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Abstract
Remote photoplethysmography (rPPG) gains recent great interest due to its potential in con-
tactless heart rate measurement using consumer-level cameras. This paper presents a detailed
review of rPPG measurement using computer vision and deep learning techniques for heart
rate estimation. Several common gaps and difficulties of rPPG development are highlighted
for the feasibility study in real-world applications. Numerous computer vision and deep
learning methods are reviewed to mitigate crucial issues such as motion artifact and illu-
mination variation. In comparison, deep learning approaches are proven more accurate than
conventional computer vision methods due to their adaptive pattern learning and general-
ization characteristics. An increasing trend of applying deep learning techniques in rPPG
can improve effective heart rate estimation and artifact removal. To consider more realis-
tic disturbances into account, additional vital signs and large training datasets are crucial
to improve the accuracy of heart rate estimations. By taking the benefit of contactless and
accurate estimation, the application of rPPG can be greatly adopted in real-world activities,
especially in precision sports.

Keywords Remote photoplethysmography · Heart rate measurement · Signal processing ·
Computer vision · Deep learning

1 Introduction

Heart rate (HR) is one of the most important physiological signs, especially for the early
detection of cardiovascular catastrophes and cardiac arrhythmia [1]. Generally, the methods
for HR monitoring can be classified as contact and non-contact type measurement. For
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contact type measurement, the electrocardiogram (ECG)-based HR detection [2] can provide
reproducible and reliable detection in most clinical diagnoses. Ten adhesive ECG electrodes
[3] are required to attach to the specific body locations to measure bio-potential output.
Hence, it restricts the moving flexibility of patient in the usage scenario of an ECG machine.
On the other hand, photoplethysmography (PPG) [4] is a widely used alternative solution to
overcome the limitations while offering a reliable measurement. This non-invasive optical
technique utilizes a light source and photo-detector to sense the blood volume pulse (BVP)
in the blood vessels beneath the skin during blood circulation. According to Beer-Lambert’s
law [5], for the attenuation of light under a specific wavelength, the light reflected through
the skin can be considered through the process of diffusion and scattering. The light absorbed
by the skin is proportional to the penetration of light into the skin and the concentration of
hemoglobin in the blood. The hemoglobin concentration variation in a cardiac cycle causes
a small variation between the reflected and transmitted light intensity that is recorded as a
PPG signal by a photodetector for HR measurement. This approach is commonly integrated
into wearable devices such as pulse oximeters, smartwatches, and smartphones.

Remote health monitoring has recently gained public interest, because of its entirely non-
contact properties, especially during the pandemic. Thewidespread physical social distancing
and stay-at-home orders during the COVID-19 pandemic have caused obstacles in clinical
physical examinations and created a pressing need for remote healthcare and telemedicine
predominantly [6, 7]. Thus, it is engaged to find an innovative or efficient adaptation of
existing technology to support remote monitoring methods. Remote photoplethysmography
(rPPG) could be a vital HR screening andmonitoringmethod for the infected and quarantined
individuals in terms of telemedicine during the overwhelming global pandemic to avoid any
risk of healthcare-associated infections on healthcare professions [8]. As having the same
operation as the conventional contact PPG, rPPG uses a digital camera that functions as the
photodetector to record the subtle changes on the skin, particularly the face of the subject
from a few meters away, while ambient light acts as the light source. The frontal face video
of a subject is captured with a camera and passed through a set of algorithms and models to
perform HR estimation.

This technique was first proposed by Verkruysse et al. [9] used a consumer-level camera
with ambient light to estimate HR successfully in the year 2008. After that, several con-
ventional methods were proposed to reduce the impacts of motion artifact and illumination
variation, targeted to improve the HR estimation accuracy. However, these methods typically
made some hypothetical linear assumptions on subject head movement and skin reflections,
which may not hold in real cases. Due to the advancement in Deep Learning (DL) recently,
the application of DL in the digital signal processing field has beneficial and empowered
object detection, e.g., people detection in [10], and several image processing, such as image
super-resolution in [11], and image denoising in [12]. Since this field relies heavily on object
detection and image processing, rPPG research follows this DL trend by using end-to-end
methods or creating hybrid ways combining deep learning and traditional methods. Both
methods have outperformed conventional computer vision methods. This paper systemati-
cally reviews both conventional and DL approaches for rPPG HR measurement.

The authors endeavored to address several significant research questions, as outlined in
Table 1. The rest of the paper is organized as follows. Section 3.1 presents and analyzes
various conventional methods. Section 3.5 categorizes the DL-based methods into end-to-
end and hybrid methods. Section 3.8 discusses the current challenges and gaps in the field.
Section 3.9 explores the potential real-world applications of the methods. Finally, Section 4
concludes the paper and suggests some future directions for research.
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Table 1 Questions on reviewing rPPG

• What are the available types of rPPG techniques in the current research?

• How do different types of rPPG techniques work and what are the latest findings and improvements in this
field?

• What are the main sources of error or variability in rPPG measurements and how can these be minimized or
controlled?

• What are the limitations and key challenges of rPPG technology and how researchers attempted to address
them?

• What is the current development using machine learning and deep learning in rPPG?

• What are the potential applications of rPPG technology, and how have these applications been tested in
real-world settings?

• What are the privacy considerations surround rPPG technology, particularly in sensitive contexts such as
healthcare or surveillance?

2 Reviewmethodology

A comprehensive understanding of the various types of studies in this domain is necessary
to review the current rPPG methods systematically. Therefore, an abundance of information
from various sources was gathered to provide a comprehensive overview of the current state
of the art. The research strategy sought to identify relevant studies published from 2008 to
the beginning of 2023.

The terms and phrases used in different studies are inconsistent in this field. Therefore,
the search and screening were performed using a combination of the following keywords:
‘remote photoplethysmography’, ‘remote’, ‘photoplethysmography’, ‘rPPG’, ‘imaging’,
‘non-contact’, ‘contactless’, ‘contact-free’, ‘camera’, ‘webcam’, ‘video’, ‘facial video’,
‘camera-based’, ‘video-based’, ‘blood volume pulse’, ‘pulse’, ‘pulse estimation’, ‘heart
rate’, ‘heart rate estimation’, ‘heart rate measurement’, ‘heart rate monitoring’, ‘physio-
logical measurement’, ‘ physiological signals’, ‘deep learning’, ‘end-to-end’, ‘convolutional
neural network’, ‘attention network’, ‘spatial-temporal’, ‘spatio-temporal network’, ‘gener-
ative adversarial networks’, ‘super resolution’, ‘transformer’, along with their abbreviations
sometimes.

The information sources included conferences, symposium proceedings, periodicals,
research articles, and books. In addition, a Google Scholar search using the listed keywords
is conducted to obtain a large number of relevant published studies.

• IEEE eXplore (ieeexplore.ieee.org)
• Elsevier (elsevier.com)
• Springer (link.springer.com)
• ACM Digital Library (dl.acm.org)
• Other reputed research journals
• Other reputed conference/symposium proceedings

Figure 1 presents the PRISMA flow diagram for this systematic literature review (SLR).
This review focused on rPPG experiments that employed facial video as their input modality
and sought to infer heart rates from the video frames. We concentrated on research that used
consumer- and commercial-level recording equipment, such as webcams and consumer cam-
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Fig. 1 PRISMA flow diagram for this systematic literature review (SLR)

eras. In our studies, the used specialized tools, such as high-speed and infrared cameras were
excluded in the comparison because they were not representative in this field, where RGB
cameras are the most accessible and popular tool for the public. But to make comparisons,
we briefly addressed a few of these research. This information sourcing did not include the
techniques, algorithms, and research that were not specifically about rPPG but were utilized
in some of the chosen studies. 71 papers that fit the criteria and related directly to rPPG were
included.

3 Result

This section analyses all the selected studies classified into two categories: conventional
computer vision methods and deep learning methods. The studies on conventional computer
vision methods are arranged according to the critical stages in the conventional workflow
and evaluated based on their novelty and performance, as presented by the original studies.
Meanwhile, the studies on deep learning methods are divided into two sections: hybrid and
end-to-end. In the hybrid section, the studies are also grouped based on their involvement
in the significant stages of the conventional workflow and discussed based on their novelty

Fig. 2 Basic workflow for conventional computer vision methods
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and performance. In the end-to-end section, the studies are classified according to their deep
learning architecture and evaluated based on their novelty and performance.

3.1 Conventional computer visionmethods

Most remote HR estimation methods share the general workflow as shown in Fig. 2. The
workflow begins with a recorded or live video of a subject through a camera. Next, a pre-
processing step is to crop out the human face region in each video frame and define a region
of interest (ROI) within the bounded region (Fig. 2). The raw rPPG signal is then extracted
from the pixels within ROI by various methods. After passing through some signal optimiza-
tions, for e.g. filtering out unwanted frequencies, the HR estimation process is proceeded
by mathematical analysis. In some literature studies, an optimization algorithm is applied
before signal extraction. Table 2 summarises this review’s discussed conventional methods.
On the other hand, Fig. 3 presents the breakdown of the included studies by classifying their
features.
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3.2 Face detection and ROI

Face detection is the first step in the entire rPPG, and sometimes, it is associated with a
face-tracking algorithm to reduce motion artifacts that require additional processing. As the
detected face border still includes a greater scale of non-facial skin regions, most researchers
choose specific parts as ROI on the detected face for additional HR estimates rather than the
full detected face.

3.2.1 Face detection

The HR estimation is entirely based on the estimated PPG signal resulting from the subtle
skin color variation caused by the cardiac pulse cycle. Thus, it is essential to undergo the
preprocessing step to detect the face in each frame correctly, prior to choosing the favorable
ROI within the bounding for subsequent raw signal extraction. In early studies [9, 15, 16],
face detection was absent with directly selected fixed region as ROI.

The Viola and Jones (VJ) algorithm is the state-of-the-art object detection using a boosted
cascade of simple features. It was frequently applied in various studies [13, 14, 17, 22, 29].
It utilizes the Haar feature and Integral image to detect and form a rectangular frame that
bounds the subject’s facial image. It becomes an iconic face detection algorithm among a
variety of conventional and DL-based rPPGmethods because of its automated face detection,
high detection rate, and availability in the computer vision library of OpenCV andMATLAB.
The benefit of using a face detection algorithm, like the VJ algorithm, is to provide a simple
removal for undesirable and uninterested regions at the beginning of the entire workflow.

3.2.2 Face tracking

The implementation of face detection in every frame consumes large processing power and
hence, it makes low feasibility in carrying out the real-time application. To tackle this matter,
tracking the face over time in a smaller bounding box reduces the computational cost in the
process. Lucas et al. [30] proposed the Kanade-Lucas-Tomasi (KLT) face tracker by inserting
the facial bounding box from VJ face detection; the track-able points of the subject’s face are
then generated and tracked over time. It makes the re-detecting process serves only when the
movements are severe. The combination of the VJ face detector algorithm with the KLT face
tracker is commonly involved in several studies emphasizing their real-time performance,
such as [21, 22, 26].

3.2.3 ROI definition

In early fundamental studies [9, 15, 16], the subject is required to stay still to enable manual
ROI selection to form a fixed spatial region on the subject’s entire face or forehead. Some
studies [13, 17, 25] equipped with VJ face detection and use the VJ’s result as their ROI
without any selection. Assuming a sufficient and stable light condition, these solutions might
still cause somemotion artifacts because of head and eye movements, resulting in inaccuracy
signal extraction and HR estimation [31].

Choosing on suitableROI for raw rPPG signal extraction is critical to improve the accuracy
of HR estimation. Using VJ algorithm to bound a ”face rectangle” may result in imprecise
HRmeasurement due to the unavoidable non-facial pixels at the corners of the rectangle. The
result can be worse when considering head movement [22]. Compared to the entire face, the
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cheeks and forehead are usually selected as excellent ROIs because of the high blood vessel
distribution [31]. However, more studies applied either skin detection or facial landmark
algorithm to obtain favorable and adaptive ROI.

Skin selection is a process that removes all the non-skin pixels, such as the background,
eyes, eyebrows, hair, and so on while maintaining the skin pixels. Besides the simple skin
detection algorithm used in Han et al. [17], Wang et al. [20] used an OC-SVM classifier to
distinguish skin and non-skin pixels. Besides that, Fouad et al. [26] proposed a novel approach
to skin detection and segmentation. The purpose is to identify skin pixels and remove non-
skin pixels from the VJ’s bounding box of the face prior to ROI selection. The comparison
between CONAITE [32] and RGB-H-CbCr [33] was made to select the best skin detection
method. As a result, the CONAITE with the lower RMSE (6.06 bpm lower at the most) is
more robust in differentiating between skin and non-skin areas. With the skin segmentation
process, Fouad et al. [26] proposed their own ROI definition with three small rectangular
regions located at the forehead and cheeks.

A facial landmark detection algorithm is an alternative or optional step to identify the
locations of key landmark points of the unique facial components on facial images or videos
[34]. It is excellent in generating unevenly shaped ROI or various ROIs simultaneously. There
are plenty of facial landmark detectors, and were applied to different studies. In McDuff et
al. [18], the Local Evidence Aggregation for Regression-Based (LEAR) facial landmark
detector [35] was employed to generate the selected ROI, excluding a region around the eyes
by locating the x-y coordinates of one hundred twenty-five thousand pixels at the mean.
LEAR is a regression-based approach combined with a probabilistic graphical model-based
face shape model.

Li et al. [22] proposed the Discriminative Respond Map Fitting (DRMF) facial detector
[36] to define a facemask-like shaped ROIwith sixty-six facial landmarks. On the other hand,
Gudi et al. [28] proposed the Active AppearanceModel (AAM) [37] to define ROI containing
only the upper region of the face excluding the eyes. AAM identifies the landmark location
by inserting the learned global facial shape patterns into the testing images [34]. Lam et al.
[19] proposed the Pose-free facial landmark [38] that was used to sixty-six facial landmarks
for all frames in the video.

Po et al. [39] applied the detection of face using VJ, KLT, and Speeded up robust fea-
tures (SURF) [40] before the ROI selection. Its novelty is presented as the whole facial
region in each face image is divided into non-overlapped blocks. Later, the SNR maps were
calculated with mean-shift clustering to reflect the rPPG signal quality distribution on the
face. An adaptive thresholds in SNR maps was obtained to generate the block-wise adaptive
ROI

3.3 rPPG signal extraction

Instead of using an ideal light source in the contact PPG, rPPG uses the uncontrolled ambi-
ent light from the surroundings as the light source to estimate HR. Since the light source is
environment-dependent, it significantly causes unwanted noises due to motion and illumi-
nation. Hence, it requires more signal processing to be applied during raw signal extraction.
After the ROI was selected and tracked, it was split into the three RGB channels. To
reduce the camera quantization error, the three channels averaged spatially among all the
pixels within the selected ROI; thus, the raw RGB traces can be obtained. The traditional
approaches to optimize and extract useful rPPG signals can be classified into signal decom-
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position and color space projection ways as a result of improving the signal-to-noise ratio
(SNR).

3.3.1 Signal decomposition

A bandpass filtering process is performed on the spatial means to remove the non-
physiological information, mainly the undesired high and low-frequency noise. The fre-
quency band (0.75 to 4 Hz) is commonly picked, corresponding to the HR in the normal
range of 42 to 240 bpm [41]. This process is carried out by a common bandpass filter, for e.g.
Butterworth, Hamming window FIR, and is involved in every conventional rPPG method.
These are fundamental steps to extract the useful signal, which was first included in [9].

3.3.2 Signal optimization

To mitigate the influences of the motion artifact and illumination variation, temporal filtering
is commonly used in several studies instead of bandpass filtering only. The robust temporal
filtering includes detrending, normalization, smoothing, and bandpass filtering. The concept
was first proposed by [14] and implemented in several studies [18, 19, 22, 26]. These studies
all underwent temporal filtering using a similar process. Firstly, a detrending filter using a
procedure based on a smoothness priors’ approach, proposed by Tarvainen et al. [42] is used
to minimize low-frequency, slow, and non -stationary trend of the signal. The smoothing
parameter λ was set differently, varying from 10 to 2000 in different studies. Secondly,
normalization is carried out, as periodicity is the main interest. Thirdly, a moving-average
filter smooths out the random noise. Lastly, the bandpass filter, as mentioned previously.

Besides bandpass-based filtering, amplitude selective filtering (ASF) was proposed in
Wang et al. [43] to reduce the effect of head motion. The pulsatile amplitude is exploited as a
bio-metric signature by distinguishing the frequency components of motion noise and BVP
signal because the spectral amplitude of motion is much larger than the spectral amplitude
of the pulse. Yang et al. [44] proposed a derivative filter (DF) was proposed to provide a
motion-tolerant signal extraction in the next step. The three-order derivative of the Gaussian
filter becomes low during smooth changes but high during steep changes. Thus, it was utilized
to select subtle color variation under large motions as it depicts smoother trajectories at a
temporal scale compared to the motion interference.

3.3.3 Color space projection

Compared to signal decomposition methods, the color space projection methods emphasize
the application of different algorithms to extract useful rPPG signals from the raw traces.
Usually, the more accurate and robust rPPG signal can be extracted with the use of the
dimension reduction concept to tolerate small motion artifacts and illumination variations.
Blind source separation (BSS) was implemented in rPPG studies to distinguish the desired
RGB signal from noise and motion artifacts. This method assumes that the pulse signal
shows the strongest periodicity and ignores the distortion caused by periodic motion. The
representative BSS techniques that are widely applied are independent component analysis
(ICA) [13, 14] and principle component analysis (PCA) [15].

The ICA algorithm for rPPG was explained in Poh et al. [13, 14]. It chose green channel
trace as reported by Verkruysse et al. [9] and utilized the joint approximate diagonalization
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of eigenmatrices (JADE) algorithm developed by Cardoso et al. [45] to perform motion-
artifact removal by separating the fluctuations caused by BVP from the raw RGB signals.
Several studies included this method in their works, such as [18, 19, 46]. After that, the
PCA algorithm was proposed in Lewandowska et al. [15] and applied in other works such as
Wang et al. [20]. The author claimed that it is better performance and higher computational
efficiency and resulting a similar HR estimation accuracy with ICA. The work also showed
sufficient accuracy in estimating pulse rate based on the small rectangular region on the
forehead compared to the whole face. However, both ICA and PCA methods showed lower
accuracy in excessive movement.

Chrominance-based (CHROM) algorithm [17] was first proposed to address the motion
intoleranceweakness of theBSS techniques. It considered the pulse as a linear combination of
RGB channels under a standardized skin-tone assumption. The influence of motion artifacts
could be eliminated through the track using color difference signals. Experimental results
showed higher motion-robustness compared to BSS methods in the presence of periodic
motion. With one hundred seventeen subjects in vigorous motion, and the HR estimated
through a simple peak detector, the correct pulse rate at 48% of the time, while ICA and PCA
scored 4% and 11%, respectively. In Wang et al. [20], the CHROM was used as a baseline
to construct a pixel-based rPPG sensor integrated with motion-compensated pixel-to-pixel
pulse extraction, optimized spatial redundancy and temporal filtering, resulting in a more
motion tolerance algorithm.

Shortly, the CHROM’s author proposed the BVP signature-based PBV [23] indicating
better motion robustness than BSS methods and CHROM. It used the signature of blood
volume changes in different wavelengths of RGB to gain the pulse-induced color changes
frommotion noise. With 117 subjects on different gym equipment, the improved result could
be obtained from a similar experiment setup in CHROM, the correct pulse rate increased to
68% from 60% (CHROM), and SNR increased from -5dB (CHROM) to -4dB.

The Spatial Subspace Rotation (2SR) algorithm [24] was proposed to claim its higher
performance for subjects with dark skin tone or body motions in complex illuminance con-
ditions. Its core concept is to exploit the skin-pixel distribution and estimate the temporal
rotation of skin pixels subspace in RGB for deriving the pulse rate. The author claimed that
the 2SR method outperformed ICA, CHROM, and PBV. Based on their private benchmark
dataset containing 54 videos, the SNR of 2SR was obtained as 6.55dB compared to ICA,
CHROM, and PBV were all lower than 5dB, and the highest PCC at 0.94 compared to others
ranged at 0.64-0.78.

An alternative concept, the plane-orthogonal-to-skin (POS) [25] was proposed. It defined
a pulsatile plane orthogonal to the skin tone in temporally normalized RGB space for pulse
extraction. It also compared GREEN, PCA, ICA, CHROM, PBV, 2SR, and POS based on
their private benchmark dataset containing 60 videos. In fitness challenges, the model-based
methods (CHROM, PBV, and POS) surpassed the non-model-basedmethods (GREEN, PCA,
and ICA) in motion robustness.

3.4 HR estimation

Conventionally, the extracted rPPG signal relies on mathematical steps using frequency anal-
ysis or peak detection methods to perform HR estimation. In GREEN [9], it proved that the
green channel contains the most sufficient and significant PPG signal, compared to red and
blue channels. Usually, after the rPPG signal extraction, the filtered green channel is taken
out and normalized.
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3.4.1 Peak detection

The peak detection method is a relatively simpler method that detects the peaks on the
temporal rPPG signal to calculate the heart rate without converting to the frequency domain.
The recovered rPPG signal, however, frequently exhibits noise and has a lower temporal
precision than the contact type due to its non-contact nature. For example, Mcduff et al.
[47] proposed an automated method for the detection of the systolic and diastolic peaks and
capturing the peak-to-peak time (SD-PPT) from the rPPG signal in the time domain. The
estimated HR is the inverse of SD-PPT.

3.4.2 Frequency analysis

The extracted rPPG signal is converted from the spatial domain to the frequency domain
by FFT or DCT. The power spectral density (PSD) distribution is estimated as the function
of frequency using Welch’s method. The frequency with the maximal power response is
recognized as the rPPG signal. The HR over a particular period is estimated as (1). This
method is more commonly adopted in studies compared to the peak detection approach.

HRestimated = 60 ∗ fr P PG (1)

3.5 Deep learningmethod

The introduction of DLmethods has recently achieved better generalization and higher accu-
racy because it can learn the pattern of spatial and temporal features simultaneously in the
training phase as compared to the signal processingmethods. As shown in Table 2,most rPPG
methods in the early development used their own recorded datasets, which were not publicly
accessible. This issue has made difficulties in the evaluation and generalization of different
rPPG methods. The situation has turned over as several common datasets were introduced
and used by various DL-based methods. Table 3 summarizes the publicly available datasets
commonly used in training and testing at the state-of-the-art. Learning-based approaches can
often be divided into two categories, i.e., hybrid and end-to-end methods. Hybrid methods
require a portion of conventional methods while serving as compensation or enhancement
throughout the entire pipeline, from video input to numerically estimated HR. In contrast,
the end-to-end method intakes video sources and outputs with numerical estimated BVP or
HR without human intervention. Figure 4 presents an overview of all discussed approaches
in this review, and Table 4 summarizes all the discussed deep learning methods in this review.

3.6 Hybridmethods

The DL approaches can be applied to enhance and compensate for the major steps, including
face detection, signal extraction/optimization, andHRestimation in the conventional pipeline.
Multiple enhancements in a single approach are possible. A few selected approaches in each
major step are discussed below.

3.6.1 Face detection

Hsu et al. [48] proposed a customized face and landmark detection network to address incon-
sistent facial regions and landmarks detected across frames caused by the variation of the
facial regions given by the VJ method. It combined a Single Shot MultiBox Detector (SSD)
face detector [49] and a double dropout regression network for landmark localization. The
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Table 3 Common used dataset in rPPG research

Dataset Subject Video Physiological signal Description

PURE 10 RGB 640*480@30fps HR, SpO2, PPG 6 different head motions

COHFACE 40 RGB MPEG4
640*480@20fps

BVP, RR 2 illumination settings

MAHNOB-HCI 30 RGB H.264
780*580@51fps

ECG, RR Recorded while watching
video 6 different views

UBFC-RPPG 42 RGB 8-bit
640*480@30fps

HR, PPG Recorded while play
time-intensive game

MMSE-HR 40 RGB
1040*1392@25fps

HR, RR, BP Subject with different
skin tones

VIPL-HR 107 HR, SpO2, BVP Recorded by different
devices

SSD face detector is a feed-forward-based convolutional network optimized for real-time
object detection. By the SSD-detected face, the CNN-based landmark detector renders the
68 coordinates of landmarks on the face. This work was evaluated on the 300W benchmark
database [50], and it resulted in a normalized error of 5.02, compared to RLBF’s 5.16 and
SDM’s 5.70. For subsequent steps, another CNN trained by a set of Time-Frequency Repre-
sentation images converted from a collection of facial videos with gold-standard pulses was
used to estimate HR.

Tran et al. [51] proposed an adaptive pulsatile plane approach to eliminate the light reflec-
tion changes induced by motions. The state-of-the-art semantic segmentation Deeplabv3+
was implemented to segment the skin pixels from the facial region pre-detected by any
face detection and tracking methods, where the commonly used VJ was implemented in the
approach. The celebA-HQ dataset was used to train the model for skin pixel segmentation.
The subsequent conventional methods were included to extract the rPPG signal and estimate
HR. The author also demonstrated this practical application in a hospital.

3.6.2 Signal extraction

Perepelkina et al. [52] proposed HeartTrack, a 3D spatio-temporal attention neural network,
to solve the lack of real-life biomedical data as the deep learning methods typically require
large amounts of training data. The face detection is preprocessed by the RetinaNet network
independently. The key feature in this work, HeartTrack, is a 3D spatio-temporal attention
neural network used to do three major works simultaneously: choose the best-fit ROI from
pre-processed face detection for pulse detection in each frame, the optimal nonlinear function
of color channels, and to complete signal filtering using temporal information simultaneously.
The output is then fed to a feed-forward 1D CNN for HR estimation. The model was trained
with private datasets (MoLi-ppg-1 and MoLi-ppg-2) and tested on UBFC-RPPG.

In Song et al. [53], the rough rPPG pulse signal extracted through CHROM is inputted to
the proposed denoising method, PulseGAN. This generative adversarial network (GAN) is
capable of outputting with a denoised pulse waveform, thereby the significant improvement
in the accuracy of HR, interbeat interval (IBI), and heart rate variability (HRV). It was
trained and tested with various public datasets, including UBFC-RPPG, PURE, VIPL-HR,
MAHNOB-HCI, and in-house BSIPL-RPPG databases in terms of intra-dataset and cross-
dataset.
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Fig. 4 An overview of discussed DL methods

Similarly, Lu et al. [54] proposed Dual-GAN that involves two GANs, BVP-GAN and
Noise-GAN, trained jointly to model the BVP predictor and noise distribution. The input
video is first preprocessed to form a spatial-temporal map (STMap) as a raw representation
of the noisy BVP signal. The first GANmodel, BVP-GAN, learns the mapping from STMap
to BVP, and the second GAN model, Noise-GAN, learns the noise distribution. The two
GANs work together to enhance and promote each other’s capabilities via adversarial learn-
ing. It exhibited superior performance relative to conventional methods and outperformed
PulseGAN [53] in terms of lowest SD, MAE, RMSE, and greatest correlation coefficient
across all intra-datasets evaluation, includingUBFC-rPPG,PURE, andVIPL-HR.Dual-GAN
was also trained on PURE and tested on UBFC-rPPG for cross-dataset testing, resulting in
the lowest MAE of 0.74, RMSE of 1.02, and highest correlation coefficient 0.997.

Wu et al. [55] proposed a novel error compensation recurrent neural network by incorpo-
rating the raw face images and the raw rPPG pulse signal extracted via CHROM to compute
the corresponding correction term to enhance performance. It was trained using two in-house
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datasets. These datasets included recordings of the subject in various color temperatures and
as a passenger in a moving vehicle on sunny and inclement days. Additionally, the model
was evaluated on PURE, UBFC, and an in-house dataset containing recordings of the subject
driving a moving vehicle. Lower RMSE and MAE in all datasets showed the model’s better
performance. Due to their well-controlled conditions, PURE and UBFC datasets improved
less. The model performed better in the noisier in-house dataset, including a real driving
scenario with head motion and illumination variations. The model reduced MAE by 66.7%
in this dataset. The study’s results indicate that the proposed compensation network with
error mapping can significantly enhance the robustness of rPPG in noise-heavy conditions.

Lokendra et al. [56] proposedAND-rPPG, a denoising rPPGmethod capable of effectively
mitigating the facial expression-based noise from the temporal signal. It incorporated action
units (AUs) for analyzing facial expressions and denoising temporal signals. Several non-
causalTemporalConvolutionalNetworks (TCN)were used to denoise different facial regions.
For the pre- and post-processing, the CLNF Openface was employed to generate ROI, while
the BSS-based Multi-kurtosis optimization and FFT were responsible for signal extraction
and HR estimation. The approach was trained and tested on UBFC-rPPG and COHFACE.
The author also proved the easy integration of this method into other state-of-the-art methods
to improve their performance.

The emergence of novel coronavirus pneumonia, COVID-19, has garnered worldwide
attention. To address the low-performance problem in conventional methods caused by the
lack of facial information, particularlywhenwearingmasks, Zheng et al. [57] proposed a non-
end-to-end CNN-based residual network model. The proposed model utilizes the location
of human eyeballs to locate the frontal ROI, generates spatio-temporal feature images, and
determines their authenticity. Only the signal that passes this test undergoes FFT processing
on the chrominance signal using CHROM [17] to predict the HR. The RMSE after correction
is improved to 4.65 bpm, which is 0.42 bpm higher than without correction. Moreover, the
correlation is improved from 0.85 to 0.95 on their private dataset, in which their subjects
wore masks.

3.6.3 HR estimation

An improvement in HR estimation can be achieved via DL approaches for better regression
modeling. Qiu et al. [58] applied the conventional face detection followed by EVM-CNN
to regress the HR from the facial features. The Eulerian Video Magnification (EVM) [16]
is used to extract face color changes that correspond to the heart rate information within a
time interval. The CNN for HR estimation was mainly constructed by depthwise separable
convolutions that combined depthwise convolutions and pointwise convolutions to reduce
the computational burden and model size. EVM-CNN was intra-dataset trained and tested
on MMSE-HR.

RhythmNet [59] utilizes the spatio-temporal map for HR estimation. After landmarking
by the SeetaFace face detector on each frame, the HR signals frommultiple ROI volumes are
encoded to a spatio-temporal map. The CNN-RNN deep network consisting of 2D CNN and
Gated Recurrent Unit (GRU) was trained on VIPL-HR to predict the HR from the spatial-
temporal maps. It was tested on MAHNOB-HCI and MMSE-HR. The result showed that
the diverse image acquisition conditions in VIPL-HR trained the RhythmNet to be a more
robust HR estimator. The challenging factors, i.e., video compression, illumination, and head
movement, were further tested.
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3.7 End-to-end DLmethods

ADL-basedmethod is typically recognized as an end-to-endmethod if it takes video frames as
input and outputs an HR estimation without supervised human intervention as the intermedi-
ate steps. The following methods are classified and discussed based on the types of networks
used. However, some methods require prepossessing facial landmarking or outputting the
rPPG (estimated BVP) information instead of the numerical HR estimation. Those meth-
ods are still classified as end-to-end frameworks because they were trained in an end-to-end
manner.

3.7.1 Convolutional-based networks (CNN)

Various CNN-based architectures, such as 2D CNN, convolutional attention network (CAN),
recurrent convolutional network (RNN), temporal shift CNN, and 3DCNN, have beenwidely
adopted in rPPG-based HR estimation. This is because these models enable feature subspace
mapping with minimal need for domain-specific knowledge. Spetlik et al. [60] first proposed
a concept of end-to-end methods, HR-CNN. It is a two-step 2D CNN consisting of a signal
extractor and HR estimator CNN. The extractor was trained to output the rPPG signal to form
a sequence of the subject’s facial images. The output rPPG signal was fed into the estimator
for single scalar HR estimation. Evaluated with COHFACE, MAHNOB-HCI, and PURE, it
outperformed the conventional methods (CHROM and 2SR) in terms of RMSE, MAE, and
PCC.

Chen et al. [61] proposed DeepPhys, a convolution attention network (CAN) based on
VGG-style 2D CNN, that consisted of a jointly trained motion model and appearance model
to provide an end-to-end network that accurately estimates HR and breathing rate from
RGB or infrared videos. Based on the skin reflection model, the motion model takes the
normalized frame difference as input motion representation and outputs the estimated HR.
The appearance model takes the same input but acquires the attention mechanism like human
eyes to learn the difference between frames, thus assisting the motion learning by generating
a spatial mask responding to stronger signals to skin areas. DeepPhys was evaluated on
MAHNOB-HCI, resulting in -8.98dB in terms of SNR.

3.7.2 Spatio-temporal network

The mainstreams of spatio-temporal models are 3D CNN, RNN, or temporal difference
based. A 3D CNN takes spatial and temporal information in the videos into account and
typically performs better. In contrast, a 2DCNN lacks the ability to learn the temporal context
and utilizes the spatial information of video only. In RNN based module, 2D CNN is first
deployed to extract spatial features, and the RNN is used to propagate the spatial feature in the
temporal domain. On the other hand, the temporal difference is a relatively straightforward
approach by applyingTemporal ShiftModule (TSM) [72]. TSM is intended to shift a subset of
channels along the temporal axis prior to 2D convolution, thereby enhancing the information
exchange between adjacent frames and facilitating spatio-temporal modeling with negligible
computational overhead and parameter cost.

Lee et al. [65] proposed Meta-rPPG, an end-to-end supervised learning method. It intro-
duced the application of meta-learning and transductive inference in rPPG estimation.
Meta-rPPG consists of a convolutional encoder, rPPG estimator, and synthetic gradient gen-
erator modeled by a CNN, a LSTM, and a shallow Hourglass network. The meta-learner
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performs well when training data is abundant, with only a slight deviation of distribution
from the testing set. To cope with out-of-distribution samples, e.g., a new video sequence,
the modeled synthetic gradient generator involves performing transductive inference and a
prototypical distance minimizer, resulting in a fast adaptation in a self-supervised fashion.

Liu et al. proposed TS-CAN [67], a two-branch CAN that utilizes one branch for motion
modeling and the other for extracting spatial features. This architecture is comparable to
DeepPhys [61] but with the additional capability of incorporating TSM to conduct temporal
shifts on the tensor before it is fed into each convolutional layer of the motion branch. This
mimics the effects of 3D CNN and enables spatio-temporal modeling. The model was trained
on the AFRL dataset, cross-tested withMMSE-HR, and outperformed conventional methods
and DeepPhys with a lower MAE of 3.41, RMSE of 7.82, and higher correlation coefficient
0.84, SNR of 2.92.

In STVEN-rPPGnet [62], two spatio-temporal networks were combined to form a two-
stage end-to-end STN.The STVENmodel is used to overcome the issue of highly compressed
input video frames by outputting the spatially enhanced video. The rPPGnetmodel consisting
of the skin-based attention module and partition constraint module, can be used individually
to accurately estimate the HR and HRV. The author claimed better performance could be
achieved if the rPPGnet and STVEN models were trained jointly.

Yu et al. [63] developed PhysNet based on the three different architectures, i.e. 3D CNN,
3D CNN with temporal encoder-decoder (ED) structure, and 2D CNN combined with RNN
for further comparison. All variants were trained and validated under the OBF dataset. The
result showed that 3DCNN-ED achieved the best performance in HR estimation compared
to the worst case, RNN’s 3.139 (using LSTM as RNN). The 3DCNN-ED PhysNet was then
cross-tested with MAHNOB-HCI, and it outperformed HR-CNN and other 2D CNN-based
models. Besides HR and HRV estimation, emotion recognition is also supported in [63].

3D CNN network with deep architecture requires high computational expense due to the
simultaneous processing of spatial and temporal dimensions. Training a 3D CNN network
using large dataset sis computationally expensive and time-consuming, which may make it
unsuitable for real-time applications. To address these issues, Botina et al. [68] proposed
RTrPPG, a lightweight 3D CNN architecture. The proposed 3D CNN architecture balances
heart rate measurement precision and inference time by decreasing the input size for fast
inference. The model employing YUV as the color space for skin segmentation provides the
optimal balance between real-time, signal quality, and heart rate measurement performance.
Consequently, the MAE of 3.99 bpm is comparable to PhysNet’s 3.87 bpm in the VIPL-HR
dataset, while the GPU and CPU inference procedure improved by approximately 88%, from
51.77 ms to 2.32 ms in GPU and from 245.57 ms to 28.03 ms in CPU.

3.7.3 Super-resolution network

Yue et al. [66] proposed rPPGRNet andTHRNet to achieve end-to-end framework for the ease
of training. In rPPGRNet, their specialized rPPGPMmodule was integrated with a recurrent
back projection network (RBPN) to generate SR-upscaled facial images with enhanced and
recovered rPPG signals from low-resolution facial videos. The author claimed that the inte-
gration of rPPGPM is prioritized to enhance and recover rPPG information in a facial image
during SR processing, which was absent in the similar state-of-the-art RBPN approaches in
Song et al. [73] and McDuff et al. [74]. The THRNet is designed based on ResNet-10 with
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a modification of including temporal-wise attention mechanism to keep the model focusing
on the pulsating information of blood flow. The model was trained and evaluated on DEAP
and its own database, MMVS, with preprocessed facial landmarks.

3.7.4 Neural architecture search

Yu et al. [64] proposed AutoHR, an end-to-end baseline consisting of a powerful searched
backbone with the designed Temporal Difference Convolution (TDC) to discover a well-
suited backbone for remote HR measurement. The TDC inputted original RGB frames to
discover the temporally normalized frame difference. The neural architecture search (NAS)
was used to find out the best-suited 3D CNN backbone for HR measurement, enforced
by a hybrid loss function with time and frequency constraints. The spatio-temporal data
augmentation was involved for better representation learning. The model was trained on
VIPL-HR and MAHNOB-HCI and conducted intra-dataset testing, respectively. For cross-
dataset validation, the VIPL-HR trained model was tested on MMSE-HR.

3.7.5 Transformer network

The Transformer architecture has been widely used in natural language processing tasks such
as BERT [75], BART [76], GPT-2 [77], and GPT-3 [78] and computer vision classification
applications such as ViT [79] and DE:TR [80]. The objective of rPPG-based HR estimation is
to estimate pulse signals from multiple temporal signals, containing mainly the pulse signal
corrupted by noise. Consequently, the pulse signal generates a robust correlation between the
temporal signals. The Transformer architecture can efficiently learn this due to its exceptional
multi-head attention mechanism.

Yu et al. proposed TransPPG [81], a method for automatic rPPG feature representation on
a 3D mask face that employs the ViT architecture to estimate the pulse signal from temporal
signals extracted from frame differences and detect the liveness representation. TranRPPG
obtains superior or state-of-the-art performance in 3Dmask face presentation attack detection
(PAD) by being more lightweight and efficient.

Gupta et al. proposed RADIANT [69] that combines Multilayer perceptron (MLP) and
Transformer architecture. The MLP linear projection transforms temporal signals into signal
embeddings in a novel manner to improve the rPPG feature representation and facilitate the
learning of pertinent rPPG feature representations. The Transformer architecture is utilized
for denoising and estimationof the cardiovascular pulse. Pre-trainingusing synthetic temporal
signals [82], large-scale dataset ImageNet and data augmentation were employed to address
the problem of limited training data and under-fitting. On UBFC-rPPG and COHFACE, the
model outperformed DeepPhys [61], HR CNN [60], META-rPPG [65] and other CNN-based
architectures with lower RMSE at 4.52 and 10.12, respectively.

On the other hand, Yu et al. [70] proposed Physformer consisting of cascaded tempo-
ral difference transformer blocks to adaptively accumulate local and global spatio-temporal
features to improve rPPG representation. The key highlight of this model is that it can be
readily trained from scratch on public rPPGdatasets, in contrast to themajority of transformer
networks that require pretraining on large-scale datasets such as ImageNet. In addition, the
authors propose a label distribution learning approach and a dynamic constraint in the fre-
quency domain to provide informative supervision for PhysFormer and mitigate the problem
of overfitting. PhysFormer achieved state-of-the-art performance for the intra-dataset testing
on VIPL-HR, MAHNOB-HCI, and OBF without requiring heavy preprocessing procedures.
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Furthermore, the model trained with VIPL-HR was cross-tested with MMSE-HR, Phys-
Former outperformed traditional, non-end-to-end learning, and end-to-end learning-based
methods by achieving the lowest SD of 5.22, MAE of 2.84, RMSE of 5.36, and the highest
correlation coefficient at 0.92.

Yu et al. also introduced Physformer++ [71] utilizing a SlowFast temporal difference
transformer with two pathways, and incorporates periodic- and cross-attention mechanisms.
In contrast to PhysFormer, which only employs the slow pathway, Physformer++ uses both
pathways to leverage temporal contextual and periodic rPPG clues from facial videos more
effectively. In cross-dataset testing, PhysFormer++ has surpassed its predecessor and other
methods that its predecessor surpassed. It achieved this with a lower standard deviation of
5.09, a mean absolute error of 2.71, a root mean square error of 5.15, and a higher correlation
coefficient of 0.93.

3.8 Gaps & influencing challenges

Remote HR measurement has attracted considerable research interest since the introduc-
tion of rPPG. The COVID-19 pandemic has further stimulated the development of remote
physiologicalmonitoring techniques. Nevertheless, several challenges and limitations remain
in this field. This section discusses the gaps and influencing challenges affecting the per-
formance and applicability of remote HR measurement methods. Table 5 summarizes the
identified gaps from state-of-the-art research for future research directions suggestion.

Firstly, the public dataset should be more comprehensive and diverse. Currently, different
public datasets mainly focus on either motion artifact or illumination variation as the main
challenge for rPPG. For instance, PURE is designed to evaluate the effect of head motion
artifacts on rPPG, while COHFACE is used to assess the impact of illumination variation.
Additionally, demographic diversity is an important factor. The majority of existing camera-
basedphysiologicalmeasurement datasets havebeen collected inEurope, theUnitedStates, or
China. Images of participantswith paler skin tones predominate. The typical age of the subject
is also youthful, with a narrow age range. In addition, other factors such as multiple object
detection, camera-to-subject distance, environmental conditions, and camera specifications
have not been emphasized and surmounted in the majority of studies. In supervised methods,
this may result in a trained model with poor performance in real-world applications, as its
performance is extremely dependent on the training dataset. To enhance the robustness of a
model, it is necessary to propose a comprehensive, fair, well-balanced, and diverse dataset.

Table 5 Summary of identified gaps in state-of-the-art rPPG researches

Identified gaps Description

Inadequate in terms of completeness and variety,
public rPPG dataset

Limitations in trained model’s performance due
to insufficient variations reflect real-world
scenarios

Limited ROI options and absence of research
besides face region

Over-reliance on facial images in state-of-the-art
methods

Lack of research related hardware and software
configuration in this field

Dependence of performance on the choice of
camera sensor and video compression
technique

Insufficient research on rPPG data security and
protection

Potential for misuse of rPPG data by
unauthorized or malicious parties
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The face is typically chosen as theROI for rPPGHRestimation approaches due to its larger
planar skin area and more visible blood capillaries, particularly in the cheeks and forehead
regions. However, this technique may have limitations due to its reliance on facial features
on the entire face region. In order to increase the number of possible application scenarios
when only a portion of the face is accessible, such as when a face mask is worn, a method
must be able to manage diverse input skin areas. For example, Zheng et al. [57] proposed
a non-end-to-end CNN-based residual network model tailored to the case of face mask use.
In DeeprPPG [83], a hybrid DL method with spatio-temporal convolutional networks was
trained to accept video clips of various input skin regions as input for HR estimation.

From the hardware side, the contact devices for collecting ground truth label data can
exhibit biases [84]. Dasari et al. [85] examined the estimation biases of rPPGmethods across
various demographics and found similar biaseswith contact-based devices and environmental
conditions. In supervised methods, this may result in a trained model with poor performance
in real-world applications, as its performance is extremely dependent on the training dataset.

Besides the bias in ground truth sensors, the cameras also reveal their limitations and
biases as they vary widely in specifications. Cameras are designed with certain operating
criteria and often optimized for lighter skin types. Sensitivity is usually highest in the middle
of the camera’s frequency range, and dark or very light skin types may saturate the pixels and
lose physiological variations. Image sensor qualities and parameters, such as sensor type,
color filter, frequency bands, bit depth, and pixels, affect the sensitivity of measurements.
Other hardware factors, such as lens, aperture, shutter speed, and ISO, can also influence
the image content. Camera internal software properties or controls, such as resolution, frame
rate, and auto controls, impact image quality and may vary depending on the hardware and
bandwidth. However, it is hard to characterize the impact of each parameter due to the many
combinations.

Heart rate (HR) is an important physiological indicator that reflects an individual’s health
condition. Consequently, the majority of studies in this field concentrate on HR estima-
tion. However, other vital signs are also important for detecting and monitoring a variety
of diseases. For example, blood pressure (BP) can reveal cardiovascular diseases such as
hypertension, whereas SpO2 can indicate cardio-respiratory health by revealing whether or
not a person has sufficient oxygen. In fact, there are fewer studies on estimating BP and SpO2
remotely than HR. Therefore, there are many research opportunities to investigate the feasi-
bility of estimating multiple vital signs at the same time. HR estimation alone is insufficient
for clinical applications because estimating multiple vital signs simultaneously is more prac-
tical [86]. With the growing need for telemedicine and remote healthcare technologies [87],
the ability to estimate and track multiple vital signs remotely can offer healthcare profes-
sionals a comprehensive understanding of their patient’s health conditions, leading to better
diagnosis, treatment, and disease management.

In addition to the previouslymentioned gaps, data privacy is a primary concern for camera-
based solutions. This is particularly true for rPPG studies, as they frequently use consumer-
grade cameras for data collection and monitoring. These camera-based methods pose a risk
to biometric data security, necessitating stringent privacy protocols to safeguard individual
privacy. However, fewer studies are addressing this; there are lots of research opportunities
to investigate the feasibility of security algorithms in rPPG. For example, in PulseEdit [88], a
novel security algorithm capable of editing physiological signals to conceal a person’s cardiac
activity and physiological status without altering or distorting the original visual appearance
was proposed to protect the user’s physiological signal from being disclosed. Similarly, Sun
et al. [89] proposed PrivacyPhys, a model that modifies rPPG in facial videos captured from
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online video meetings or video-sharing platforms in order to safeguard against malicious
capture and ensure privacy.

Back to the current development in rPPG, due to the nature of camera-based systems, the
most critical and urgent issues in this field, motion artifact and illumination variation, are
reduced to a degree by each proposed rPPG solution, but there are still a number of problems
and challenges that could affect performance.

Video compression algorithms aim to reduce a video’s bit rate while maintaining its
fidelity, facilitating its transmission bandwidth and storage. Due to limited storage capacity,
themajority of consumer-level cameras compress the recorded videos, as demonstrated by the
datasets inTable 3.This compressionprocess inevitably degrades videoquality and introduces
errors in extracting rPPG signals, particularly for conventional methods that heavily rely on
the color information encoded in the original videos. Compression algorithms frequently
disregard the subtle temporal variations in pixel values that reflect the PPG signal to save
bits. For instance, Woyczyk et al. [90] reported that the efficacy of their model was severely
impacted by video compression, specifically the MPEG-4 format. Mcduff et al. [91] found a
linear correlation between the PPG SNR and constant rate compression factors. In contrast,
Rapczynski et al. [92] observed that HR estimation was more resistant to variations in video
resolution and color subsampling. In other words, the future dataset should contain multiple
videos with varying compression levels to conduct robust analysis or train a robust model.

Consistent performance in different HR ranges has to be ensured. In Li et al. [93], with
the first open challenge on remote physiological signal sensing, RePSS 2020, the top three
teams all performed the best within 77 to 90 bpm, and the MAE values are significantly
higher when tested on either higher or lower HR rate ranges. The inconsistencies showed
that the state-of-the-art methods still require improvement to adapt to the broader bpm range.
Therefore, it is still debatable whether good statistical indicators, including MAE, RMSE,
SNR, and PCC, accurately reflect the model’s high promise across the human HR range.

Additionally, data privacy could pose a challenge for rPPG research. Researchers must
carefully consider the potential hazards of such testing and ensure that their studies are con-
ducted with the subjects’ privacy and ethical concerns in mind. This includes respecting the
autonomy and dignity of research participants, obtaining informed consent before collect-
ing rPPG data, safeguarding the confidentiality and security of the data, and ensuring that
participants have the right to withdraw or access their data. However, conducting real-world
tests with rPPG may present additional ethical challenges, especially when subjects are not
informed consent or when testing is conducted in public or uncontrolled settings.

3.9 Potential applications

As rPPG prevents wearing discomfort, and skin allergies, integration into infant monitoring is
possible and appropriate. Physiological monitoring, especially HRmonitoring for a newborn
in the neonatal intensive care unit (NICU), is a crucial practice to avoid bradycardia and apnea.
To this end, Huang et al. [94] first proposed a newborn-optimized spatio-temporal neural
network and dataset for HRmonitoring to overcome newborns’ side-face posture and limited
valid ROI compared to adults. Villanroel et al. [86] conducted a clinical study to develop a
multi-task algorithm that segments skin areas and estimates vital signals only when the infant
is present in the view of the camera without clinical interventions. Neonates are generally
less mobile than adults, and the hospital environment provides controlled illumination, such
as when they are resting in a small incubator. This makes rPPG a prospective neonatal
monitoring application. Nevertheless, the integration of multiple sensors and signal fusion
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can overcome the limitations of camera-based measurements, such as when the face or body
is partially covered.

Tran et al. [51] began a practical demonstration by deploying their rPPG system for
monitoring the patient’s HR at a hospital, which is a first step towards telemedicine and
telehealth. In addition, the COVID-19 pandemic has brought telemedicine and telehealth to
the forefront, particularly in situations where remote monitoring and diagnosis are required.
Annis et al. [87] studied the feasibility and effectiveness of a remote patientmonitoring (RPM)
program for COVID-19 patients. The program included features such as remote monitoring
of vital signs, symptom tracking, and two-way video conferencing. The study revealed a
reduction in hospitalizations and visits to the emergency department, as well as an increase
in patient satisfaction. Camera-based tools are considered to be the most convenient and user-
friendly remote monitoring tools available to the general public [8]. However, one significant
challenge in using these tools is the greater variability in illumination conditions, motion, and
frame quality, compared to data capture performed in hospital settings with gold-standard
sensors.

In addition to clinical applications, numerous studies, including [95–97], found that HR
monitoring has benefits for sports activities in terms of preventing the emergence of a state
of fatigue and improving cardiac regulation. This is because HR is one of the significant
psycho-physiological variables that may determine sports performance. The idea of heart
rate monitoring was first mooted in archery sport officially in the World Archery Cup back
to the year 2012. A contact-type heart rate sensor that would be attached just below the
archer’s knee was developed and implemented in top archery tournaments [98]. After a
decade, the non-contact camera-based HR monitoring solution was introduced publicly and
used to broadcast the archers’ heart rates in the top tournament, Tokyo Olympics 2020, on
TV. The system consists of four sets of cameras installed 12 meters away from athletes and
pattern-recognition software for tracking the face color changes and calculating the HR.

For entertainment purposes, the obtained HR changes during various phases of the com-
petitions were broadcast concurrently so that the television audience could experience the
stress and body’s adrenaline rush [99]. More importantly, it is beneficial for the optimization
of long-term sports performance. In Clemente et al. [100], it was proved any mismatch of
physiological and psychophysical factors could deteriorate archers’ accuracy and precision.
It also concluded that experienced archers exhibit better accuracy and, at the same time, a
lower heart rate compared to inexperienced archers because of the better arousal control.
With this solution, the archer’s physiological signals with associated performance under real
stress can be precisely analyzed to outcome with targeted training for the archer’s strength,
endurance, and mental training.

Currently, wearable devices, such as smartwatches and smart bands, are very attractive
for sports, fitness, training, and wellness. These contact PPG devices allow users to keep
tracking their physiological conditions as prevention and avoid excessive training. However,
the water and sweat deposited in the straps usually cause an allergic reaction in terms of
rash and irritation on the skin. Thus, it makes it possible for the non-contact rPPG technique
to take place and provide similar HR monitoring. In Wang et al. [101], the algorithm was
proposed targeted for reducing motion artifacts in fitness training.

Using in-car cameras to monitor a driver’s physiological state is a method to prevent
and reduce traffic accidents brought on by human factors such as fatigue and drowsiness.
The monitoring may detect abnormal vital signs and alert the driver immediately or use this
information to stop a vehicle safely, thus helping to avoid tragedy and accidents. Several
driver monitoring-focused approaches are proposed to detect fatigue and drowsiness. For
instance, in Nowara et al. [102], the application of a NIR camera to deal with the abrupt
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changes in the driver’s face’s illumination during the day and night. Du et al. [103] proposed
amultimodal fusion technique integrating both eyelid features and rPPG extracted fromRGB
video for driving fatigue detection.

The pervasive use of smartphones with video recording capabilities enables the incor-
poration of rPPG techniques into non-invasive vital physiological signs assessment. For
instance, MobilePhys [104] utilizes both front and rear cameras on a smartphone to generate
high-quality self-supervised labels for training personalized contactless camera-based PPG
models. This is because current state-of-the-art neuralmodels are typically trained using high-
quality videos with gold-standard physiological labels, which are not applicable to complex
real-world contexts for mobile systems. However, the limited computational resource in end
devices poses a challenge for rPPG methods. Casalino et al. [105] proposed a prototype of
a client-server architecture mobile app that performs the signal and video processing on the
server while the smartphone handles the video acquisition and the interaction with the user.

As a basic biometric authentication method, a conventional face recognition system is
vulnerable to paper-attack and video replay attacks. The rPPG technique can serve as a face
spoofingdetector to improve the face recognition system.For example,Yao et al. [106] created
a weighted spatial-temporal map by utilizing multiple smaller ROIs with varying weights.
This approach was employed to simplify the decision-making process for a customized
EfficientNet [107] model. Yu et al. [81] proposed TransrPPG to extract pulse signals from
frame difference and render them as a 3D face mask for face liveness detection.

4 Conclusion

A comprehensive review of conventional computer vision and DL-based approaches for
contactless heart rate estimations, its possible applications, and current research gaps are
discussed in this paper. The conventional computer vision methods require pixel-based pro-
cessing and filtering to retrieve ROIs in the face. Subsequently, these ROIs are processed
with signal extraction sequentially to estimate HR. On the other hand, DL approaches are
proven to direct estimate HR from images/video. It can efficiently reduce the noise caused
by motion and illumination, thus improving the performance of HR measurement. Future
research should prioritize addressing influencing challenges, such as illumination variations
and motion artifacts, while considering other factors, such as consistent performance across
the human heart rate (HR) range and the impact of video compression. The strong reliance
on facial ROI indicates the lack of ROI selections in this field. In addition, the influence of
hardware on efficacy has received little consideration. In addition to estimating HR, future
studies should consider other vital signs, such as breathing rate variations.

To achieve this, realistic and diverse datasets comprising detailed information should be
made available to enable the proper benchmarking of increasingly advanced deep learning
(DL) techniques. However, research efforts should not be limited to the evaluation of dataset
performance alone. Additional research should investigate potential clinical applications,
including neonatal monitoring, telemedicine, and telehealth. Non-clinical applications, such
as sports or fitness activity monitoring, in-car fatigue monitoring, face spoofing detection,
and mobile-based applications, may be viewed as preliminary stages before more complex
and strictly regulated clinical uses are implemented. However, it is essential to note that user
privacy is always a concern in camera-based applications and research. Researchers should
take precautions and conduct research to prevent the leakage of physiological information.
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These recommendations can guide future research efforts to advance the field of non-contact
HR estimation via camera-based analysis.
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