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Abstract

Convolutional neural networks have been effective in several applications, arising as a promis-
ing supporting tool in a relevant Dermatology problem: skin cancer diagnosis. However,
generalizing well can be difficult when little training data is available. The fine-tuning transfer
learning strategy has been employed to differentiate properly malignant from non-malignant
lesions in dermoscopic images. Fine-tuning a pre-trained network allows one to classify data
in the target domain, occasionally with few images, using knowledge acquired in another
domain. This work proposes eight fine-tuning settings based on convolutional networks pre-
viously trained on ImageNet that can be employed mainly in limited data samples to reduce
overfitting risk. They differ on the architecture, the learning rate and the number of unfrozen
layer blocks. We evaluated the settings in two public datasets with 104 and 200 dermoscopic
images. By finding competitive configurations in small datasets, this paper illustrates that
deep learning can be effective if one has only a few dozen malignant and non-malignant
lesion images to study and differentiate in Dermatology. The proposal is also flexible and
potentially useful for other domains. In fact, it performed satisfactorily in an assessment
conducted in a larger dataset with 746 computerized tomographic images associated with the
coronavirus disease.

Keywords Feature learning - Few-shot learning - RMSprop - Shallow learning -
Statistical test - VGG

1 Introduction

In the medical diagnosis process, imaging exams play an increasingly central role, as they
allow access to human anatomy and physiology with an increasingly realistic accuracy of
pathophysiological processes. These imaging exams, by their nature, enable them to be used
as a data source for decision support methods in Medicine, based on automatic learning,
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Machine Learning (ML) and, more recently, Deep Learning (DL) models. Many Computer-
Aided Diagnostic systems (CAD), in turn, rely on ML methods to extract patterns from
images that can represent useful knowledge, as illustrated in different medical domains [7,
23, 25].

The use of artificial intelligence models as a tool to support clinical decision is also
significant in cases where early diagnosis is crucial for the prognosis [54], such as in the
case of cutaneous or colorectal tumors, or the identification of pathognomonic imaging signs
associated with known diseases.

In the case of skin cancer, DL has performed well in many ML applications to assist
in classifying dermoscopic images. Several techniques associated with DL were exploited
in [26] to differentiate Non-malignant (N) from Malignant (M) skin lesions. The network
architectures AlexNet and VGG16 achieved competitive results in the PH? public dataset
with benign lesions and melanoma in [27]. Among the different DL architectures applied
to PH? in [45], VGG19 performed better. Before classifying 900 dermoscopic images with
VGG16, the authors conducted lesion segmentation with the U-Net architecture in [60]. The
authors achieved positive results in [61] by applying DL preceded by the Gabor wavelets
technique in melanoma and seborrheic keratoses detection.

A reason for DL success involves the possibility of transferring the knowledge learned
by a deep neural network in a large image dataset to improve the training of a classifier in a
relatively small dataset [22, 50]. Researchers have developed varied strategies, such as Fine-
Tuning (FT) a network previously trained in a large set of generic images, to achieve this
transference in Dermatology [47, 69], Mastology [23], Ophthalmology [7] and other fields.
Such transference may benefit from the crescent availability of benchmark datasets.

These strategies could mitigate limitations that would arise in practical scenarios if a
classification model were built directly from a dataset with few images [48, 72], regardless
of the medical field. For example, some health institutions often have small sets of images
acquired from the same equipment, according to the same environmental conditions, which
are not adequately represented by benchmark datasets. In this scenario, DL algorithms trained
only with these limited collections might overfit. On the other hand, combining the algorithms
with transfer learning strategies could deliver better achievements to the institutions, by
reusing models learned from big datasets and tailoring them to classify small sets.

This study can be linked to the few-shot learning paradigm, a maturing subarea of machine
learning that focuses on enabling models to rapidly learn and generalize from a limited num-
ber of labeled examples [73]. Although researchers have investigated distinct techniques
and frameworks to apply few-shot learning in small clinical datasets [39, 55, 65], our pro-
posal differentiates from them by employing transfer learning via several FT settings in two
domains. In particular, these settings (1) do not depend on typical few-shot learning proce-
dures for deep learning, such as data augmentation or meta-learning, and (2) have not been
experimentally compared in dermoscopic and COVID-19 datasets, in which the smallest one
has only a few dozen instances per class for both classes.

This work proposes eight settings to fine-tune VGG-based networks pre-trained in Ima-
geNet and evaluates them in two public datasets with 104 and 200 dermoscopic images.
As the datasets are relatively small — they have less than 1,000 images [21, 35, 71] —,
the work contributes by illustrating that DL can be effective if an institution has only a few
dozen malignant and non-malignant lesion images to study and classify in Dermatology. In
fact, our experimental assessment supported this novelty by showing that our best network
settings in tiny datasets, supported by trivial pre-processing procedures, (1) can generalize
knowledge and (2) achieve results competitive with those reported in recent work that targets
larger datasets.
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To verify the flexibility of our proposal, an additional evaluation with one of the best
VGG-based configurations was carried out in a medical domain different from Dermoscopy.
In particular, we fed the network with a public dataset containing 746 Computerized Tomo-
graphic (CT) images, from which 349 are associated with the coronavirus disease 2019
(COVID-19). As a result, a classification performance considered satisfactory was found in
a group of images larger than the two previous ones.

2 Background

In short, deep neural networks consists of artificial neural networks with a sequence of tens or
hundreds of hidden layers [22]. Although many basic concepts underlying DL were already
known in 1990s and 2000s, successful and competitive DL applications were found only
after the emergence of recent hardware/software improvements. Examples include the use
of Graphical Processing Unit (GPU) to support the parallelization of network operations and
the advent of algorithms and techniques to better propagate the feedback signal across many
network layers.

The Root Mean Square propagation (RMSprop) optimization scheme is one of the tech-
niques that has contributed to gradient propagation in many deep neural networks settings.
In short, RMSprop provides networks with an adaptive Learning Rate (LR) in a mini-batch
of data. The scheme to achieve adaptation when defining the weight w considers the division
of the setting LR by the moving average of the magnitudes of recent gradients for w [30].
Taking into account previous gradients to estimate the next weight update can improve the
convergence speed during training compared with classic stochastic gradient descent.

Convolutional neural networks, a.k.a. convnets, have been one of the most applied DL
schemes for computer vision tasks, including image analysis and classification [18, 24, 70]. A
reason includes the high performance achieved by convnets in machine learning competitions,
such as the ImageNet Large Scale Visual Recognition Challenge!, which is associated with
the large dataset ImageNet with 1.4 million images labeled by 1,000 different classes. Another
reason is that, differently from several shallow learning algorithms?, convnets can automate
feature learning. As a result, its user does not need to engineer characteristics that properly
describe images.

Convolutional, max pooling and Fully Connected (FC) layers are three components com-
monly used in convnets. The first one learns local patterns from small windows representing
pieces of the input image. In particular, it applies specific filters to an image, yielding a set of
feature maps. Each map consists of a tensor reflecting the presence of a filter/feature pattern at
distinct input locations. In turn, the Max pooling layer downsamples the feature map received
as input by replacing each group of adjacent map tiles with a tile defined by the maximum
value of this group [26]. This downsampling procedure is often aggressive and configured
by a factor of 2, which helps reduce the number of network parameters. An FC or dense
layer, usual in shallow neural networks, fundamentally differs from a convolutional layer
by connecting each of its neurons with every neuron from the previous layer. This property
promotes the learning of global patterns from the input.

1 http://www.image-net.org/challenges/LSVRC

2 Algorithms that transform the input data into one or two successive representations spaces, such as Support
Vector Machines (SVM) [22].

@ Springer


http://www.image-net.org/challenges/LSVRC

Multimedia Tools and Applications

The VGG family of neural network architectures [64] illustrates how the previous
components can be combined. In particular, VGG starts with a series of convolutional and
max pooling layers (the convolutional base) and ends with a sequence of FC layers. The fam-
ily architectures differ in terms of the number of weight (convolutional) layers, the number
of filters and the size of the image windows. Other examples of architecture families include
EfficientNet [32] and ResNet [56].

According to the literature, convnets usually perform well when trained on large datasets
[20, 39]. However, their effectiveness is contingent upon the availability of a sufficient num-
ber of labeled examples in the target domain. When the target domain has few examples for
training, convnets cannot rapidly adapt to new target regions due to insufficient network acti-
vation variables. In this sense, few-shot classification introduces alternative training schemes
that enable models to learn from limited labeled data [39, 55, 65].

Few-shot image classification research is in the early stages of development, often drawing
on strategies involving deeper networks to improve model accuracy significantly [76]. Much
emphasis is currently given to experiments compared to theoretical studies and practical appli-
cations, indicating gaps in knowledge that need to be bridged [62]. Techniques such as data
augmentation [19], meta-learning [43, 65], metric learning (similarity-based methods) [40],
and transfer learning [6] have been adopted in this machine learning subarea to train models
on small image sets, allowing them to adapt quickly and generalize to new, unseen data.

Transfer Learning (TL) underlies many popular convnets’ applications. This concept
makes it possible to have different feature spaces or data distributions in the source and
target domains [50]. For example, TL can use knowledge previously learned from a dataset
by a specific classifier to improve the learning ability of another classifier in a different dataset.
Inductive transfer learning is particularly useful if both source and target domains are labeled,
such that inductive biases taken from the former problem assist instance prediction in the
latter one.

Inductive TL can be helpful when the training data available in a target problem is insuf-
ficient to build a classification model that generalizes well [48]. In this scenario, a neural
network, for example, could be trained in a large dataset and the resulting model, including
its weights, could be transferred to the target domain. Two strategies based on inductive TL
have been employed to classify small image datasets with convnets [22]: (1) feature extrac-
tion with and (2) fine-tuning a pre-trained network. The former strategy replaces the dense
layers on the top of a convolutional base with a new classifier, e.g., an SVM model [45] or
a custom network. The idea is to use the base only to learn the features that will feed the
added classifier, which is trained in the target problem. In turn, the latter strategy extends
the architecture defined by the former one by performing two additional steps. First, the
highest convolutional base layers are unfrozen, i.e., they are allowed to update their weights.
Secondly, the architecture with the new classifier and the unfrozen layers is trained in the
target domain. As a result, the highest (more abstract) representations from the transferred
model can be slightly adapted to the data at hand.

The next sections detail how this work fine-tunes convnets previously trained in ImageNet
and evaluates them with the aim of classifying small datasets with dermoscopic images.

3 Materials and methods

Section 3.1 describes the image datasets and cites the computational software considered in
this work. Then, Sections 3.2 and 3.3 address, respectively, the eight deep learning settings
defined by us and the experimental setup in which they are evaluated.
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3.1 Materials

This work used two datasets with skin images. The first one, described in detail in [38], has 104
dermoscopic images. It should be emphasized that the 58 malignant and 46 non-malignant
lesion images in this dataset are RGB true colored (24-bit color) and JPEG compressed with
a minimum resolution of 300 dpi. In this work, malignant lesions comprise melanoma and
carcinoma, while non-malignant ones include blue nevus and other benign conditions [36].
Image acquisition followed all legal requirements, in accordance with dermoscopic proto-
cols [16]. Each image was cropped at 450x 600 resolution and segmented as reported in [42,
51, 52], yielding the input for the method described in the next section.

The second dataset, PH2, has 200 dermoscopic examinations [46] and was also used in
related papers, as illustrated in [2, 8,27, 45]. It contains 40 images with melanoma (malignant)
lesions and 160 images with non-malignant lesions, from which 80 are common nevi and 80
are atypical nevi. The images are also 24-bit color RGB, but their file format is BMP and the
image dimensions vary. Although PH? provides, for each image, a binary mask defined by
experts containing the lesion, this work did not consider this annotation. In other words, we
employed the complete images as inputs for DL.

This work includes a third dataset, COVID-CT [78], with 746 CT slices, to verify the
flexibility of our proposal. Altogether, it consists of 349 images containing clinical findings
of COVID-19 from 216 patients, as well as 397 slices without those findings from 171
people. The media was collected by COVID-CT authors directly from scientific papers. A
senior radiologist, who worked with several coronavirus patients, has confirmed its utility.
Furthermore, the dataset was used in scientific work [28, 63].

We employed convolutional neural networks implemented in the Keras high-level library
with TensorFlow backend [1]. Additional image pre-processing procedures and part of the
network assessment was also performed with Keras functions. This work applied the Graph-
Pad Prism software to support the conduction of statistical tests and some functions of the
Multi-label Exploratory Data Analysis (ML-EDA) tool [17] to plot a few graphics.

3.2 Deep neural network settings

The method underlying all the settings defined in this work consists of three steps, which are
described in the following sections.

3.2.1 Step 1 — Image pre-processing

Step 1 transforms the medical images in a dataset into batches of pre-processed tensors (mul-
tidimensional arrays). In particular, the images are converted into floating-point tensors with
normalized values and grouped into batches. The images are also resized to fixed dimensions
during this process, as some convolutional networks including dense layers (e.g., VGG [64])
expect fixed-size images as input.

3.2.2 Step 2 — Image classification
Step 2 performs image classification based on deep neural networks that received the batches

generated from the previous step. In this work, we considered two network architectures
from the VGG family previously trained on ImageNet: VGG16 and VGG19. Figure 1 shows
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Fig.1 VGGI16 architecture

the first architecture with six-layer blocks and the use of Rectified Linear Unit (ReLU) and
Softmax activation functions [22, 67].

VGG19 is similar to VGG16 but includes one convolutional layer before max pooling in
Blocks 3, 4 and 5 to yield 19 weight layers. Note that the sequence starting from Block 1 to
Block 5, which occurs before the fully connected layers, constitutes the VGG convolutional
base.

To deal with a small dataset, we fine-tuned pre-trained VGG16 and VGG19 by following
six procedures:

1. Remove Block 6, as it was designed to classify images into 1000 ImageNet classes, which
are not relevant in some domains, such as Dermoscopy.

2. Insert a new Block 6 on top of the network with two fully connected layers (custom
network).

3. Freeze from Block 1 to Block 5 (convolutional base).

. Train the custom network in images from the small dataset.

5. Unfreeze from Block B to Block 5 after defining the index B according to the chosen
network setting.

6. Train the custom network together with the unfrozen blocks from the convolutional base
in images from the small dataset.

N

Altogether, this work defined eight network fine-tuning settings by combining unique
variations of three variables described in what follows. Table 1 displays all the variations.
V1. Base architecture.

V2. Block index B.
V3. Learning rate used in the 47 and 6" procedures.

3.2.3 Step 3 — Classifier evaluation

Each network setting was evaluated individually to assess its ability to differentiate malignant
from non-malignant lesion images in the dermoscopic datasets described in Section 3.1. After
estimating the settings’ performance, we chose the best ones to compare them with recently
published methods and applied one of them to classify CT scans.
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Table 1 Eight deep neural network settings defined and evaluated in this work

\%! V2
VGG16 VGGI19 B value
3 4
FT1 X X
FT2 X X
FT3 X X
FT4 X X
FT5 X X
FT6 X X
FT7 X X
FT8 X X
V3

constant higher rate in the 4" procedure and smaller rate in the 6/ one
FT1 X
FT2 X
FT3 X
FT4 X
FT5 X
FT6 X
FT7 X
FT8 X

3.3 Experimental setup

All the settings evaluated in this work have two dense layers in Block 6 — Fig. 1. The
lowest layer contains 256 hidden units, while the highest one has one hidden unit used for
classification purposes. The corresponding activation functions are, respectively, ReLU and
sigmoid, while RMSprop was adopted as the optimizer.

We set the learning rate as 1 x 1075 for settings FT1, FT3, FT4 and FT7. In turn, the
remaining settings employ LR=2 x 107 and LR=1 x 107>, respectively, in the 4/ and 6"
training procedures reported in Section 3.2. Regardless of the conducted training procedure,
the number of steps per epoch was the same: 100. As is the case with the previous parameter
values, this number was defined based on examples described in [22].

Four evaluation measures were adopted in this work. Accuracy (Acc) is defined as the
number of correct classifications obtained by the classifier under assessment; Sensitivity
(Sen) or true positive rate measures the proportion of malignant lesions correctly identified
as such; Specificity (Spe) or true negative rate measures the proportion of non-malignant
lesions that are identified correctly as such; and F1 score (F1) corresponds to the harmonic
mean of precision — number of true positives divided by the number of lesions predicted
as malignant — and sensitivity. These measures are respectively defined by (1), (2), (3)
and (4) in terms of True Positives (TP), True Negatives (TN), False Positives (FP) and False
Negatives (FN) predicted by a classifier C. As the Keras tool did not directly support Sen,
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Spe and F1 measures, we implemented them in this work.

TP+TN
Acc(C) = .
TP+TN+FP+ FN
TP
Sen(C) = ———.
TP+ FN
Spe(C) TN
e = =
P TN+ FP
2xTP
FI(C) =

2xTP+FP+FN’

(€]
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Cross-Validation (CV) supported the assessment of the DL settings. In particular, each
dataset of dermoscopic images was split into five pairs of training and testing folds. In turn,
each training fold was split into three pairs of training and validation folds. Figures 2 and 3
depict this process for each dataset and indicates the number of malignant and non-malignant
lesion images, as well as the total number of images per fold. Note that each fold approximates
the class distribution from the input dataset, qualifying our CV one [72].

38M
46N

104

Training
fold

Testing
fold

fold

Validation O

o] [
x@m 46M 46M E 1 ﬂ oM | 46Mm 48M
J |} 37N 37N 3TN i | EEIONE
83 I 3 2] (IJ2 83 | 84
| 2 4 5
3M][31Mm ByvH([31M teM][32m
12N || 25N 12N || 25N 12N || 24N
27| 56 7| 56 28 )| 56
) Y o
1M ][ 30M mf31m]) | from]f 30Mm 5M[31M]) | Fiom])f32m 16M[ 32m
BN| 24N 12N |} 25N 13N || 24N 2NH| 25N 2N || 24N 12N |} 24N
29| 34 27| 56 20| 54 27 J| 56 28 I 36 28 J| 36
A C
M 31m M 31m
12N |} 25N 12N || 25N
27 )| 56 27l 5
16M )[ 30M Byf3im]  frea [ 30m By [ 3 1M
BN|| 24N 12N || 25N BNH| 24N 12N ] 25N
29 J| 54 27 )| 36 29 | 54 27| 36

Fig. 2 Number of malignant and non-malignant lesion images in each cross-validation fold from the first

dataset
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CV also allowed us to select the number of epochs to train each DL setting network to be
evaluated in the testing folds. To do so, for each DL setting, we conducted a process illustrated
by the folds numbered in Figs. 2 and 3. First, we built a network from training Fold A and
assessed its accuracy in the corresponding validation fold during 100 epochs. We applied the
same procedure for Folds B and C. We then plotted the Acc averaged across the validation
Folds A, B and C. Afterward, the number of epochs that led to the highest average Acc was
chosen to train a network in Fold 1, which in turn was assessed in the corresponding testing
fold. The same process described for Fold 1 was employed in Folds 2, 3, 4 and 5. Section 4
considers the accuracy, specificity, sensitivity and F1 score values found in these five folds.

The batch size used to evaluate a network in each testing fold in the first dataset equals the
number of images in this fold, as the greatest common divisor between the different testing
fold sizes (20 and 21) is 1. We followed the same reasoning for PH?, which resulted in a
batch size of 40 images in the second dataset — Fig. 3.

We applied the CV process three times for each DL setting, as the inherent training
procedure is not deterministic. Then, this work applied the Shapiro-Wilk normality test
implemented in GraphPad Prism. Depending on the result from this test and the number of
compared columns (algorithms), a specific parametric or non-parametric test was conducted
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in the same software. We chose tests for unpaired groups, as a classifier compared with this
work dealt with different folds in the first dataset.

The Holdout Validation (HV) strategy was applied three times specifically to assess the
proposal in COVID-CT. Thus, we could use the original dataset split — Table 2 — and
consider literature results [28] as experimental references for this work. Similarly to each
execution of the CV-based procedure, the number of epochs that led to the highest Acc in the
validation set, inherent to a holdout process run, was chosen to build the network assessed in
the testing set. Section 4 considers the accuracy, specificity, sensitivity and F1 score values
found in the testing set. A batch size of 1 was employed in this dataset.

4 Results

Tables 3 and 4 show the performance reached by the eight neural networks settings evaluated
in this work, respectively, in the first and second datasets. For each setting, the table presents
the average (avg) and the corresponding standard deviation (sd) and coefficient of variation
(cv) in terms of accuracy, sensitivity, specificity and F1 score. In particular, the avg, sd and
cv values were calculated across the results obtained from three runs in the five testing folds
represented in Figs. 2 and 3. The best results in each table column are highlighted in gray.
Figures 4 and 5, in turn, highlight the average of each evaluation measure by associating
a measure with a spider chart axis in each dataset. Section 5.1 discusses these results and
reports findings from the corresponding statistical test of significance.

Table 5 shows the average performance and the corresponding standard deviation and
coefficient of variation achieved by the best setting in this work (Table 3) and TSL20 NN,
a shallow learning model based on 1 Nearest Neighbor and selected handcrafted features
that stood out in the previous paper [38]. This work considered three runs of an algorithm
in five pairs of training/testing folds from stratified CV. In turn, the previous one evaluated a
single run of a deterministic classifier in 10-folds stratified cross-validation. Both classifiers
were compared in the first dataset with 104 dermoscopic images according to the evaluation
measures applied in [38]. The best results in each column in Table 5 are highlighted in gray.

Table 6 shows the average performance achieved by the best setting in this work (Table 4)
and DL proposals from the literature [2, 8, 27, 45]. All the classifiers were compared in the
second dataset with 200 dermoscopic images. We also included FT2 performance in PH? in
the table, as this setting was the best in the first dataset. It should be emphasized that this
work considered three runs of every DL setting in five pairs of training/testing folds from
CV, while the previous ones evaluated their models in a single run. Note that [2, 8, 27, 45]
did not publish the standard deviations reached by their algorithms. Thus, we did not include
this information or the coefficient of variation in Table 6. The best results in each column are
highlighted in gray.

Table 7 allows one to compare the best deep neural network setting found in this work in the
first dataset with related References (Ref) in terms of average accuracy, sensitivity, specificity

Table 2 Data split in

COVID-CT: number of images Set COVID-19 NonCOVID-19 Total
for each class and set of images training 191 234 425
validation 60 58 118
testing 98 105 203
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Table 3 Average performance
and the corresponding standard
deviation and coefficient of
variation achieved by eight deep
neural networks settings in the
first dataset

Acc
avg sd cv (%)
FT1 0.8951 0.1067 11.9201
FT2 0.9202 0.0930 10.1018
FT3 0.9013 0.0975 10.8211
FT4 0.8911 0.1378 15.4652
FT5 0.9079 0.1010 11.1199
FT6 0.8984 0.1483 16.5038
FT7 09111 0.1381 15.1564
FT8 0.8794 0.1504 17.1079
Sen
avg sd cv (%)
FT1 0.9378 0.0920 9.8144
FT2 0.9311 0.1059 11.3786
FT3 0.9256 0.0769 8.3042
FT4 0.9389 0.1067 11.3599
FT5 0.9278 0.0825 8.8961
FT6 0.9389 0.1239 13.1933
FT7 0.9611 0.0883 9.1916
FT8 0.8944 0.1558 17.4182
Spe
avg sd cv (%)
FT1 0.8370 0.1918 229187
FT2 0.9044 0.1319 14.5788
FT3 0.8667 0.1840 21.2328
FT4 0.8341 0.2196 26.3342
FT5 0.8815 0.1900 21.5535
FT6 0.8444 0.2214 26.2216
FT7 0.8444 0.2715 32.1533
FT8 0.8593 0.1805 21.0029
Fl1
avg sd cv (%)
FT1 0.9125 0.0877 9.6071
FT2 0.9338 0.0837 8.9642
FT3 0.9163 0.0800 8.7268
FT4 0.9068 0.1125 12.4069
FT5 0.9224 0.0823 8.9198
FT6 0.9066 0.1401 15.4582
FT7 0.9304 0.1042 11.1961
FT8 0.8925 0.1352 15.1462

and F1 score. The literature results were achieved in distinct datasets with malignant and
non-malignant lesion images. The datasets differ, for example, in terms of the number of
images and the Majority Class Accuracy (MCA), i.e., the complement of the majority class
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Table 4 Average performance Acc
and.th'e correspond%ng standard g <d ~ (%)
deviation and coefficient of
variation achieved by eight deep FT1 0.9750 0.0366 3.7535
neural networks settings in the
second dataset — PH2 FT2 0.9650 0.0461 4.7770
FT3 0.9700 0.0465 4.7921
FT4 0.9683 0.0623 6.4335
FT5 0.9533 0.0566 5.9360
FT6 0.9583 0.0572 5.9705
FT7 0.9600 0.0761 7.9233
FT8 0.9533 0.0633 6.6391
Sen
avg sd cv (%)
FT1 0.9167 0.1543 16.8331
FT2 0.8667 0.2239 25.8391
FT3 0.8917 0.2052 23.0147
FT4 0.9167 0.1747 19.0538
FT5 0.8250 0.2400 29.0882
FT6 0.9000 0.1581 17.5682
FT7 0.9000 0.2123 23.5936
FT8 0.8833 0.1858 21.0346
Spe
avg sd cv (%)
FT1 0.9896 0.0152 1.5409
FT2 0.9896 0.0152 1.5409
FT3 0.9896 0.0152 1.5409
FT4 0.9813 0.0369 3.7638
FT5 0.9854 0.0161 1.6376
FT6 0.9729 0.0352 3.6150
FT7 0.9750 0.0490 5.0241
FT8 0.9708 0.0382 3.9360
Fl1
avg sd cv (%)
FT1 0.9303 0.1064 11.4371
FT2 0.8922 0.1553 17.4097
FT3 0.9103 0.1466 16.1098
FT4 0.9178 0.1618 17.6289
FT5 0.8578 0.1907 22.2355
FT6 0.8947 0.1443 16.1248
FT7 0.8961 0.1973 22.0135
FT8 0.8796 0.1643 18.6745

error — the error in the case of new examples being classified as belonging to the most
frequent class. In Table 7, a “?’ character indicates that the number of M and N images is
unknown, which prevents us from calculating the corresponding MCA. The best results in
each evaluation measure column are highlighted in gray.

@ Springer



Multimedia Tools and Applications

Fig.4 Average performance 1
achieved by eight deep neural
networks settings in the first Sen fco
dataset
Spe F1
— FT1 - FT3 FT5 FT7
---- FT2 FT4 FT6 ---- FT8

Table 8 shows the average performance and the corresponding standard deviation and
coefficient of variation achieved in COVID-CT by the best setting in this work (Table 3). The
dataset MCA is 0.53.

5 Discussion

First, we discuss the results achieved by the eight classification settings described in this work.
Afterward, we compare the best settings from this work with a shallow learning method and
four deep learning proposals from related work evaluated in the same datasets we used. This
section also compares the best setting from this work in the first dataset with several deep
and shallow learning methods from the literature. The application of this setting in images
associated with COVID is then addressed.

5.1 Deep neural network settings described in this work

As Table 3 indicates, the eight settings performed similarly. In fact, the Kruskal-Wallis
statistical test did not find any significant difference in this scenario. To select the best

Fig.5 Average performance 1
achieved by eight deep neural
networks settings in the second

Sen 0.95 Acc
dataset — PH2
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Table 5 Best results from FT2

(this work) and TSL20 NN (the v - dACC O]
previous one) in the first dataset
FT2 0.9202 0.0930 10.1018
Lee et al. [38] 0.8091 0.1036 12.8000
Sen
avg sd cv (%)
FT2 0.9311 0.1059 11.3786
Lee et al. [38] 0.8600 0.1554 18.0694
Spe
avg sd cv (%)
FT2 0.9044 0.1319 14.5788
Lee et al. [38] 0.7300 0.1814 24.8429
F1
avg sd cv (%)
FT2 0.9338 0.0837 8.9642

Lee et al. [38] — — —

network generated in the first dataset, we considered only the average performance from
this table and depicted it in Fig. 4. Note that FT2 outperformed the remaining deep neural
networks settings in terms of three out of the four evaluation measures. In two measures, FT2
reached the best standard deviation and coefficient of variation. One of them is accuracy, a
criterion that takes into account correct classifications regarding both classes equally.

Another advantage of FT2 involves its architecture, simpler than the ones adopted by
FT4, FT6, FT7 and FT8 due to the lower number of weight layers (16 vs 19). Different from
FT1 and FT3, the highlighted setting uses a higher learning rate (LR=2 x 107°) to train the
custom network, added on top of the base one, than to fine-tune the custom network and the
unfrozen blocks (LR=1 x 107>). As a result, the first training process can perform larger
modifications in its data representations and potentially achieve faster convergence [22].
Finally, FT2 unfreezes one block more than FT5 — Fig. 1 —, releasing more layers to be
specialized to the dermoscopic images used in this work.

Table 4 and Fig. 5 show a partially different scenario, as the FT1 setting outperformed FT2
and other alternatives in terms of accuracy, sensitivity and F1 score in PHZ. In fact, it reached
the largest average value and the smallest standard deviation and coefficient of variation in

Table 6 Best average

performances from FT1 and FT2 Acc Sen Spe Fl

(this work) and DL methods (the gy 09750 09167  0.9896  0.9303

previous ones) in the second

dataset — PH2 FT2 0.9650 0.8667 0.9896 0.8922
Bansal et al. [8] 0.9800 0.9750 0.9810 0.9500

Abayomi-Alli et al. [2] 0.9218 0.8077 0.9510 0.8084
Gulati and Bhogal [27] 0.9750 1.0000 0.9687 —
Maia et al. [45] 0.9250 0.7500 0.9688 0.8000
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Table 7 Average performance achieved by the best setting in this work (first dataset) and several literature
methods. The Learning Approach (LA) — deep learning or Shallow Learning (SL) —, the number of images
and the majority class accuracy in the target dataset submitted for classification are also shown for each method

LA Ref Acc Sen Spe Fl1 Number of images MCA

DL FT2 0.9202 0.9311 0.9044 0.9338 58M + 46N = 104 0.56
[8] 0.9800 0.9750 0.9810 0.9500 40M + 160N =200 0.80
[39] 0.8500 0.9310 - 0.8090 ™ + N = 9025 0.74
[2] 0.9218 0.8077 0.9510 0.8084 40M + 160N =200 0.80
[34] 0.9067 0.9070 - - ™ + N = 10015 0.67
[65] 0.8425 - - — ™ + N = 10015 0.67
[11] - 0.5910 0.9460 - ™ + N = 11527 -
[26] 0.7960 0.8780 0.7140 - 1100M + 12500N = 13600 0.92
[27] 0.9750 1.0000 0.9687 - 40M + 160N =200 0.80
[60] 0.8318 0.9553 0.9622 - ™M + N =900 -
[61] 0.8300 0.1300 1.0000 - 374M + 1626N = 2000 0.81
[45] 0.9250 0.7500 0.9688 0.8000 40M + 160N =200 0.80
[37] 0.8120 0.9500 0.6800 — 770M + 9400N = 10170 0.92
[47] 0.7920 0.4760 0.8810 - 388M + 891N = 1279 0.70
[69] 0.8770 0.6440 0.9180 - ™M + N = 2600 -

SL [4] 0.9993 0.9975 0.9998 - 40M + 160N =200 0.80
[75] 0.9970 1.0000 0.9910 0.9973 184M + 113N =297 0.62
[58] 0.7760 - - - 83M + 167N =250 0.67
[59] 0.6851 - - - 185M + 377N = 562 0.67
[3] 0.9650 0.9760 0.9050 - 40M + 160N =200 0.80
[10] 0.8430 0.9250 0.7630 - 241M + 241N =482 0.5
[33] 0.8790 - - - 128M + 128N =256 0.5
[57] — 0.9846 0.7000 — 90M + 5040N = 5130 0.98
[12] 0.8170 0.9170 0.7450 - 40M + 160N =200 0.80
[9] - 0.9600 0.8000 - 25M + 151N =176 0.86
[14] - 0.9800 0.8600 - 25M + 151N =176 0.86
[15] 0.8700 0.8500 0.8700 - 25M + 151N =176 0.86
[13] - 0.9300 0.8500 - 25M + 151N =176 0.86

these evaluation measures. Together with FT2 and FT3, FT1 yielded the best performance in
terms of specificity. However, regardless of the evaluation measure, Kruskal-Wallis did not
find any significant difference among the eight settings. In this context, FT1 was considered
the best setting in PH?, as it was competitive in all evaluation measures and used the same
higher rate in the 4" and 6" fine-tuning procedures — Section 3.2.

The fact that no statistical difference was found among the eight settings in Tables 3 and 4
favors FT2 and FT1, highlighted respectively in the first and second datasets, as well as FT3
and FT5. In particular, these four settings are the only ones derived from VGG16, which
has three layers fewer than VGG19, and the VGG computational complexity depends on the
number of layers [29, 77]. Thus, FT1, FT2, FT3 and FT5 can lead to similar performance
with a smaller cost than the alternatives.

It should be emphasized that all the settings employed in this work freeze two blocks at
least. Thus, generic and reusable features learned from a large dataset (ImageNet) are kept,
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Table 8 Average performance Acc
and the corresponding standard av <d )
deviation and coefficient of &
variation achieved in COVID-CT FT2 0.7800 0.0413 5.2967
by the best setting in this work
(first dataset) Sen
avg sd cv (%)
FT2 0.7381 0.0920 12.4680
Spe
avg sd cv (%)
FT2 0.8190 0.0530 6.4741
F1
avg sd cv (%)
FT2 0.7624 0.0534 6.9999

supporting the classification of the relatively small sets of medical images considered in this
work.

5.2 Direct comparison with a shallow learning and four deep learning methods

The first dataset used in this work was also considered in our previous work [38], easing a
direct comparison between the best approaches from each work. As Table 5 indicates, FT2
stood out in terms of average performance, standard deviation and coefficient of variation,
regardless of the evaluation measure. In other words, the deep learning setting classified
correctly malignant and non-malignant lesions more often, with lower dispersion. The Mann-
Whitney statistical test strengthens these findings, as it found that the DL setting significantly
outperformed the method based on Nearest Neighbor and selected handcrafted features in
terms of accuracy and specificity.

Nevertheless, the shallow learning method is still considered competitive, as no statistical
difference was found regarding sensitivity or true positive rate, a relevant measure in the
medical domain. Also, TSL20 NN complexity is lower than FT2 one, which needs to be
taken into account in scenarios with limited computational resources.

These methods can also be compared in terms of the input submitted for learning. FT2, like
many deep learning methods used in computer vision, receives images as input. They learn
representations directly from these images to label them [22]. On the other hand, TSL20 NN
requires handcrafted features describing images as input. In particular, it uses features based
on texture, shape and local binary patterns [38]. The feature selection algorithm ReliefF is
then employed to find a subset of 33 relevant features that are submitted to Nearest Neighbor to
classify the inherent images. In this scenario, deep neural networks are superior by automating
feature engineering and, consequently, easing the building of a competitive learner.

Fine-tuning a pre-trained network built from a large dataset (ImageNet) also supported
FT2 to outperform TSL20 NN. While FT2 employs generic features learned from thousands
of images and specific features acquired from a small target dataset, TSL20 NN takes into
account 33 handcrafted features and applies them in the target dataset. Despite of the differ-
ences between ImageNet and the dermoscopic images used in this study, the convolutional
network inherent to FT2 can combine local, portable patterns learned by the lower layers
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into particular patterns in the higher layers [22]. Consequently, one could achieve a proper
dermoscopic image description.

The second dataset investigated in this work was also studied in related work on deep
learning, as illustrated in [2, 8, 27, 45], simplifying a direct comparison. Table 6 includes
the performance of our best setting in PH? (FT1), the four references and FT2, which was
considered our best setting in the first dataset.

The approach described in [8] reached the best average accuracy in PH2, followed by FT1
and [27] — Table 6. The maximum average F1 score was also reported in [8]. FT1, together
with FT2, achieved the best average specificity. The DL method evaluated in [27], in turn,
was highlighted in terms of sensitivity.

The approach introduced in [8] achieved the highest accuracy and F1 score using the
EfficientNet-B0O architecture. As the name suggests, this scheme has a reduced number of
parameters (5.3 million) compared with other alternatives. Despite the remarkable results, the
authors employed a proper image pre-processing method not conducted by us to benefit the
input of their network: hair removal. Moreover, they included effective handcrafted features
based on shape, color and texture, supplementing characteristics acquired automatically from
the images by their deep network.

A noticeable performance was obtained in [27] by using the same architecture inherent
to FT1 and FT2 (VGG16 [64]). However, the authors evaluated their network with a single
run of the holdout validation strategy, which divides the image dataset into training and
testing folds only once before assessing the learner. As in the previous work, the authors also
performed hair removal.

The application of pre-trained VGG16, VGG19 and other architectures for feature extrac-
tion, yielding the input for shallow classification algorithms with parameter values empirically
optimized, led to relatively high accuracy and specificity in [45]. The authors ran cross-
validation only once, while we did it three times due to the non-deterministic training
procedure of the mentioned convnets. CV splits the dataset a few times before classifier
assessment, potentially mitigating biases derived from the choice of a particular sample by
conventional HV [72] used in [8, 27]. It should also be emphasized that Regions of Interest
(ROI) extracted from the Dermoscopy examinations by experts fed the classifiers evaluated
in [45]. ROI centering and the inclusion of vertical and horizontal lines around each lesion
to standardize its size are other pre-processing techniques not used in this work.

Table 6 also allows one to note that FT2, which was considered the best setting in the
first dataset evaluated in this study, is also competitive in the second one (PH?), especially
in terms of specificity.

As mentioned, the related methods [8, 27, 45] performed a single validation run. Thus, an
additional comparison between our settings and them considers the results of our best CV
run. In that evaluation, FT1 led to the following average values: 0.975 (Acc), 0.925 (Sen),
0.9875 (Spe) and 0.9311 (F1). In turn, FT2 reached the following average values: 0.975
(Acc), 0.9000 (Sen), 0.9938 (Spe) and 0.9216 (F1). Based on these results and Table 6, one
can note that FT1 would be more competitive in sensitivity and F1 score, while FT2 would
do so in all measures.

5.3 Indirect comparison with literature methods
Table 7 shows the results of FT2 in the first dataset chosen in this work and results published

by several references. Any discussion on the table results should take into account that the
image datasets, the learning approach, the classification algorithms and/or the evaluation
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strategy chosen vary across the publications. Also, in many cases, the standard deviation and
even the average performance in terms of specific measures were not reported by the related
literature. Thus, a more in-depth comparison between the results published in the references
and this work was not possible. In any case, the indirect comparison presented in this section
allows one to feel how promising our results are.

In this scenario, one can note that FT2 achieved one of the best performances in terms of
accuracy, specificity and F1 score among the deep learning methods. In turn, papers [2, 8§,
27] and [45] were already compared with this setting in Section 5.2. It should be emphasized
that, besides the validation strategy — Section 5.2 —, this work differentiates from them by
conducting fewer image pre-processing procedures. We believe that FT2 could be even more
competitive in Table 7 if these procedures preceded learning.

It should also be emphasized that a few shallow learning algorithms were competitive,
such as genetic programming [4], an ad hoc classification algorithm [75] and support vector
machines [3]. Nevertheless, the proposal described in [4] needs to extract handcrafted features
to construct new ones before learning, while this work can automatically and directly acquire
features from the input images. The learner built in [75] was designed to identify melanoma
based on specific image patterns in acral areas, while the settings evaluated in this work do
not depend on these patterns. In turn, single run HV supported learner assessment in [3].
The authors reported Acc, Sen and Spe from their best setting, which conducted a two-step
classification. First, the setting classified images as benign or abnormal. Then, it concentrated
on the abnormal images, differentiating melanoma from atypical lesions. An issue with their
approach is that label errors from the first step propagate to the second one.

FT2 performance is less promising according to sensitivity, as could also be inferred from
Section 5.2. The U-net convolutional neural networks algorithm was used in [60] to segment
melanoma and non-melanoma lesions and, consequently, support VGG16 to achieve higher
performance. This finding indicates that employing other segmentation approaches could
be helpful for VGG16 based FT2. VGG19, another architecture evaluated in this study —
Section 3.2 —, led to remarkable sensitivity in [37]. However, the average accuracy was
lower than the MCA in [37], suggesting that the network would not outperform a baseline
method that labels every image as the majority class (non-malignant). A similar issue is noted
in [26].

A point in common among most of the papers highlighted in this Section [2, 4, 8, 27,
45, 60, 75] is that they took into account a learning scheme to differentiate melanoma from
non-melanoma lesion images. On the other hand, this work considered 53 melanoma and 5
carcinoma lesions as the 58 malignant images in the first dataset. Although keeping both SC
types in the positive class represents an additional difficulty our classifiers had to deal with, it
approaches better a scenario in which a CAD system classifies suspect lesions as malignant,
regardless of the cancer type, or non-malignant.

Recall that we applied the CV strategy three times for each DL setting. A deeper anal-
ysis into the FT2 prediction errors in the first dataset showed that this setting mislabeled,
respectively, 4, 2 and 6 malignant images in testing folds in the first, second and third CV
executions. Although only one carcinoma was wrongly classified in the third run, this lesion
type is less frequent in our dataset. Running FT2 more times in future work is an alternative
to find if it recognizes carcinoma lesions better than melanoma ones. Another idea to study is
using explanation methods, such as Gradient-weighted Class Activation Mapping [49, 74],
to search for meaningful visual patterns in relevant skin cancer areas of incorrectly classified
malignant instances.

This work dealt with the smallest target image dataset in Table 7. A low number of training
images may cause deep and shallow learning algorithms to overfit, especially if the dataset is
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not representative enough [48, 72]. As a result, a classifier might not generalize well to new
images. To tackle this problem, we found that fine-tuning a pre-trained network built from
ImageNet was the best alternative. In particular, other strategies recommended for convnets
dealing with little training data [22] — feature extraction with the same network and data
augmentation — did not perform well in our preliminary experimental evaluations in the
first dataset. It should be emphasized that proposing and evaluating different fine-tuning
settings to classify a relatively small group of target images represents a contribution from
this work. As our flexible proposal succeeded well in Dermatology, it can also be assessed
in other medical domains, such as Colonoscopy, when a low number of training images is
available. This reasoning was briefly verified by us in a dataset of another field (COVID-CT),
as addressed in Section 5.4.

The number of images (dataset instances) is only one of the properties that can influence
classification complexity [41]. In fact, if one compares the eight settings proposed by us in
the two datasets — Tables 3 and 4 —, one will find that all settings reached better accuracy
and specificity in the second dataset (more images), but better sensitivity in the first dataset
(fewer images). Thus, characterizing image datasets’ complexity and associating the findings
with classification performance is an additional direction to investigate.

This work focused on the family of architectures VGG, as itis relatively easy to understand,
has been often employed in applications and has inspired extensions [22, 26]. Within this
family, we selected VGG16 and VGG19 due to their public implementation (e.g., in the
Keras/TensorFlow framework) and their use in related work. The latter architecture has three
convolutional layers more than the former one. It makes sense to investigate a distinct number
of layers in VGG, as the classification error can decrease in some cases if more weight layers
are included [64].

As mentioned, besides the base architecture, the eight fine-tuning settings vary on the
block index B from which freezing is applied and the learning rate used in the two training
procedures — Table 1 and Fig. 1. Although it was not found a significant difference among the
eight settings in both dermoscopic datasets, evaluating different values for these parameters
is considered relevant, as discussed in what follows.

Section 3.2 defined two values for B: three and four. The idea behind these values was to
freeze and unfreeze at least two different blocks from the convolutional base — Fig. 1. Thus,
a reasonable number of weights from the lowest layers, learned from a large non-medical
dataset, can be reused. At the same time, a few layers are available to learn specialized features
from small dermoscopic datasets. Using a B value closer to one can promote overfitting [44],
especially with little data to train the custom network at the top and the unfrozen blocks. It
should be emphasized that an image classification study with three mammography datasets
fine-tuned VGG16 and other architectures with the B values three, four and five [23]. In all
the datasets, B = 3 and B = 4 reached the highest accuracy values for VGG16.

The learning rate is one of the network hyperparameters that one could tune to find an
optimal configuration [22]. This work evaluated two variations of this hyperparameter in a
scenario with eight fine-tuning settings — Table 1: (1) a constant LR=1 x 10~ for the 4'"
and 6" training procedures reported in Section 3.2 and (2) a higher LR=2 x 107 in the
4" procedure and a smaller LR=1 x 107 in the 6/ one. Using a relatively small LR in
the 6" procedure makes sense, as we wanted to restrict the magnitude of the changes in the
representations associated with the unfrozen blocks, i.e., the layers under fine-tuning. On the
other hand, applying a too large LR value in this step could hinder these representations and
the reuse of a previously learned model to deal with little training data.
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5.4 Proposal application in a second medical domain

Table 8 shows the FT2 results, averaged across three HV runs in the COVID-CT dataset.
According to four evaluation measures, the setting performance can be considered satisfactory
for two reasons, at least. First, FT2 average accuracy was higher than MCA (0.53), even with
some CT slices with artifacts [63]. In particular, annotations, marks, letters or noise can
be noted in these images, many of which are associated with COVID-19 clinical findings
(positive cases). This issue makes sense, as the images were directly collected from papers.
Second, holdout has a few limitations already discussed in Section 5.2 and does not take into
account that each patient in the COVID-CT case can have more than one slice. Strategies
such as CV and Leave one patient out [53] can be more appropriate.

Using holdout to evaluate our proposal in this additional study allowed us to consider
literature results [28] as experimental references in the same dataset. Note that two deep
networks methods in [28] reached higher Acc than the VGG-based one: DenseNet169 (0.85)
and Self-Trans (0.86). This achievement can be associated with structural differences between
these two methods and ours, such as using several layers densely connected to others in the
former [31] or the self-supervised TL approach in the latter [66]. Moreover, different from
the approaches in [28], FT2 did not have COVID-CT enlarged by data augmentation, which
indicates that this method works well with only a few hundred medical images for training.
This achievement was also noted in Dermoscopy examinations in the previous sections. In
any case, if one analyzes only the best FT2 run in the CT images, an accuracy closer to the
literature ones was achieved: 0.8276.

The findings obtained in a dataset larger than the two dermoscopic ones suggest that the
best setting of this work, identified in a group of 104 skin images, was flexible and performed
adequately in another medical domain with 746 computerized tomographic slices.

6 Conclusion

This work successfully proposed and evaluated eight fine-tuning settings in two small datasets
with 104 and 200 dermoscopic images. Two settings led to the best results: FT1 and FT2.
Both unfreeze from layer Block B = 3 to Block 5 in their VGG16 architecture during the
fine-tuning process. However, only FT1 uses a constant learning rate during training.

Using the FT2 setting in the smallest dataset was competitive compared to recent deep
and shallow learning papers. Moreover, FT1 and FT2 led to performance comparable with
four deep learning methods in the other dataset. This work also illustrated that DL can be
effective — learn properly and generalize — if one has only a few dozen malignant and non-
malignant lesion images to study and classify in Dermatology. An additional study with CT
scans related to COVID-19 suggested that FT2 is flexible enough to perform satisfactorily in
another domain with more training images.

This study supports research on health informatics by addressing and assessing an intelli-
gent method that can learn from small labeled datasets from distinct domains. These datasets
illustrate many real-world scenarios in which it is hard to find a reasonable amount of labeled
images for infrequent diseases or conditions [73], often leading to imbalanced class distri-
bution. The best deep learning settings investigated in this work performed competitively,
offering an alternative to classify medical image examinations with a relatively low number
of abnormal and normal samples.
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Future work includes developing and evaluating transfer learning strategies in more med-
ical domains in which small datasets can be found, such as Colonoscopy. Another research
direction to investigate is to assess the eight proposed settings in larger public datasets
with dermoscopic images, such as the International Skin Imaging Collaboration: Melanoma
Project 3 one used in [61]. Adapting some FT variants for other neural network architectures
is also relevant to study. Finally, combining oversampling [2, 5, 68] or alternative schemes
with fine-tuning could be explored to extend our DL strategies and perform better in PH?
and other small databases in which malignant lesions represent the minority class.
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