Besides the previous complexity analysis, we also performed an analysis of the geographical
distribution of publicly available data sets for food computing. We mapped each data set to
the corresponding region and we reported them in a world map with geo-located glyphs. We
then created an open resourceweb page,4 in which the food computing community can gather
information about the most significant food databases. The geographic distribution provides
visual information on which parts of the world are well-represented by food databases and
which are still missing. Figure 8 shows a view of the website’s geographic map: each circle
marker on the world map represents the data set, whereas the size of the circle indicates the
size of the data set (i.e., the number of images).

Figure 9 gives examples for the diversity in food data sets, which is due to difference in
cooking styles and culinary culture, like pizza styles, sushi, Arabic food, Chinese food, etc.

4 Challenges and future work

Despite the impressive progresses in food computing technologies, many challenges still
remain unsolved and there is a big space of improvement in many parts of the processing
pipeline. As logical conclusion of our survey, we highlight here a number of problems and
few possible development directions that we expect will stimulate the research efforts in the
field for the next years.

First of all, as shown in Sec. 3, the geographic distribution of available data sets is not
uniform and many important gastronomic areas are not even represented. This is because
most data sets were created for stress-testing automatic processing methods. They are too
general for being applied to different culinary styles, preparationmethods, and regions.Many
international organizations, like IGCAT (International Institute of Gastronomy, Culture, Arts
and Tourism,5) or SlowFood,6 regularly promote initiatives for raising awareness about the
importance of cultural food uniqueness, as well as for highlighting distinctive food cultures.
We believe that data customizations relevant to different cultures can definitely contribute to
the aim of preventing the disappearance of local food traditions, thus stimulating creativity,
educating for better nutrition and improving sustainable tourism standards. We expect in the
future various efforts for creating databases representing region of gastronomy of different

4 https://slowdeepfood.github.io/datasets/
5 https://www.europeanregionofgastronomy.org/
6 https://www.slowfood.com/
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Fig. 8 Geographic distribution of food data sets: with this survey, we also release an open source web page
that contains publicly available data sets under a single source. We mapped each data sets with geo-location
and original source. Each circle marker on the world map represents a data set and its size, with a link to the
original source

extents, and we plan to contribute to this field by targeting various areas not considered until
now. We would also like to mention other initiatives like TasteAtlas,7 attempting to provide
a world atlas of traditional dishes, by featuring an interactive global food map with dish
icons shown in their respective regions. In this context, Gilal et al. [29] recently proposed a
framework that is able to create customizedmodels for different gastronomies by using image
databases compiled through semi-automatic filtering of downloaded images. Moreover, as
suggested by the analysis of current technologies, we expect that future architectures and
models will be able to scale with respect to taxonomies and food specialties represented,
similarly to popular music recognition applications. To achieve these goals, food computing
will need to incorporate latest deep learning technologies with particular focus on online
continual learning [34, 109], few shot learning [45], and imbalanced classification [26].

Another important problem to consider is artificial intelligence for food reverse engi-
neering. In this context, “reverse engineering” seeks to automatically decompose a plate by
recovering the steps for creating it, thus extracting a recipe from the final dish. Here, we
would like to give a simple example taken from traditional Roman cuisine that is related
to the preparation of pasta starting from simple ingredients in a way to show the connec-
tions between popular recipes. In Fig. 10 we show how starting from the basic “Cacio e
Pepe” (cacio cheese and pepper), we can obtain the famous “Carbonara” and “Amatriciana”,
passing through “Gricia”, just by adding different simple ingredients. An advanced food
computing system should be able to automatically recover the steps for obtaining the plate,
paving the way to applications such as driving robotic systems for automatic food creation

7 https://www.tasteatlas.com/
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Fig. 9 Visualization of food data sets with some sample taken from each data set
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Fig. 10 Recipe disassembly:traditional Roman pasta preparations can be obtained by different composition
of ingredients starting from the basic “Cacio e Pepe” to reach the popular “Carbonara” and “Amatriciana”

and replication. In last five years, start-up companies like Moley,8 Creator,9 and Picnic10

made impressive progresses in developing prototype robo-kitchens that are able to provide a
full cooking takeover, and to fully substitute human intervention, either for residential use or
burger and pizza restaurants. These kinds of robotic systems can definitely benefit from the
integration with automatic food computing frameworks. We expect that science fiction pop
scenarios are realistically possible in few years: in the future, an input picture of a plate will
be enough to drive a trained automatic system for recognition, recipe disassembly, and finally
physical reproduction. The synergy between robotic companies and the artificial intelligence
community will be decisive to speedup this process.
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