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Abstract
Computer vision has found many applications in automatic wildlife data analytics and bio-
diversity monitoring. Automating tasks like animal recognition or animal detection usually
require machine learning models (e.g., deep neural networks) trained on annotated datasets.
However, image datasets built for general purposes fail to capture realistic conditions of eco-
logical studies, and existing datasets collected with camera-traps mainly focus on medium
to large-sized animals. There is a lack of annotated small-sized animal datasets in the field.
Small-sized animals (e.g., small mammals, frogs, lizards, arthropods) play an important role
in ecosystems but are difficult to capture on camera-traps. They also present additional chal-
lenges: small animals can be more difficult to identify and blend more easily with their
surroundings. To fill this gap, we introduce in this paper a new dataset dedicated to ecologi-
cal studies of small-sized animals, and provide benchmark results of computer vision-based
wildlife monitoring. The novelty of our work lies on SAWIT (small-sized animal wild image
dataset), the first real-world dataset of small-sized animals, collected from camera traps and
in realistic conditions. Our dataset consists of 34,434 images and is annotated by experts
in the field with object-level annotations (bounding boxes) providing 34,820 annotated ani-
mals for seven animal categories. The dataset encompasses a wide range of challenging
scenarios, such as occlusions, blurriness, and instances where animals blend into the dense
vegetation. Based on the dataset, we benchmark two prevailing object detection algorithms:
Faster RCNN and YOLO, and their variants. Experimental results show that all the variants
of YOLO (version 5) perform similarly, ranging from 59.3% to 62.6% for the overall mean
Average Precision (mAP) across all the animal categories. Faster RCNN with ResNet50 and
HRNet backbone achieve 61.7% mAP and 58.5% mAP respectively. Through experiments,
we indicate challenges and suggest research directions for computer vision-based wildlife
monitoring. We provide both the dataset and the animal detection code at https://github.com/
dtnguyen0304/sawit.
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1 Introduction

Computer has been appliedwidely tomany aspects of human life ranging fromhuman-centred
technologies to nature supporting services. With recent developments in imaging devices
and techniques in computer vision, environmental studies are also benefiting from advanced
algorithms applied to automatic wildlife data analytics or wildlife monitoring from camera
traps [9]. Camera-trap systems record images or videos of animals and their behaviours
using automatically-triggered cameras. They are a powerful tool for ecological studies, but
often capture large datasets that can contain a high amount of false triggers. The analysis
of wildlife camera data can therefore be time-consuming, but computer vision methods can
help streamline the process.

There are two common tasks to analyse images of wildlife: animal recognition and animal
detection. Animal recognition aims to identify animal species from an input image [13, 29,
30]. It implicitly assumes there is one animal per image, and that the animal occupies most of
the camera’s field of view [29]. In contrast, animal detection localises where the animals are
in the image and identifies their types. Typically, results of object detection are represented by
bounding boxes, each of which covers an animal and is associated with an animal type [47,
48]. Compared with animal recognition, animal detection is more challenging due to the
presence of background and potential co-occurrence of multiple animal species in the same
processed image.However, animal detection enables awider range of biodiversitymonitoring
applications including animal counting, animal tracking and density estimation [30].

Recently, deep learning has been applied to advance both animal recognition and animal
detection. To perform these tasks, deep neural networks are designed and trained on animal
datasets accompanied with annotations. Annotations can be provided at image level (e.g., an
animal class of an input image for the animal recognition task) or object level (e.g., bounding
boxes of animals in an input image for the animal detection task). Object-level annotation
is more labour-intensive than image-level annotation. To make deep neural networks robust
and general under various conditions, training datasets are created to include variations of the
data in practice (e.g., variations in animal appearance) and cover possible challenges (e.g.,
illumination changes, cluttered backgrounds). Datasets, therefore, are crucial to the success
of deep learning techniques.

There is a large number of public datasets in the computer visionfield such as ImageNet [6],
PASCALVOC [8], COCO [20] andOpen Images Dataset [17]. However, those datasets serve
general computer vision tasks, e.g., image recognition, object detection from natural images,
and thus cannot always be used for ecology-relevant applications. On the other hand, datasets
captured specifically by camera-traps (see Table 1) mostly focus on large- or medium-sized
mammals and birds.

Small-sized animals (e.g., small reptiles, amphibians, mammals or arthropods) play an
important role in ecosystems, but remain understudied compared to birds and mammals [3,
11, 38, 43]. Smaller fauna is generally more difficult to monitor. Despite some recent devel-
opments, most camera trap systems are still adapted to medium or large animals, and cannot
reliably detect ectotherms or smaller mammals [22]. Small-sized animals also present addi-
tional challenges for automatic animal monitoring algorithms: they can be easily confused
with the surrounding environment, especially in cluttered backgrounds such as dense vegeta-
tion and leaf litter; and can bemore difficult to identify due to subtle differences in appearance.
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In this paper, we provide a fully annotated dataset of small-sized animals to help fill the gap
in wildlife image datasets. To this end, we make the following contributions in our work.

• SAWIT: a real-world dataset of small-sized animals. The dataset is collected in realistic
and systematic conditions through camera traps equipped with motion detection based
on pixel movement, across 30 woodland sites in southeastern Australia.

• Annotations for the collected data at object level on seven categories: frog, lizard, bird,
small mammal, medium or big mammal, spider, and scorpion.

• A benchmark of prevailing object detection algorithms on the seven animal categories.

The remainder of the paper is organised as follows. Section 2 reviews a selection of
existing animal datasets. Section 3 describes our proposed SAWIT. Experimental results of
object detection algorithms on our dataset are presented and analysed in Section 4. Section 5
discusses future work and concludes our paper with remarks.

2 Related work

In this section, we review animal datasets published since 2012. Related animal datasets
can be grouped into two categories: general animal datasets and camera trap-based animal
datasets. General animal datasets are captured by popular cameras such as compact digital
cameras, smartphones, and created for general purposes, e.g., pets collection, casual animal
observations by non-specialists. Camera trap-based animal datasets, on the other hand, are
captured by camera traps and created for a specific purpose, e.g., an ecological study focusing
on specific type(s) of wildlife.

2.1 General animal datasets

Despite a large number of general animal datasets available, those with rich annotations
remain scarce. Among them, a prominent annotated dataset of images of cats and dogs was
introduced in [32]. The pet images were collected from four websites, including Catster,
Dogster, Flickr and Google. Around 2,000-2,500 images were downloaded for each of 12 cat
breeds and 25 dog breeds. These imageswere checked andfilteredmanually to create a dataset
with 200 images for each of the 37 breeds. The dataset creates a benchmark for pet breed clas-
sification as it comes with rich annotations. Each pet is given a breed label as well as a pixel-
level segmentation mask showing its body and a rectangle bounding box localising its head.

iNaturalist, introduced in [14] includes 859,000 images from over 5,000 different species
of plants and animals. Therewere 9 animal classes, and the animals were annotated by bound-
ing boxes. The dataset was used to evaluate Faster RCNN [35] in the task of animal detection.

Khan et al. [15] introduced an animal faces dataset, namely AnimalWeb, including 22.4K
animal faces that cover 350 different animal species. Approximately 6K hours of experts and
trained volunteers were spent for the design and development of the dataset. Around 200-250
images were downloaded from the image hosting website Flickr, and annotated by volunteers
from the citizen science web portal Zooniverse. Annotation was performed on each face to
identify 9 fiducial landmarks on key facial components such as eyes and mouth. The dataset
is useful for various computer vision experiments such as face alignment, pose estimation
and fine-grained image recognition [23, 33, 49, 50].

Recently, Ng et al. [27] introduced Animal Kingdom, a dataset that covers 850 species
across 6 major animal classes in varied environmental conditions. The dataset consists of
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50 hours of long videos obtained from YouTube that can be used for video grounding.
These videos were manually annotated on the framewise basis for both animal and action
descriptions (with 140 fine-grained action classes given by expert annotators). Furthermore,
the dataset comprises 33K frames with annotated animal poses.

2.2 Camera trap-based animal datasets

We summarise camera trap-based animal datasets published since 2012 in Table 1, and briefly
describe them below.

Snapshot Serengeti [40] presents about 1.2 million image sequences collected over three
years between 2010 and 2013. Volunteers from the general public provided labels for the
collected images. Each image was labelled as with or without animal. A large portion of
the images (73.11%) contains no animals. The remainder mostly contains medium and large
mammals (e.g., wildebeests, zebras).

eMammal [24] is a 2-year project focusing on mammals. The project started in 2013 and
collected 2.6 million images of medium and large mammals (e.g., bears, foxes, skunks, deer).
Annotationswere providedwith different levels of details including objectmasks (foreground
regions), appearance features such as body size, orientation, group size, and species types.

NorthAmericaCameraTrap Images (NACTI) [41] is one of the largest animal datasets,
covering 3.7 million images collected from five places in the USA. There are 28 animal
classes in the dataset. A majority of the images (80%) contain large mammals (e.g., cattle,
pigs, deer), and only 2% of the images contain birds. Images without animals represent 12%
of the dataset. A mix of image- and object-level annotations is available (mostly for birds).

Caltech Camera Traps (CCT) was introduced in [1] and extended later with more data
and animal types. This dataset contains 243,187 images collected from 140 different sites in
the Southwestern United States. It mainly focuses onmedium to largemammals like humans,
cows, foxes, and dogs. Some images contain non-animal objects such as vehicles. CCT also
provides a mix of image and object-level annotations, but only a subset of 57,864 images
was annotated with bounding boxes.

Amur Tiger Re-identification in theWild (ATRW) [19] contains over 8,000 video clips
of 92 Amur tigers. This dataset includes high-resolution videos captured at multiple zoos in
diverse lighting conditions and backgrounds. The tigers also appear in unconstrained poses.
Time-synchronised surveillance cameras and tripodfixed single lens reflex cameraswere used
to collect the video clips. Annotation was performed on sampled frames and provided with
bounding boxes enclosing the animals, key points on the animals’ bodies, and identification
of each individual tiger.

iWildCam 2021 Competition [2] was created to address the issue of population recog-
nition of species collected from camera trap data. The training set includes 203,314 images
captured from 323 locations, while the test set consists of 60,214 images collected from
91 locations. The dataset was composed of images from multiple sources, e.g., camera trap
images, citizen scientists’ images.

Florida wildlife camera trap [10] is a collection of 104,495 images with 22 animal
categories. The dataset was collected from January 2018 to late 2019, in Corkscrew Swamp
(Corkscrew) and Okaloacoochee Slough State Forest (OKSSF), in South Florida, the USA.
It mainly contains records of medium and large mammals (66%) and birds (16.52%).

In general, the data in existing camera trap-based animal datasets are stored in two formats:
still images and videos. Most of the datasets provide image-level annotations, e.g., [2, 10,
15, 24, 32, 36]. Those datasets are suitable for the animal recognition task. There are fewer
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datasets offering object-level annotations, e.g., [1, 19, 21, 41]. Compared with image-level
annotations, object-level annotations are more fine-grained. They thus require much more
effort in data labelling, but are more informative and useful for a wider range of tasks, e.g.,
animal detection or animal counting. This review also highlights that existing animal datasets
mainly focus on medium to large mammals and birds.

To enable research in automatic small-sized animal monitoring, we collect a new dataset
of wild animals, with a focus on small fauna. Our dataset is captured by camera traps and
in realistic conditions. Alongside the dataset, we provide object-level annotations for all
collected animals.We note that the term “small” used in our paper refers to the size of animals
in the real-world rather their size on captured images. Specifically, in a common convention
of biology, small mammals are considered as species weighing less than 2 kg [18]. In this
context, we call our focused animals (e.g., frogs, lizards, spiders, scorpions) “small” as they
are extremely smaller than “large” animals, e.g., tigers, elephants, etc., studied in existing
works (see Table 1).

3 SAWIT

3.1 Camera trap prototypes

Our camera trapswere developed as part of a collaborative project amongDeakinUniversity1,
Arthur Rylah Institute2, and citizen scientists affiliated with Land for Wildlife3. They are
intended for day-and-night monitoring of herpetofauna (reptiles and amphibians) and small
fauna [5]. Each camera-trap is designed to be mounted to a stake, about 30 cm above the
ground. The lens is located at the bottom of the camera pointing towards the ground. The
camera has a near-vertical orientation with a tilt angle of 15o; to exclude the mounting stake
while still capturing a top view of small fauna. This ensures that small animals are within
the focal range of the camera, and that their size can be consistently compared. The camera’s
field of view covers an area of approximately 24 (H) cm x 30 (W) cm (720 cm2) on the
ground.

To help direct animals towards the camera, two 5 m long plastic fences were installed on
each side of the trap. The camera is powered by a lead-acid battery connected to a solar panel.
The collected data is stored in a USB drive (up to 250GB for the study). Solar energy and
large storage allow for long-term deployment of the system in the field. Figure 1 describes
the prototype camera trap used to collect our dataset.

The camera is always on, and an on-board motion detection algorithm using background
subtraction [45] continuously monitors up-coming frames for movement. The background
subtraction algorithm estimatesmotion in the captured data, based on the number of changing
pixels from a current frame to a background frame. If this number is higher than a predefined
threshold, the current frame is considered to potentially present an animal and hence is stored.
The background is also updated accordingly. In this study, camera traps were programmed
to be highly sensitive to movement to maximise the detection of small fauna. A minimum
threshold of 1cm2 of changing pixels per frame was chosen to reduce triggers by very small
insects. The camera captures 25 coloured frames per second, with 640x480 resolution. An
infrared light (940nm) illuminates the field of view in low light conditions. This enables the

1 https://www.deakin.edu.au/life-environmental-sciences
2 https://www.ari.vic.gov.au/
3 https://www.wildlife.vic.gov.au/protecting-wildlife/land-for-wildlife
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Fig. 1 (a) Prototype camera connected to a battery and a solar panel - pictured in the back, (b) camera set-up,
and (c) a captured image

motion detection of endotherms and ectotherms during the day and night, in contrast with
passive infra-red camera traps, which have limited capacity to detect ectotherms, particularly
at night [7].

3.2 Field methods and data collection

Thirty (30) cameraswere deployed on private lands aroundBallarat, Daylesford, Castlemaine
and Gisborne in Victoria, Australia. Each land included grassy dry or heathy dry forest
vegetation [46]. The cameras were deployed for seven months between February 2021 and
September 2021. Data were collected continuously (day and night), with some interruptions
due to technical issues or lack of solar-power supply in the winter.

Images of animals collected in the wild using camera traps are a rich source of biological
data yet also present challenges for computer-based algorithms [1, 10]. We illustrate the
challenges of our dataset in Fig. 2. Specifically, animals captured by the camera traps are
rarely perfectly framed, some animals may be too large for the camera and partially occluded
(see Fig. 2(a)). The quality of the captured images is also strongly affected by environmental
conditions, e.g., varying lighting conditions or weather changes altering the transparency of
the camera lens (see Fig. 2(b)).
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Fig. 2 (a) Some challenges of our dataset: (a) partial occlusion and close-up, (b) condensation in the top-left
corner resulting in partial blurry, (c) a frog jumping through a frame resulting in a blurry capture, (d) animal
blending in the background with soil and leaves, (e) a frog partially hidden in vegetation

Detection of small fauna brings its own set of challenges to the task of automatic animal
monitoring. Small animals move quickly in open areas to avoid predation; the speed of these
small animals can result in motion blur (see Fig. 2(c)). Small, cryptic animals can also blend
into their surroundings, unlike most large mammals or birds that can easily be distinguished
from the background. Within our area of study, lizards and frogs have green, brown, or gray
colours. They can blend into the background of soil, rocks, and leaf litter (see Fig. 2(d)), or
be covered by vegetation (see Fig. 2(e)).
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Table 2 Edge cases in annotation of SAWIT

3.3 Data annotation

We provide annotations for the collected data at object level. A random sample of 50,000
videos collected between February and August 2021 was manually filtered to select videos
containing animals. We then manually extracted image frames containing animal(s) from
each selected video. Finally, we annotated animal classes in the extracted frames at object
level, by providing bounding boxes enclosing the animals. In this study, we focus on seven
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Table 3 Detailed information of the collected animals in SAWIT dataset

Animal class No. per-class images % Images No. per-class instances % Instances

Frog 8268 24.01% 8591 24.67%

Lizard 3953 11.48% 3958 11.37%

Bird 5924 17.20% 5982 17.18%

Small mammal 1607 4.67% 1607 4.62%

Big mammal 6371 18.50% 6371 18.30%

Spider 2897 8.41% 2897 8.32%

Scorpion 5414 15.72% 5414 15.55%

animal classes including frog, lizard, bird, small mammal (< 2kg), big mammal (medium-
sized mammal), spider, and scorpion. The two arthropod groups were chosen because they
have distinctive shapes and could demonstrate application of computer vision algorithms
beyond vertebrates. We also observed animal types other than our interests (centipedes,
beetles, ants, etc). Those animals were not annotated. The bounding boxes were made to
fit the animals’ bodies visible within the frame. There are several edge cases that required
special consideration during the annotation. They are summarised in Table 2.

The annotation resulted in 34,434 images with 34,820 annotated animals. Frogs represent
24.67% of the overall number of animal instances. Small mammals are the rarest class, rep-
resenting 4.62% of animal instances. We find there is usually one animal species detected
per image. Note that, in this study, ‘big mammals’, include kangaroos and wallabies, but
also refers to rabbits and echidnas which might be labelled as medium or even small animals
in other datasets, e.g., Florida wildlife camera trap [10], snapshot serengeti [40]. We pro-
vide detailed information on the collected animals in Table 3 and show the distributions of
bounding box sizes of the animals in Fig. 3. The distributions of the ratios of the bounding
box sizes and image sizes vary across animal categories. Specifically, such distributions for
frogs, lizards, spiders, and scorpions show single modes (less than 5%), while those for birds,
small mammals, and big mammals include multiple modes (due to occlusions). In general,
the animals’ sizes in our dataset follow standard sizes in existing object detection datasets.
For instance, the dominant sizes of objects in the PASCALVOC [8] and COCO [20] datasets
are less than 6% of the image’s size. We illustrate several annotation results of our dataset in
Fig. 4.

The output annotations are written inYOLO [34] and PASCALVOC format [8] and stored
in text files. Specifically, each frame containing animals is accompanied with an annotation
file. Each animal detected in the frame is delineated by its closest bounding box, and written
in the annotation file in either YOLO or PASCAL VOC format. For instance, let class_ID be
the ID of the animal class of a detected animal. The class_ID varies in the range [0,6] and is
defined as, 0 for Frog, 1 for Lizard, 2 for Bird, 3 for Small_mammal, 4 for Big_mammal, 5
for Spider, and 6 for Scorpion. Let xmin , ymin , xmax , ymax , width, and height respectively be
the x- and y-coordinate of the top-left corner, x- and y-coordinate of the bottom-right corner,
and width and height of the bounding box enclosing the animal. Depending on the format,
the annotation information for the animal is written as follows.

• For YOLO format: class_ID xmin ymin width height.
• For PASCAL VOC format: class-name xmin ymin xmax ymax .

123



Multimedia Tools and Applications (2024) 83:34083–34108 34093

Fig. 3 Distributions of bounding box sizes in relation to input images’ size) of collected animals in the SAWIT
dataset. y-axis indicates the number of bounding boxes having a proportion of visibility falling within each
range shown on the x-axis. Such variation is due to the variable sizes of the animals in the real-world as well
as occlusions at image borders
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Fig. 4 Illustration of annotation results in the SAWIT dataset. The sizes and dimensions of bounding boxes
(in blue colour) vary depending on animal types. Even within the same animal class, bounding box sizes also
span across a wide range depending on the orientation of the animal in the image and the distance between
the animal and the camera
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Table 4 Details of YOLO’s and Faster RCNN’s architectures. We compare these architectures in terms of the
Floating Point Operations Per Second (FLOPS), the number of parameters, and model size

Architecture FLOPS (G) No. parameters (M) Model size (MB)

YOLOv5s 16.4 7 13.7

YOLOv5m 50.5 21 40.5

YOLOv5l 114.3 46.7 89.4

YOLOv5x 217.5 87.2 167

Faster RCNN (ResNet50) 3.8 25 314.9

Faster RCNN (HRNet) 4.3 9.3 207.5

4 Benchmark of object detection on SAWIT

4.1 Object detection algorithms

Object detection is a fundamental research problem in computer vision with a long history
of development [51]. Object detection has been used for face detection [16], human detec-
tion [28], and plays a crucial role in awide spectrumof applications. In this section,weprovide
a benchmark of state-of-the-art object detection on the seven animal categories collected in
our dataset. Specifically, we experimented with two prevailing object detection algorithms
includingYOLO [34] and Faster RCNN [35]. Bothmethods are considered as state-of-the-art
in object detection, and their capabilities have been verified on various detection tasks and
datasets [51]. In biodiversity and conservation management, YOLO and Faster RCNN have
been applied to detect koalas [4, 48], birds [47], fish [25, 26], and large mammals [37, 42]. In
addition to high accuracy, these algorithms achieve real-time or near real-time performance.
This is an advantage for wildlife data analytics tasks where continuous data processing is
required.

Faster RCNN and YOLO follow two different mainstreams in object detection: proposal-
based object detection (Faster RCNN) and proposal-free object detection (YOLO). The
proposal-based approach divides object detection into two steps: proposal generation and
object verification. The proposal generation step aims to produce bounding boxes which
potentially contain objects of interest from an input image. These regions are called ‘pro-
posals’. In the object verification step, the presence of the animal is verified and the box is
refined to fit with the objects (if any). The proposal-free approach simultaneously predicts an
object’s bounding box and its content (i.e., animal species), centred at every pixel or small
region (e.g., a square area in YOLO) on an input image.

YOLO has a long developmental history with different versions. In this paper, we
chose YOLO version 5, and adopted the publicly released Ultralytics repository [44].
YOLOv5 includes four architectures corresponding to four different scales: small archi-
tecture (YOLOv5s), medium architecture (YOLOv5m), large architecture (YOLOv5l), and
extra-large architecture (YOLOv5x). These architectures have varying parameters (i.e., num-
bers of layers and filters) and hence results in differentmodel sizes.We summariseYOLOv5’s
architectures in Table 4.

For Faster RCNN, we chose the mmdetection code library [31]. Faster RCNN can be
adapted to different network backbones. In this paper, we investigated two commonly used
backbones: ResNet50 [12] and HRNet [39]. Like YOLOv5’s architectures, these backbones
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Table 5 Train/test splits for all
the animal classes in the SAWIT
dataset

Animal class No. training images No. test images
(proportion) (proportion)

Frog 4928 (59.60%) 3340 (40.40%)

Lizard 3045 (77.03%) 908 (22.97%)

Bird 3855 (65.07%) 2069 (34.93%)

Small mammal 1156 (71.94%) 451 (28.06%)

Big mammal 4476 (70.26%) 1895 (29.74%)

Spider 2108 (72.76%) 789 (27.24%)

Scorpion 3866 (71.41%) 1548 (28.59%)

vary in the number of parameters and model sizes. We present details of the variants of Faster
RCNN in Table 4.

4.2 Results and discussions

YOLOv5 and Faster RCNN had to be adapted to detect the seven animal classes annotated
in our dataset. We replaced the last layer in their architectures by a layer of seven nodes
corresponding to the seven animal classes. The dataset was split into two subsets: training
set and test set. We applied different ratios in the train/test splits to different animal classes,
e.g., 59.60% of the frog images were used for training, but this number increased to 71.94%
for the small mammal class. The different ratios used in the train/test splits were to prevent
any similarities in the training and test data. Indeed, images in the training and test data
are extracted from videos, and thus images from the same video share the same background.
Videos collected at the same location also inherit the same surrounding environment. To avoid
similarities in background information, the training and test images of every animal classwere
extracted from different videos, captured at different time steps and at different locations.
Test images were also selected to cover the diversity of the collected data. Specifically, to
reduce duplicates and similarities from continuous data capture, test images from the same
video were sampled at discontinuous time steps. We present the train/test splits for all the
animal classes in Table 5.

We trained all the variants of YOLOv5 and Faster RCNN using 50 epochs and 24 epochs,
respectively.We set the learning rate to 0.01, batch size to 16, andmade use of SGD optimiser
for both YOLOv5 and Faster RCNN. Depending on the architectures, the training time varied
from 3.6 hours to 25 hours. All experiments were implemented in Pytorch 1.10 and conducted

Table 6 Training and inference time of the experimented object detection models on the SAWIT dataset

Architecture Training time (in hours) Inference time (in No. frames per sec - fps)

YOLOv5s 3.684 250

YOLOv5m 5.413 142.8

YOLOv5l 7.516 83.3

YOLOv5x 13.153 47.6

Faster RCNN (ResNet50) 9.78 19.6

Faster RCNN (HRNet) 25 14.9
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Table 7 Detection performance of YOLOv5 and Faster RCNN on the seven animal classes in the SAWIT
dataset

Yolo-v5s Yolo-v5m Yolo-v5l Yolo-v5x Faster RCNN
(ResNet50)

Faster RCNN
(HRNet)

All 59.3% 61.2% 62.6% 61.3% 61.7% 58.5%

Frog 64.2% 71.7% 61.6% 64.0% 76.8% 68.9%

Lizard 45.4% 47.7% 48.7% 46.8% 52.1% 39.0%

Bird 89.4% 90.2% 91.9% 90.5% 75.0% 69.2%

Small mammal 34.7% 34.9% 40.8% 41.8% 47.2% 52.6%

Big mammal 55.9% 59.6% 65.5% 55.0% 62.5% 65.9%

Spider 90.3% 90.6% 94.4% 94.7% 92.6% 92.1%

Scorpion 35.2% 33.6% 35.3% 36.1% 25.3% 21.7%

on 2 NVIDIA GeForce RTX2080Ti GPUs. We report the training and inference time of all
the experimented architectures in Table 6.

We compared the object detection algorithms via the mean average precision (mAP)
metric. True positives and false alarmswere determined using thePASCALVOCstandard [8].
A detected object is considered as a true positive if there is a match in the ground-truth data.
Thematch between a detected object and a ground-truth object is measured as the intersection
over union (IOU) of the bounding boxes enclosing these objects. A match is confirmed if
this IOU is greater than a threshold, which is set to 0.5 (a commonly used value) in our
experiments.

Fig. 5 mAP of YOLOv5 and Faster RCNN on the seven animal classes in the SAWIT dataset
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We report the mAP of the object detection algorithms and their variants on our test set
in Table 7, and plot the methods’ mAP in a bar chart in Fig. 5. All the variants of YOLOv5
perform similarly (varying from 59.3% to 62.6% for the mAP on all the animal classes). The
large model (YOLOv5l) achieves the best overall performance (with 62.6% mAP) across
object detectionmethods and variants (see Fig. 5). Faster RCNNwith ResNet50 ranks second
for the overall performance. However, the difference between its mAP and YOLOv5l’s mAP
is marginal (about 1%). Faster RCNN with HRNet obtains the least overall performance
(with 58.5% mAP), while requiring longer training time. This is probably because HRNet is
designed to handle high-resolution images, and thus may not have advantages on our images
captured in relatively low resolution (640x480). To have a more comprehensive evaluation,
one should also consider both detection accuracy and computational speed. We present the
processing time of all the detection algorithms and their variants in Table 6, and compare these
algorithms regarding their detection accuracy (mAP) and inference time (fps) in Fig. 6. As
shown inTables 6, 7 and Fig. 6,YOLOv5l seems to optimise both accuracy and computational
speed criteria.

Spiders can be well detected by all the detection methods (with more than 90% mAP,
see Fig. 5). YOLOv5 stands out when detecting birds, achieving about 90% mAP. Scorpions
appear to be the most challenging class for all the algorithms. Small mammals are also
difficult to detect, probably due to limited training data. We found that all the variants of
both the detection methods (i.e., YOLOv5 or Faster RCNN) perform consistently across the
animal classes, with similar mAP ranking order of the animal classes for all the variants of
each method.

To further investigate the object detectors, we report the loss and accuracy (in mAP)
charts of the detectors (and their variants) in different training epochs in Figs. 7 and 8,
respectively.YOLOv5makes use of three different losses (Fig. 7(a)) including box regression,
animal classification, and objectness detection losses (i.e., confirming whether a bounding
box captures an object). In contrast, Faster RCNN utilises only box regression and animal
classification losses (Fig. 7(b)). As shown in Fig. 7, all the detectors and their variants well
converge. In addition, all variants of each detector perform consistently across loss functions

Fig. 6 Comparison of YOLOv5 and Faster RCNN in regard to detection accuracy (mAP) and computational
speed in inference (fps)
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(e.g., box loss, classification loss). The detection accuracy curves (Fig. 8), on the other hand,
fluctuate during training but achieve best performances at 50 epochs (for YOLOv5) and 24
epochs (for Faster RCNN).

We illustrate successful detection results by YOLOv5 and Faster RCNN in Figs. 9(a) and
(b), and 10(a) and (b). Some of the animals detected with high confidence by computer vision
algorithms could be difficult for even humans to detect. For instance, Figs. 9(b) and 10(a)
show cases where the animals and their surrounding background have similar colour and
texture. Figure 10(b) presents a case where a lizard camouflages into a background of grass
and leaf litter. We observed that Faster RCNN often gets extremely high confidence scores
(e.g., 100%) in these cases, compared with YOLOv5.

We demonstrate challenges of our dataset (e.g., occlusions, cluttered backgrounds, shad-
ows due to illumination conditions, fast motion) in Figs. 11, 12(a) and (b), 13, 14, 15, 16,

Fig. 7 Loss curves of YOLOv5 (a) and Faster RCNN (b)
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Fig. 8 Detection accuracy curves of YOLOv5 (a) and Faster RCNN (b)

Fig. 9 Illustration of successful detections by YOLOv5 and Faster RCNN on the SAWIT dataset. (a) A clear
image of a bird, which allows all detection algorithms to recognise the bird with high confidence. (b) Another
successful example where a frog and the background have similar texture
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Fig. 10 Other successful cases of YOLOv5 and Faster RCNN on the SAWIT dataset. (a) A scorpion that looks
like a twig. (b) A lizard blends into a background of grass and leaf litter

Fig. 11 A case where YOLOv5 and Faster RCNN models produce different detections. Variants of YOLOv5
yield similar results, which correctly detect the bird. In contrast, Faster RCNNmodels incorrectly identify the
object as a big mammal
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through which we discuss the performance of both YOLOv5 and Faster RCNN. In some
cases, YOLOv5 and Faster RCNN produce discrepant class labels for the same animal. For
instance, the bird in Fig. 11 is recognised differently by YOLOv5 and Faster RCNN. We
found that Faster RCNN is more sensitive to occlusions, compared with YOLOv5. In addi-
tion, Faster RCNN often generates multiple labels for the same object (see Fig. 12). Another
challenging case to Faster RCNN is shown in Fig. 13, where the algorithm generates several
false alarms in a cluttered background. Figure 14 illustrates a case where both YOLOv5 and
Faster RCNN can detect a bird when there are shadows, but Faster RCNNmakes better fitted
results. Faster RCNN also seems to perform better than YOLOv5 in detecting animals in fast
motion and in detecting tiny animals. Specifically, while both versions of Faster RCNN can

Fig. 12 Detection under occlusions. (a) A bird captured in close distance from the camera, resulting in severe
occlusion. (b) A rat with the head occluded
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Fig. 13 Detection in a cluttered background.A lizard in a cluttered backgroundwith tree twigs.WhileYOLOv5
can well distinguish between the lizard and the twigs, Faster RCNN generates false alarms

detect a frog in fast motion (see Fig. 15), only YOLOv5m is able to do so. Faster RCNNwith
HRNet backbone appears to have an advantage in detecting very tiny objects as the HRNet is
purposely designed to learn details from high-resolution images (see Fig. 16). These results
show that SAWIT can be considered as a benchmark dataset of small-sized animals, covering
various practical challenges for camera trap-based animal monitoring research.

Fig. 14 Detection under shadows. Although shadows do not hinder the detection capability of both YOLOv5
and Faster RCNN, detections produced by Faster RCNN better fit the animal
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Fig. 15 Detection under fast motion. Only Faster RCNN and YOLOv5m are able to detect the frog in fast
motion

5 Conclusions and future work

This paper presents a real-world dataset of small-sized animals, namely SAWIT. The dataset
was collected from camera traps in realistic conditions for seven months between February
2021 and September 2021. Based on the collected data, we provided object-level annotations
for 33,434 images and 34,820 animals into seven classes: frog, lizard, bird, small mammal,
big mammal, spider, and scorpion. Compared with existing datasets, the SAWIT focuses
on smaller fauna and includes ectotherms. To the best of our knowledge, this is the first
annotated dataset with arthropods. The SAWIT covers practical challenges of wildlife data

Fig. 16 Detection of tiny animals. This example shows an advantage of Faster RCNN with HRNet backbone
in capturing details from imagery data
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(e.g., cluttered backgrounds, low-quality images due to severe illuminations, occlusions, and
fast motion) and can be considered as a benchmark for small-sized wildlife monitoring and
conservation research. To demonstrate this capability, we experimented with state-of-the-art
object detection algorithms (YOLO and Faster RCNN) and their variants for the task of
animal detection on our dataset.

Experimental results show that spiders and birds can be well detected by both YOLO
and Faster RCNN, while scorpions and small mammals remain difficult. We observed that
missed detections of species such as lizards and scorpions are due to the indistinguishable
appearance of the animals comparedwith their surroundings (e.g., a scorpionmay camouflage
into a background of grass and leaf litter, a lizard may look like a stick in dense vegetation).
However, when the animals move, they can be easily noticed by human annotators. This
suggests the use of temporal information in improving the object detection algorithms. We
consider this direction for our futurework. There is a trade-off between detection accuracy and
computational speed, and the selection of a detection algorithm depends on the requirements
of the downstream application. Based on our observations, we recommend the large model
of YOLOv5, given its high detection accuracy (62.6% mAP) and real-time performance (83
fps).
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